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estimates of under-5 mortality in
populations affected by HIV/AIDS: a
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Abstract

Background: In populations that lack vital registration systems, under-5 mortality (U5M) is commonly estimated
using survey-based approaches, including indirect methods. One assumption of indirect methods is that a mother’s
survival and her children’s survival are not correlated, but in populations affected by HIV/AIDS this assumption is
violated, and thus indirect estimates are biased. Our goal was to estimate the magnitude of the bias, and to create
a predictive model to correct it.

Methods: We used an individual-level, discrete time-step simulation model to measure how the bias in indirect
estimates of U5M changes under various fertility rates, mortality rates, HIV/AIDS rates, and levels of antiretroviral
therapy. We simulated 4480 populations in total and measured the amount of bias in U5M due to HIV/AIDS. We
also developed a generalized linear model via penalized maximum likelihood to correct this bias.

Results: We found that indirect methods can underestimate U5M by 0–41% in populations with HIV prevalence of
0–40%. Applying our model to 2010 survey data from Malawi and Tanzania, we show that indirect methods would
underestimate U5M by up to 7.7% in those countries at that time. Our best fitting model to correct bias in U5M
had a root median square error of 0.0012.

Conclusions: Indirect estimates of U5M can be significantly biased in populations affected by HIV/AIDS. Our
predictive model allows scholars and practitioners to correct that bias using commonly measured population
characteristics. Policies and programs based on indirect estimates of U5M in populations with generalized HIV
epidemics may need to be reevaluated after accounting for estimation bias.
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Background
Under-5 mortality (U5M) is an important indicator of
population health, and relationships between U5M and
fertility, population growth, economic growth, and
democratization are actively researched [1–6]. Several
national and international goals, most notably the Mil-
lennium Development Goals (MDGs) and the Sustain-
able Development Goals (SDGs), have included U5M as
a target indicator. MDG4 called for a 2/3 reduction from

1990 U5M levels by 2015, and SDG3 calls for a reduc-
tion of U5M to at least 25 per 1000 live births by 2030.
Yet accurate measurement of U5M in many countries is
still hampered by the quality and/or availability of data
[7–10].
Most child deaths occur in countries that lack or have

incomplete vital registration systems. In such popula-
tions, survey- and census-based methods for mortality
rate estimation are commonly used. Survey-based
methods include direct and indirect estimation. The
former requires the collection of a full birth history, that
is, date of birth and age at death, if appropriate, for every
live birth a woman has had. With that information U5M
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rates can be calculated for any time period before the
survey. However, because of small sample sizes, rates are
typically calculated for 5-year periods (1–5, 6–10 and
11–15 years before the survey). Indirect methods, by
contrast, require only the collection of a summary birth
history [11]. Mothers are asked about the number of
live-born children they have ever given birth to and the
number that are still alive. No information about dates
of birth or dates of death is collected. Models of fertility
and age-specific mortality are used to estimate the prob-
ability of dying between birth and age 5 (U5M) based on
the ratio of children dead (CD) to children ever born
(CEB). The resulting estimates correspond to periods
that precede the survey date by a length of time deter-
mined largely by age patterns of fertility, approximated
by parity ratios across age groups [12]. Although full
birth histories have come to dominate the measurement
of U5M at the country level, summary birth histories re-
main valuable. They are often included in population
censuses, and offer greater potential for spatial or socio-
economic disaggregation [13].
In populations affected by HIV/AIDS, three key as-

sumptions of indirect methods for U5M estimation are
likely to be violated. First, the methods assume that the
survival of a mother and the survival of her children are
not correlated. HIV/AIDS has a substantial impact on
the mortality risks of children born to HIV positive
mothers due to vertical transmission of the virus and to
other harmful consequences of maternal death. Empir-
ical studies demonstrate that the survival of a mother
and that of her children are highly correlated in popula-
tions affected by HIV/AIDS [14]. Note that this also
leads to bias in direct estimates of U5M that rely on sur-
veys, because women who have died are under-
represented in the survey sample.
The second assumption is that the mortality experi-

ence of the children of mothers in each age group at the
time of the survey is representative of the mortality ex-
perience of the children of all mothers for some time
period in the past; in other words, time trends in U5M
need to have been gradual and unidirectional. If the inci-
dence of HIV/AIDS has changed over time (or access to
antiretroviral therapy (ART) has changed) then this as-
sumption would be violated.
The third assumption is that age-patterns of under-

5 mortality are accurately captured in the mortality
model (i.e., life table) that is used. To the extent that
populations impacted by HIV are likely to have age-
patterns of mortality that differ from those available
in any model life tables, then the indirect estimates
would be biased.. Recently developed model life tables
based on demographic surveillance systems in rural
Africa are among the first to account for the impact
of HIV [15].

Underestimation of U5M may have a range of undesir-
able consequences. First, it can lead to overestimates of
intervention effectiveness and to false declarations of
success in campaigns to meet objectives such as the
MDGs or the SDGs. If the bias is large enough, it may
appear that U5M is decreasing when it is in fact increas-
ing. Second, it may also result in resources previously
dedicated to lowering U5M being reallocated to other
targets when there is still scope for these resources to
produce significant benefits in reducing the burden of
U5M. Finally, underestimates of U5M may make epi-
demics, such as HIV, appear less harmful than they are
in reality. To address these concerns, we offer an alter-
native to correct the bias due to HIV in indirect esti-
mates of U5M, which requires only estimates of HIV
prevalence in the year of the survey and 10 years prior
to the survey, and an estimate of ART prevalence in the
year prior to the survey. Given the centrality of U5M es-
timates to many policy and planning efforts in global
health, we intend that this tool will facilitate more reli-
able U5M estimation for countries impacted by HIV and
produce corresponding benefits for priority-setting and
other decision-making in these settings.
Previous studies of the bias in estimates of U5M due

to HIV/AIDS include [16–18]. Only Ward and Zaba [16]
assessed indirect estimates, using a stable population
model, and assuming that HIV incidence was stable over
time. They found that the degree of negative bias in in-
direct mortality estimates increased from 1.2 to 44.3% as
the adult prevalence of HIV increased from 2.5 to 45%,
with greater bias in estimates from older women, par-
ticularly those aged 45–49.
Hallett et al. [17] calculated bias in direct estimates of

