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Association of genetic and behavioral
characteristics with the onset of diabetes
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Abstract

Background: Prior work has established sociodemographic, lifestyle, and behavioral risk factors for diabetes but the
contribution of these factors to the onset of diabetes remains unclear when accounting for genetic propensity for
diabetes. We examined the contribution of a diabetes polygenic score (PGS) to the onset of diabetes in the context
of modifiable known risk factors for diabetes.

Methods: Our sample consisted of 15,190 respondents in the United States-based Health and Retirement Study, a
longitudinal study with up to 22 years of follow-up. We performed multivariate Cox regression models stratified by
race (non-Hispanic white and non-Hispanic black) with time-varying covariates.

Results: We observed 4217 (27.76%) cases of incident diabetes over the survey period. The diabetes PGS was
statistically significantly associated with diabetes onset for both non-Hispanic whites (hazard ratio [HR] = 1.38, 95%
confidence interval [CI] = 1.30, 1.46) and non-Hispanic blacks (HR = 1.22, 95% CI = 1.06, 1.40) after adjusting for a
range of known risk factors for diabetes, highlighting the critical role genetic endowment might play. Nevertheless,
genetics do not downplay the role that modifiable characteristics could still play in diabetes management; even
with the inclusion of the diabetes PGS, several behavioral and lifestyle characteristics remained significant for both
race groups.

Conclusions: The effects of genetic and lifestyle characteristics should be taken into consideration for both future
studies and diabetes management.
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Background
Diabetes is the seventh leading cause of death in the
United States (US) and has been implicated in the eti-
ology of several other leading causes of death [1]. Dia-
betes was responsible for more than 250,000 deaths in
2015 [2] and, in 2012, imposed an economic burden of
approximately $245 billion stemming from direct med-
ical costs and loss of productivity [3]. The expected rise
in diabetes prevalence among the US adult population,
from 14% in 2010 to an estimated 21% in 2050 [4], will
impose even greater burdens on the nation’s economic
and healthcare systems, as well as patients and their
families.
Age, smoking behavior, body mass index (BMI), and

levels of physical activity have all been implicated as risk

factors for diabetes [5]. Family history and genetic variants
have also been linked to increased diabetes risk [6], but it
has been suggested that their influence on diabetes is
greatest for middle-aged individuals between the ages of
35 and 60 [7], plausibly suggesting an increased import-
ance of behavioral or lifestyle characteristics in later life
for diabetes onset at older ages. Thus, exploring how
modifiable risk factors and genetic risk influence diabetes
onset in later life may aid in our understanding of the pro-
gression of diabetes as well as the utility of targeting spe-
cific modifiable risk factors for intervention among
individuals who vary in their genetic predisposition.
Two prior studies, one using the Framingham Off-

spring Study [8] and one using cohorts of Swedish and
Finnish subjects [9], found that genetic makeup plays a
modest but significant role in predicting new cases of
diabetes, even after accounting for common risk factors.
These studies highlight the utility of incorporating a
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genetic component into analyses looking at the associations
between risk factors and diabetes onset. However, these
studies were each limited to fewer than 20 single nucleotide
polymorphisms (SNPs). Increased collection of genetic ma-
terial over the past decade has led to advances in genome-
wide association studies (GWASs) and the construction of
polygenic scores (PGSs) which can elucidate a better under-
standing of the genetic risk for diabetes.
Our aim in this study was to examine the effects of

genetic risk of diabetes and later-life behavioral and life-
style characteristics associated with diabetes. We used
data from the national population-based and longitu-
dinal US Health and Retirement Study (HRS). We con-
ducted a time-to-event analysis with time-varying
covariates to better understand how genetic endowment
combines with changing behavioral characteristics to
shape the risk of diabetes onset for non-Hispanic whites
and non-Hispanic blacks. We hypothesized that a higher
genetic predisposition for diabetes would be associated
with a higher risk of diabetes onset for both race groups.
Furthermore, we analyzed which behavioral and lifestyle
characteristics would still have statistically significant re-
lationships with diabetes onset even after controlling for
the genetic component, as those with persisting signifi-
cant associations may be the most critical in terms of
clinical recommendations for diabetes management.

Methods
Study population
The HRS is a nationally representative and longitudinal
study that has biennially assessed the financial, physical,
and mental well-being of community-dwelling adults at
least 50 years of age and their spouses since 1992. Since
the conception of the HRS, new participants have been
added to the survey. The HRS is sponsored by the Na-
tional Institute on Aging (NIA U01AG009740) and is
conducted by the University of Michigan [10].
From 2006 to 2012, the HRS collected genetic data from

a sub-sample of non-Hispanic white and non-Hispanic
black respondents who consented and provided salivary
deoxyribonucleic acid (DNA). Details on the sample selec-
tion and consent procedures are available elsewhere [11].
We restricted our analysis to the non-Hispanic white and
non-Hispanic black respondents with available genetic in-
formation, and followed these respondents from 1992 to
2014. We linked the HRS data files compiled by RAND
Corporation [12] with the HRS genetic data containing a
PGS for diabetes [11]. Descriptions of the assay and calcu-
lation procedures are detailed elsewhere [11].

Measures
Outcome
Incident diabetes was determined by a respondent’s af-
firmative response to the question: “Since we last talked

to you, that is since [last interview date], has a doctor
ever told you that you have diabetes or high blood
sugar?” Our outcome was the age at which individuals
first reported a diabetes diagnosis. Age was censored for
individuals who did not report diabetes by the last wave
in 2014 or who died without ever reporting diabetes.

Exposure
GWASs have identified a large number of genetic variants,
typically SNPs, associated with a wide range of health out-
comes and behaviors. However, the majority of these vari-
ants have a small effect and typically correspond to a
small fraction of truly associated variants, meaning that
they have limited predictive power. A PGS aggregates and
weights this information into a single measure linked to a
phenotype of interest [13]. Genotypes in the HRS were
assessed using the llumina HumanOmni2.5 BeadChips
(HumanOmni2.5-4v1, HumanOmni2.5-8v1, Huma-
nOmni2.5-8v1.1; Illumina, Inc., San Diego, CA, USA),
which assessed more than 1.9 million SNPs after applying
standard quality control procedures [14].
The diabetes PGS used in this analysis was constructed

by HRS researchers based on a meta-analysis of GWASs
for diabetes conducted by Morris and colleagues, which
considered a large number of SNPs, more than 700,000
of which overlapped with the HRS sample; ultimately
ten of these were found to be significant and used to
construct the diabetes PGS [15]. SNP effect sizes were
estimated among samples of primarily European ances-
try using a stage one (discovery) sample of 12,171 cases
of diabetes and 56,862 controls and a stage two (replica-
tion) sample of 22,669 cases and 58,119 controls [15].
The GWASs in the meta-analysis used to estimate

SNP weights were derived from analyses based on Euro-
pean ancestry groups; in other words, the SNP weights
that were developed from the European GWAS were ap-
plied to the African ancestry PGS, which may affect the
predictive power and interpretation of the diabetes PGS
for the sample of non-Hispanic blacks [13, 16, 17]. The
PGSs were standardized by the HRS for each ethnicity
to