U5M based on a prospective, population-based cohort in
rural Zimbabwe that used verbal autopsies to identify
AIDS deaths. They also built a mathematical model cali-
brated to the empirical data to estimate and correct the
bias in U5M. Bias was calculated by comparing a demo-
graphic and health survey (DHS) continuous time series,
consisting of smoothed direct estimates of U5M, to a
DHS corrected time series. Reports from surviving
mothers underestimated U5M by 9.8% compared to re-
ports from all mothers, in a population in which HIV
prevalence fell from 22% in 1998 to 18% in 2005.
Most recently, Walker et al. [18] used a cohort compo-

nent projection model where the key inputs were de-
rived from the latest projections available from the Joint
United Nations Programme on HIV/AIDS (UNAIDS)
Spectrum package [19]. Spectrum outputs include: an-
nual number of births (typically from 1970 onwards),
number of women each year in need of prevention of
mother-to-child transmission (PMTCT - considered as a
proxy for the number of births to HIV-positive women),
and number of HIV-positive infants. The Spectrum
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model takes into account the fertility-reducing effects of
HIV, the estimated transmission of HIV from mother to
child, breastfeeding patterns, and the impact of interven-
tions to reduce MTCT. For HIV-negative births, the
risks of dying in each year from birth to age 5 years were
obtained from a model life table in the Coale and
Demeny “West” family, using a level of U5M that was a
best guess of the U5M in the HIV-negative population.
Thus, the model assumed that mortality of HIV-negative
children born to HIV-positive mothers was the same as
that for children born to HIV-negative mothers. The
model did not take into account the age when a woman
is infected with HIV when estimating mortality due to
AIDS. It estimated bias by comparing the ratio of under-
five deaths to births for all mothers and for surviving
mothers across the 35-year intervals preceding the year
of the survey.
This paper builds on the literature examining bias in

U5M estimates, focusing on indirect methods and using
a simulation model to incorporate a more comprehen-
sive set of population characteristics than in previous
studies. Using the model to simulate a variety of trajec-
tories in HIV incidence, levels of ART coverage, mortal-
ity rates and fertility rates, we calculated the magnitude
of bias in indirect estimates of U5M under different
combinations of these variables. Based on the results of
the simulations, we developed a parsimonious predictive
model of bias as a function of a subset of these variables,
and we used the predictive model to adjust estimates
based on empirical data from Malawi and Tanzania. This
analysis was the first since Ward and Zaba [16] to assess
indirect estimates. Unlike Ward and Zaba [16], the evo-
lution of the AIDS epidemic was incorporated into the
simulation model, and unlike Walker et al. [18] the dy-
namics of ART take-up were included. In addition, the
simulation used more recent data than Ward and Zaba
[16] and Hallett et al. [17], and, unlike the latter, it was
not calibrated to empirical cohort data, which means
that this study relies more on parameters estimated in
previous studies.

Methods
Simulation methodology
We created a discrete-time, stochastic, individual-based
model to simulate fertility, HIV infection, ART initiation,
and mortality for women and their children living during
the period 1946–2010. In each yearly time step, each
woman in the model faces some probability of giving
birth, being infected with HIV, initiating ART (if HIV-
positive), and dying. Children born to HIV-positive
mothers face some probability of infection at birth, all
children face some probability of dying each year, and
female children, should they survive to age 15, begin to
face the same probabilities listed above. In other words,

children born during the simulation can become adults
in the simulation. Parameters of the model were derived
from published and unpublished sources, as detailed
below. Some of the parameters (the “inputs”) were varied
across simulations in order to generate populations with
a wide range of fertility, mortality, HIV incidence, and
ART initiation trajectories. Other parameters remained
fixed across populations, particularly those that define
biological relationships (e.g. survival time among HIV-
positive women who do not initiate ART).
The goal of the simulation was to create a wide variety

of population histories, resembling the experiences of
different actual populations, to assess how bias will vary
in relation to other population characteristics that may
be measured independently (e.g., HIV prevalence). In
order to characterize these general relationships rather
than their expression in a small number of particular
populations, the parameters included in the simulation
model vary over a range of different values that each se-
lected population characteristics may take, rather than
precisely matching fertility, mortality, HIV incidence,
and ART initiation rates experienced in specific settings.
All simulations were run in R [20], and the data and
code are freely available at https://github.com/jquattro/
hiv-childmort-bias. A user-friendly web application to
correct indirect estimates is available at johnquattrochi.
com/bias.

Simulation parameters
Size and date of initial population
We initiated the simulation with 22,500 women who
were aged 15 years in 1906, and ran the simulation
through 2010. This was the smallest initial population
and shortest simulation duration (104 years) that pro-
duced stable estimates. Larger initial populations and
longer durations were too computationally costly.

Annual probability of birth, HIV negative women
We defined the annual probability of birth as a function
of calendar year and mother’s age. The birth probability
was set to zero for women younger than 15 years and
older than 49 years. We used estimates of age-specific
fertility rates (ASFR) from the United Nations Popula-
tion Division’s World Fertility Data [21], which provided
estimates for years when surveys or censuses are avail-
able (roughly every 5 years). For years when ASFR were
not available, we adjusted the nearest available ASFR
using the interpolated estimates of the total fertility rate
(TFR) from the United Nations Population Division’s
World Population Prospects [22]:

Pr birthð Þcurrent year;age;input ¼ ASFRnearest year;input� TFRcurrent year;input

TFRnearest year;input

� �

where: current year is the current year in the simulation;
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nearest year is the year nearest to the current year for
which ASFR are available; age is age of mother in
current year; and input is the country from which fertil-
ity data is being used for the current simulation. To ac-
count for postpartum amenorrhea, we divide the
probability of birth by two in the year following a birth.

Annual probability of birth, HIV positive women not on ART
Using DHS data, Chen and Walker [23] found that
among women aged 15–19 years, those who were HIV-
positive experienced higher ASFRs compared to HIV-
negative women, with the ratio dependent on the per-
cent of 15–19 year old women who were sexually active;
also, among those aged 19, HIV-positive women experi-
enced lower fertility rates relative to HIV-negative
women. We use the ratios estimated by Chen and
Walker [23] as fixed parameters in the simulation model
(although the percent of females aged 15–19 who are
sexually active was an input that varied across
simulations.

Annual probability of birth, HIV positive women on ART
Several studies have found that incidence of pregnancy
increases following initiation of ART [24–26], while at
least one has found that incidence does not increase
[27]. The effect of ART on fertility likely depends on
age, cluster of differentiation 4 (CD4) count at initiation,
educational attainment, contraceptive use, and partner’s
HIV status. For the simulation model, we assumed that,
among women over age 19, ART erases half of the fertil-
ity decrease caused by HIV/AIDS. In other words, for
women on ART, the ASFR ratios in Chen & Walker [23]
increase by half the difference from one (one indicating
equal ASFRs between HIV-positive and HIV-negative
women). We assumed that the ASFR for 15–19 year olds
is not affected by ART. This simplifying assumption has
minimal effect as few women in the simulation will be
infected with HIV/AIDS and initiate ART by age 19.

Maternal mortality: probability of mother’s death at each
birth
Inputs relating to maternal mortality included the ma-
ternal mortality ratio (MMR - maternal deaths per 100,
000 births) in 1990 and the annual decline in MMR
since 1990. The initial value of the MMR was either
0.0012 or 0.012, representing the range of empirical esti-
mates from Hogan et al. [28]. For similar reasons, the
annual rate of decline was set to 0 or 7.3%. Blanc, Win-
frey, and Ross [29], using data from 38 DHS, found that
MMR had a J-shaped relationship with age; women aged
40–49 experienced an MMR roughly 3 times greater
than women aged 20–24, while women aged 15–19 ex-
perienced an MMR roughly 20% greater than women
aged 20–24. For the sake of model parsimony, we

ignored the higher risk for younger women. For women
aged 25 years and younger, the risk of death at each
birth was equal to the MMR divided by 100,000. For
women older than 25 years, the risk of death was as-
sumed to be:

Pr deathjbirthð Þ ¼ MMRinput;year

100; 000

þ age−25ð Þ
25

� �
�2�MMRinput;year

100; 000
;

where: input is the input series of MMRs based on
Hogan et al. [28]; and year is the current year in the
simulation. The per-birth probability of maternal mor-
tality in HIV-positive women was set at 8.2 times greater
than the probability for HIV-negative women based on
Zaba et al. [30].

Annual probability of HIV infection
The annual probability of HIV infection was selected
among the HIV incidence curves estimated by Hogan
and Salomon [31] for 31 African countries. We selected
five curves that included early-starting and late-starting
epidemics, with either high or low peak incidence. The
age pattern of incidence was determined using age-
specific HIV incidence ratios from Heuveline [32].

CD4 count at infection and annual progression of CD4
count
Parameters governing CD4 count were derived from
Hallett et al. [33]. Specifically, when a woman was in-
fected with HIV, the square root of her initial CD4
count was a random draw from a normal distribution
with a mean of 25.9 and a standard deviation of 0.61.
CD4 was assumed to decline linearly over time. For each
woman under age 35 the absolute yearly decline was de-
fined by a random draw from a normal distribution with
a mean of 1.32, and a standard deviation of 1. For
women 35 years or older the draw came from a normal
distribution with a mean of 2.0 and a standard deviation
of 1.

Annual probability of ART initiation, given that CD4 <
threshold
We used World Development Indicator (WDI) data on
ART coverage for 2009 and 2011 for selected countries
[34]. We assumed that coverage was 0 in 2004 and we
linearly interpolated coverage levels for 2005 to 2008,
and again for 2010. In the WDI data, ART coverage is
expressed as a prevalence measure, i.e. the ratio of the
number of people receiving ART to the number of
people eligible to receive ART. We converted prevalence
to incidence using a simplifying approximation based on
the equilibrium relationship:
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Prevalence ¼ incidence�duration

For duration, we assumed that the median survival
time on ART is 13 years [33]. Thus we ended up with a
series of annual probabilities for initiating ART given
that a woman’s CD4 was below threshold, for 2004 to
2010.

Annual probability of death, HIV negative individuals
Time series for 5q0 and 1q0 estimates from the UN
Inter-agency Group for Child Mortality Estimation
(IGME) for selected countries were used as inputs [35].
To estimate one-year, age-specific probabilities of death,
the ratios of 1q2 to 1q3 to 1q4 from the UN Model Life
Table, General Pattern for both sexes, were used to
interpolate from the IGME estimates.
Time series for the probability of dying between ages

15 and 60 (45q15) were taken from the Institute for
Health Metrics and Evaluation (2010) for selected coun-
tries. To obtain age-specific annual probabilities of death
from ages five and up, the 45q15 for an input “model
country” and year in the simulation were matched to the
UN model life table with the closest 45q15 [22].

Annual probability of death, HIV positive individuals not on
ART
The annual probability of death for HIV-positive women
who were not on ART was based on cumulative mortal-
ity reported in Walker, Hill, and Zhao [18], who drew
on cohort studies by Schneider, Zwahlen, and Egger
[36], Todd et al. [37], and Stover et al. [38].

Annual probability of death, HIV positive women on ART
HIV-positive women on ART faced an annual probabil-
ity of death that was a function of CD4 count at ART
initiation, presence or absence of symptoms at baseline,
and time since initiation. The function was taken from
the “medium” scenario published by Hallett et al. [33].
Women were assigned to “symptomatic” or “non-symp-
tomatic” with probability 0.5, based on Braitstein et al.
[39]. The median survival after initiation of ART ranged
from roughly 13 to 19 years.

Mother-to-child transmission of HIV
Probability of mother-to-child transmission of HIV was taken
from Stover et al. [38] Transmission depends on breastfeed-
ing duration and ART, including the assumption that all
ART is single-dose nevirapine, which is less effective at pre-
venting transmission than dual- or triple-treatment ART.

Range of inputs used in the simulation
The primary goal was to measure bias in indirect esti-
mates across a set of populations that have experienced
different rates of fertility, mortality, HIV infection, and

ART initiation. To generate such a set of populations,
we varied ten inputs: fertility, adult mortality, U5M, per-
cent of 15–19 year olds who are sexually active, maternal
mortality in 1990, percent annual decline in the mater-
nal mortality rate, HIV incidence, duration of breastfeed-
ing, and ART coverage. We simulated one population
for each combination of inputs, for a total of 4480
populations.
With regards to fertility, we considered a time series of

TFR estimated by the UN Population Division [21]. We
selected Botswana and Uganda (Fig. 1a) in order to have
populations with high but declining fertility or with
stable high fertility, reflecting the experience of many de-
veloping countries.
For adult mortality we considered IHME estimates of

45q15 for 195 countries, 1970–2010 [40]. We selected
Madagascar and Sudan to represent high-and-decreasing
and low-and-steady adult mortality (Fig. 1b).
For U5M we considered UN IGME [35] estimates for

195 countries. We chose estimates for Mali and
Morocco to represent high-and-decreasing and low-and-
decreasing U5M, in populations with low prevalence of
HIV/AIDS (Fig. 1c). Note that, in the simulation, these
are background mortality rates that capture causes of
death other than HIV/AIDS.
For HIV incidence, we considered 31 curves estimated

for urban or rural parts of selected African countries
[31]. We chose curves for urban Botswana, rural
Cameroon, rural Malawi, rural Lesotho, and rural
Uganda to vary the timing of epidemic onset and the
level of epidemic peak (Fig. 1d).
National estimates of the rate of ART uptake given

CD4 below a treatment threshold are not available.
Therefore we used WDI [34] estimates of ART coverage
for Botswana, Cameroon, and Malawi to calculate a rea-
sonable set of probabilities of ART initiation (Fig. 2). We
added the highest curve based on twice the ART cover-
age in Botswana to cover populations that experience
particularly rapid uptake.

Indirect estimation of under-5 mortality and calculation
of bias
For each simulated population, we tabulated CEB and
CS as of 2010 for two overlapping groups of women: (1)
all surviving women aged 15–49, and (2) all surviving
women and all women who died from HIV/AIDS aged
15–49. We used all women in each category rather than
drawing a sample to simulate a survey in order to avoid
sampling variability and focus on bias due to HIV/AIDS.
The second population approximates a counterfactual in
which no bias due to HIV/AIDS occurs. Inherent in our
tabulations is the assumption that ‘dead’ women provide
equally valid responses as women who survived. For
each of the two groups of women, we used indirect
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methods to estimate under-5 mortality for each of the
75-year age groups of mothers aged 15–49 years [11].
We used a UN General Standard model life table to esti-
mate nq0 and to convert nq0 into 5q0.
We defined bias in two ways:

Relative bias ¼ IEsurvivors−IEsurvivors&HIV deaths

IEsurvivors&HIV deaths

Absolute bias ¼ IEsurvivors−IEsurvivors&HIV deaths

where IEsurvivors was indirect estimates of U5M using
women who were alive in 2010, and IEsurvivors&HIV deaths

was indirect estimates of U5M using women who were
alive in 2010 and women who died from HIV/AIDS
prior to 2010 but would have been 15–49 in 2010 had
they survived.

Predictive model to correct for bias from HIV mortality
Our aim was to develop a predictive model, based on a
large number of simulations, which related the bias due

Fig. 1 Inputs used in the simulation: total fertility rates, adult and under-five mortality rates, and HIV incidence rates from selected countries.
Notes: a TFR estimates for Uganda and Botswana [21]; b 45q15 estimates for Madagascar and Sudan [40]; c U5M estimates for Mali and Morocco
[35]; d estimates of HIV incidence for rural Cameroon, rural Lesotho, rural Malawi, rural Uganda, and urban Botswana [31]
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to HIV/AIDS in indirect measures of U5M to a small
number of predictor variables that are available for most
countries. The dependent variable was the absolute bias
as defined above; the unit of analysis was the simulated
population of a particular age group.
We employed a variety of modeling strategies,

drawing on recent developments in predictive model-
ing [41]. We randomly selected 80% of our data for
model fitting, and used the other 20% for out-of-
sample predictions. We gauged model performance
using four metrics of out-of-sample prediction accur-
acy: root mean squared error, root median squared
error, mean relative error, and median relative error.
The full model included 53 variables: unadjusted

U5M; five-year age group dummies; HIV prevalence
5, 10, and 20 years before the survey; ART prevalence
1, 3, and 5 years before the survey; TFR in the year of
the survey and 10 years earlier; interactions between
HIV prevalence and age group; interactions between
ART prevalence and age group; and an intercept
term. Note that while 2010 is used as the year of the
survey throughout this paper, the predictive equation
can be used for other years.
Our modeling strategies included forward and back-

ward selection, principle components regression, partial

least squares regression, and generalized linear models
with penalized maximum likelihood. For forward and
backward selection, we used Akaike’s Information Cri-
terion and a Bayesian Information Criterion [42]. We fit
principle components regressions with 20, 30, and 35
components, and we fit partial least squares regressions
with 16 and 32 components. We also fit a generalized
linear model via penalized maximum likelihood with
three elastic-net penalties: 0 (commonly referred to as
ridge regression), 1 (lasso), and 0.5 (an intermediate
value). With the penalty at zero, the coefficients of cor-
related predictors shrink towards zero and each other.
With the penalty at one, a single coefficient will be
retained from a group of correlated predictors. We used
10-fold cross-validation to select the elastic-net tuning
parameter, and we generated prediction intervals from
the generalized linear models via bootstrapping.

Application to empirical data from Malawi and Tanzania
We applied the best-performing model (lasso regression;
see Table 4) to empirical data from Malawi and
Tanzania to correct for bias in U5M. These countries
were chosen because they include relatively high U5M
and HIV prevalence (Table 1). Data were assembled
from different sources: CEB, CD, and TFR came from

Fig. 2 Probabilities of anti-retroviral therapy initiation used in simulations. Notes: Annual probability of initiating ART in simulation model if
individual has a CD4 count below the treatment threshold, based on World Development Indicator [34] data on ART coverage for 2009 and 2011
for Botswana, Cameroon, and Malawi
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the 2010 DHS [43, 44]; estimates of HIV prevalence
came from UNAIDS [45]; number of women on ART
and ART coverage came from WHO/UNICEF/UNAIDS
[46] and national reports [47, 48]; and population totals
came from World Population Prospects [22].
We estimated past ART coverage by assuming a

constant proportional increase from no coverage in
2004 to the levels reported by UNAIDS in 2009–
2012. We generated a point prediction and prediction
interval for U5M for each country-age group-year ob-
servation, using standard statistical techniques [49].
We also compared our adjustments to adjustments
generated by the predictive model in Ward and Zaba
[16]. Because Ward & Zaba used a stable population
model, it is not clear which year’s HIV prevalence is
most appropriate for prediction. We used that of 10
years prior to the survey. This will likely overestimate
the adjustment for women over 40 years old, but it
should be reasonable for women aged 25–39 years.

Results
Across the simulated populations, the mean HIV preva-
lence among women aged 15–49 across populations was
7% in 1990, 13% in 2000, and 9% in 2010 (this includes
107 populations without HIV) (Table 2). The highest
HIV prevalence in any simulation was 40% in 2000. The
mean ART coverage (the percent of women with a CD4
count under 200 cells/mm3 who are on ART) across
simulations was 0% in 2004 and 42% in 2010. Mean
ART prevalence (the proportion of all women aged 15–
49 who are on ART) was < 0.1% in 2005 and 0.6% in
2009. The highest ART prevalence in any simulation
was 4.4% in 2009. The mean TFR across simulations was
4.91 in 2000 and 4.30 in 2010. The HIV/AIDS death rate
followed HIV prevalence with a lag of about 5 years.
For each of the 4480 simulated populations, we gener-

ated fourteen estimates of U5M, seven using surviving
women (one estimate for each five-year age group from
15 to 19 to 45–49), and seven using surviving women
and women who died from HIV/AIDS. Using those two
sets of U5M estimates, we calculated 31,360 (7 * 4480)
estimates of bias based on the difference between the
unadjusted estimate (using reports from surviving
women only) and the adjusted estimate (using reports
from surviving women plus women who died from HIV/
AIDS).
Table 3 shows the bias in indirect estimates across age

groups; negative numbers indicate that unadjusted esti-
mates were lower than adjusted estimates. The mean ab-
solute bias was largest for estimates from women aged
35–39 and 40–44 (− 0.017) and smallest for estimates
from women aged 15–19 and 20–24 (− 0.001). The lar-
gest absolute bias recorded was − 0.069 for estimates
from women 35–39, meaning that the estimated U5M
was 69 deaths per 1000 live births lower when using

Table 1 Child survival, HIV, ART, and TFR for Malawi and
Tanzania

Malawi Tanzania

Mother’s age

Children ever born 15–19 0.23 0.20

20–24 1.61 1.38

25–29 2.98 2.67

30–34 4.23 3.66

35–39 5.45 5.03

40–44 6.26 5.66

45–49 6.91 6.35

Children surviving 15–19 0.21 0.19

20–24 1.44 1.28

25–29 2.64 2.42

30–34 3.59 3.27

35–39 4.50 4.34

40–44 5.04 4.87

45–49 5.29 5.28

HIV prevalence, 1990 0.072 0.048

HIV prevalence, 2000 0.142 0.073

HIV prevalence, 2010 0.100 0.053

ART prevalence, 2005 0.024 0.002

ART prevalence, 2007 0.039 0.004

ART prevalence, 2009 0.058 0.012

Total fertility rate, 2000 6.3 5.6

Total fertility rate, 2010 5.7 5.4

Notes: Data on CEB, CD, and TFR came from the 2010 DHS in each country
[43, 44]. Estimates of HIV prevalence came from UNAIDS [45]. Data on number
of women on ART and ART coverage come from WHO/UNICEF/UNAIDS [46]
and national reports [47, 48]. Data on population (for the denominator in ART
prevalence calculations) come from World Population Prospects [22]. We
estimated past ART coverage by assuming a constant proportional increase
from no coverage in 2004 to the levels reported by UNAIDS in 2009–2012

Table 2 Outcomes for simulated populations, summary
statistics

Variable Mean Std dev Median Min Max

HIV prevalence, 1990 0.07 0.07 0.08 0 0.22

HIV prevalence, 2000 0.13 0.13 0.08 0 0.40

HIV prevalence, 2010 0.09 0.09 0.07 0 0.24

ART coverage, 2004 0 0 0 0 0

ART coverage, 2008 0.15 0.12 0.12 0 0.39

ART coverage, 2010 0.42 0.26 0.42 0 0.79

ART prevalence, 2005 0.0006 0.0011 0.0001 0 0.0057

ART prevalence, 2007 0.0029 0.0048 0.0006 0 0.0249

ART prevalence, 2009 0.0055 0.0088 0.0014 0 0.0440

Total fertility rate, 2000 4.91 1.67 4.64 2.86 6.89

Total fertility rate, 2010 4.30 1.65 4.16 2.44 6.18

Notes: Based on 4480 simulated populations. ART coverage is defined as the
percent of women with a CD4 count under 200 who are on ART. ART
prevalence is defined as the percent of women aged 15–49 who are on ART
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only reports from surviving women compared to reports
from surviving women and women who died from HIV/
AIDS.
The mean relative bias was highest for estimates from

women aged 35–39 (−9.7%), followed by estimates from
women 40–44 (−8.8%) and women 30–34 (−7.7%). Mean
relative bias was also substantial for estimates from 45
to 49 year olds (−5.6%) and 25–29 year olds (−4.4%). For
the two youngest age groups the mean relative bias was
−1.5% [20–24] and − 0.6% [15–19]. The largest recorded
relative biases were − 40.5% for estimates from 35 to 39
year olds, −36.8% for estimates from 30 to 34 year olds
and − 31.6% for estimates from 40 to 44 year olds, which
appeared in simulated populations with the highest HIV
incidence curves, yielding HIV prevalence of up to 40%
in 2000. These populations also had relatively low U5M
(120–130 deaths per 1000 live births).
The mean of the ratio of HIV deaths to the number of

surviving women was highest for those aged 40–44
(0.59) followed by 45–49 and 35–39 (0.51), 30–34 (0.27),
25–29 (0.09), 20–24 (0.03) and 15–19 year olds (0.02).
Comparing surviving women to surviving women and
HIV deaths, the mean number of children ever born be-
gins to diverge at age 25–29, and the mean number of
dead children begins to diverge at age 30–34. On aver-
age, women who died from HIV had fewer births and
more dead children.
Fig. 3 shows unadjusted and HIV-adjusted estimates

across all simulated observations. Each point represents
one age group-population specific estimate of U5M.

There are 31,360 age group-population observations
(one estimate per age group for 4480 simulated popula-
tions). Including the reports of women who died from
HIV/AIDS increased the estimated 5q0 in all popula-
tions with HIV prevalence greater than zero.
Table 4 compares the prediction errors across the 13

models, both in-sample (using the entire dataset), and
out-of-sample, as described above. No single model
dominated across all error metrics. Focusing on the out-
of-sample metrics, the generalized linear regression with
alpha equal to 1 (i.e. lasso) had the lowest root mean
square error, mean relative error, and median relative
error. The generalized linear regression with alpha equal
to 0.5 had lower root median square error. We used the
lasso regression as our predictive model because it per-
formed the best on the most metrics.
To assess whether the predictive model provides rea-

sonable adjustments, we applied it to empirical data
from 2010 in Malawi and Tanzania on CEB and CS, and
estimates of HIV prevalence and ART prevalence. Fig-
ures 4 and 5 show the adjusted and unadjusted estimates
of U5M for each country, along with adjustments from
the Ward and Zaba [16] model. Note that the scale of
the vertical axis changes across countries. For both
countries, there were negligible differences between our
adjusted estimates and the unadjusted estimates from
the two youngest age groups (i.e. the two time points
closest to the survey date, 2010). The relative adjust-
ments for these age groups were 0.5–1.37%. Going fur-
ther back in time, the adjusted and unadjusted estimates

Table 3 Bias in indirect estimates in 4480 simulated populations

Outcome variable statistic 15–19 20–24 25–29 30–34 35–39 40–44 45–49

Absolute bias mean −0.001 − 0.001 − 0.005 −0.011 − 0.017 −0.017 − 0.013

std dev 0.001 0.001 0.005 0.012 0.017 0.015 0.011

median −0.000 −0.001 −0.002 − 0.004 −0.013 − 0.016 −0.011

Min −0.009 −0.006 − 0.023 −0.049 − 0.069 −0.058 − 0.042

max 0.002 0.001 0 0 0 0 0

Relative bias mean −0.6% −1.5% −4.4% −7.7% −9.7% −8.8% −5.6%

std dev 1.0% 1.9% 5.6% 9.4% 10.2% 8.5% 5.5%

median −0.1% −0.8% −2.5% −4.4% −6.3% −6.2% − 4.4%

Min −5.0% −9.5% −23.7% −36.8% −40.5% −31.6% −22.6%

max 0.9% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0%

Yrs before survey that estimates pertain to mean 1.2 2.6 4.1 6.0 8.0 10.4 13.7

Surviving women mean 71,427 61,184 49,658 37,532 27,968 22,047 18,238

Women who died from HIV/AIDS mean 72,539 62,697 53,827 45,099 37,243 30,994 25,212

Children ever born, surv women mean 0.27 1.16 2.37 3.63 4.62 5.14 5.40

Children ever born, surv women + HIV deaths mean 0.26 1.15 2.30 3.41 4.20 4.64 5.03

Dead children, surviving women mean 0.09 0.10 0.12 0.14 0.15 0.18 0.22

Dead children, surv women + HIV deaths mean 0.09 0.10 0.12 0.15 0.17 0.19 0.23

Ratio of HIV deaths to surviving women mean 0.02 0.03 0.09 0.27 0.51 0.59 0.51
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diverged among estimates from 25 to 29 year olds (2.9–
4.2%, pertaining to 2006) and showed particularly large
differences among estimates from 35 to 39 year olds
(5.4–7.7%, 2001/2002) and from 40 to 44 year olds (6.1–
7.7%, 1998/1999), while the difference between adjusted
and unadjusted estimates from 45 to 49 year olds (4.4–
4.9%, 1995/1996) were smaller. The largest absolute ad-
justment from our model was 0.0191 (19.1 deaths per
1000 live births), for estimates from 40 to 44 year olds in
Malawi. The Ward and Zaba [16] adjustments were lar-
ger than our adjustments for all country-years.

Discussion
Selection bias occurs in indirect estimates of U5M based
on CEB and CS when the survival of children born to
mothers who are not included in the survey differs from
the survival of children whose mothers are included. In
populations with high rates of HIV/AIDS, this selection
bias can be significant, because a relatively large propor-
tion of mothers die during their reproductive ages and
their children die more frequently than other children
due to the vertical transmission of HIV and the adverse
effects of not having a living mother.
In this paper we presented an individual-based discrete

time simulation model to measure and correct the bias
in indirect estimates of U5M due to HIV/AIDS. The

simulated populations were based on data and estimates
from sub-Saharan Africa. We estimated bias by compar-
ing indirect estimates from simulated reports of surviv-
ing women to estimates from simulated reports of
surviving women and women who died from HIV/AIDS.
We calculated bias in 4480 simulated populations, cover-
ing a range of peak HIV prevalence (0–40%), time be-
tween epidemic initiation and survey (25–35 years), ART
coverage (0–79%), background U5M (50–290 deaths per
1000 live births), and TFR (2.4–6.9).
Our results showed negligible bias in estimates from

15 to 19 and 20–24 year olds. Unfortunately, this finding
is of little practical value, since estimates based on re-
ports of women at these ages are biased upwards for
other reasons [50]. However, reports from surviving
women aged 25 and older underestimated U5M by over
two percentage points (over 20 deaths per 1000 live
births), or, in relative terms, 24%. Bias was greatest in re-
ports from 30 to 34, 35–39 and 40–44 year olds, reach-
ing 69 deaths per 1000 births, a relative bias of 41%. The
magnitude of the bias calculated by our model is some-
what difficult to compare to that found by Ward and
Zaba [16] because of their use of a stable population
model. They estimated that relative bias increased from
− 1.2% to − 44.3% as the adult prevalence of HIV in-
creased from 2.5 to 45%. That is generally consistent

Fig. 3 Indirect estimates from reports of surviving women versus indirect estimates from reports of surviving women and women who died from
HIV/AIDS, based on 4480 simulated populations
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with the results of the present study, in which adult
prevalence of HIV ranged from 0 to 40% and the relative
bias ranged from 0% to − 41%. Also consistent with our
results, Ward and Zaba found that estimates from
women aged over 30 were more biased than estimates
from women under 25. We found, however, that bias in
estimates from women aged 45–49 was lower than in es-
timates from those aged 30–44. This was due to two re-
lated factors. First, as Ward and Zaba noted, stable
population models assume that the level of age-specific
incidence risks is constant over time. For any given level
of prevalence, a stable population model will overesti-
mate the exposure of older cohorts, because no actual
population has been subject to constant incidence for
such a long period. Second, HIV incidence in our simu-
lated populations peaked between 1988 and 1998, 12 to
22 years before the simulated surveys. Women who were
45–49 in 2010 would have given birth to many of their
children prior to peak HIV incidence.

Our analysis has several advantages over previous
work. Unlike the only other study of bias in indirect esti-
mates [16], we did not use a stable population model,
but allowed HIV, mortality and fertility rates to follow
the trajectories of selected countries, and we also in-
cluded ART. Thus we used a larger variety of inputs and
more recent empirical data than Ward and Zaba [16]
and Hallet et al. [17]. In our simulations, the range of
HIV prevalence was similar to that of Ward and Zaba,
who used peak prevalence from 0 to 45%. We modeled
background adult mortality using estimated 45q15 from
country-time periods corresponding to life expectancies
from 47 to 64 years; Ward and Zaba allowed adult mor-
tality to vary from a life expectancy of 41 to 67 years. It
is difficult to compare our fertility rates to their fertility
model as they reported only the range they used for the
location (− 0.5 to 0.5) and spread (0.8 to 1.2) parameters
of the relation system based on the Gompertz trans-
formation of the Brass-Booth standard.

Table 4 Prediction errors from models to correct bias in indirect estimates of U5M

Method Sample Root mean square error Root median square error Mean relative error Median relative error

Full Linear Model in-sample 0.002973 0.001111 2.340 0.390

out-of-sample 0.014922 0.004183 1.970 1.082

Forward Sel. BIC in-sample 0.002988 0.001143 2.325 0.392

out-of-sample 0.014914 0.004152 1.966 1.087

Forward Sel. AIC in-sample 0.002975 0.001132 2.324 0.389

out-of-sample 0.014925 0.004184 1.968 1.084

Backward Sel. BIC in-sample 0.002974 0.001110 2.331 0.389

out-of-sample 0.014923 0.004182 1.966 1.082

Backward Sel. AIC in-sample 0.002974 0.001110 2.331 0.389

out-of-sample 0.014923 0.004182 1.966 1.082

glmnet, alpha = 0 in-sample 0.003241 0.001135 2.571 0.406

out-of-sample 0.003256 0.001150 1.100 0.382

glmnet, alpha = 0.5 in-sample 0.002985 0.001139 2.265 0.389

out-of-sample 0.002968 0.001177 0.965 0.376

glmnet, alpha = 1 in-sample 0.002985 0.001137 2.314 0.391

out-of-sample 0.002967 0.001175 0.960 0.374

PCR, ncomp = 20 in-sample 0.003989 0.002094 4.295 0.647

out-of-sample 0.014700 0.005351 3.004 1.455

PCR, ncomp = 30 in-sample 0.003122 0.001430 1.789 0.407

out-of-sample 0.014953 0.004504 1.868 1.101

PCR, ncomp = 35 in-sample 0.002994 0.001163 1.722 0.369

out-of-sample 0.014925 0.004281 1.836 1.087

PLS, ncomp = 16 in-sample 0.002988 0.001154 1.844 0.382

out-of-sample 0.014925 0.004264 1.872 1.087

PLS, ncomp = 32 in-sample 0.002973 0.001110 2.356 0.389

out-of-sample 0.014922 0.004183 1.976 1.082

Note: BIC Bayesian Information Criterion, AIC Akaike Information Criterion, glmnet generalized linear model via penalized maximum likelihood, where alpha is the
elastic-net penalty term, PCR principle components regression; PLS partial least squares, ncomp number of components
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Fig. 4 Under-five mortality estimates using CEB/CS from 2010 DHS for Malawi: unadjusted (crude), adjusted (corrected) using best-performing
model, and using Ward & Zaba [16] model. Notes: Only the adjusted estimates include uncertainty intervals

Fig. 5 Under-five mortality estimates using CEB/CS from 2010 DHS for Tanzania: unadjusted (crude), adjusted (corrected) using best-performing
model, and using Ward & Zaba [16] model. Notes: Only the adjusted estimates include uncertainty intervals
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Our model also has several limitations. First, although
the range of population characteristics was wider than in
previous studies, the trajectories of HIV incidence, ART
coverage, mortality rates and fertility rates considered
here were a small fraction of all possible trajectories.
The results of the predictive model should be applied
with caution to population trajectories outside of the
bounds explored in this study. Second, empirical data on
the inputs required by the predictive model may not be
available for some populations. In those cases, estimated
inputs can be used. We encourage users to generate a
range of bias estimates using a range of plausible esti-
mated inputs (i.e. sensitivity analysis). Third, as in all
models, our simulation included a number of simplifying
assumptions, such as: use of a 1 year time step rather
than continuous time; independence between the prob-
ability of giving birth and the probability of contracting
HIV in a given time-step (although the probability of
giving birth changes in time-steps following infection);
use of only one set of age-specific HIV incidence ratios;
independence of the probability of giving birth and CD4
count (although the former is influenced by HIV and
ART status); independence of the effect of HIV infection
on fertility and the duration of infection (this relation-
ship is difficult to quantify [51]); independence of child
survival and maternal survival, other than through verti-
cal transmission of HIV; use of a single model life table
to convert nq0 into 5q0, which does not incorporate the
effect of HIV on the age pattern of mortality [15, 52]; all
vertical transmission occurs at birth; absence of variation
in the effectiveness of ART in preventing vertical trans-
mission; no drop-out once ART is initiated; and all
women on ART take up PMTCT (and no women not
on ART take up PMTCT). In most of these cases, we
adopted these simplifying assumptions because they
were expected to have relatively minimal effect on the
main quantity of interest in this study, which was the
HIV-related bias in indirect U5M rates; moreover, inde-
pendent measurements of mortality, fertility and HIV
rates showed that those rates were within acceptable
ranges for our simulated populations (Table 2). Third,
our study did not assess bias in indirect estimates due to
factors other than HIV/AIDS. It is well-established that
indirect methods applied to reports from women aged
15–19 (and in some cases women aged 20–24) tend to
overestimate U5M, due to the higher risk of first births
and the correlation between lower socioeconomic status
and younger childbearing (Hill 1991).
HIV can also cause bias in direct estimation of U5M.

Walker, Hill, and Zhao [18] found relative biases ranging
from 1.1 to 26.5% across six African countries and time
periods ranging from 1 to 5 to 11–15 years before the
survey. They found that the largest biases were in esti-
mates from 6 to 10 years before the survey

(corresponding to indirect estimates from 30 to 44 year
olds), and that biases in estimates from 11 to 15 years
before the survey (corresponding to indirect estimates
from 45 to 49 year olds) were slightly lower, which is
consistent with the results that we found. Hallett et al.
[17], applying direct methods to prospective cohort data
from rural Zimbabwe, measured a relative underestimate
of 9.8% in U5M for the period 0–7 years before the sur-
vey, a period during which HIV prevalence fell from 23
to 18% among the study population, with minimal ART
coverage, in a population with relatively low U5M
(0.0671). Taking as inputs 18% HIV prevalence in the
year of the survey, 20.5% 10 years earlier, 23% 20 years
earlier, with a baseline U5M of 0.0671, our model pre-
dicts a relative underestimate of 15.4% for 4 years prior
to the survey (estimates from 25 to 29 year olds). This is
reasonably close to the Hallett et al. given the probable
overestimate of prevalence used for 20 years prior to the
survey, and the sensitivity of relative bias measures at
low levels of U5M.

Conclusion
In populations affected by HIV/AIDS, indirect estimates
of U5M can be significantly biased. Our predictive
model allows scholars and practitioners to correct that
bias using commonly measured population characteris-
tics. Policies and programs based on indirect estimates
of U5M in populations with generalized HIV epidemics
may need to be reevaluated after accounting for bias in
indirect estimates.
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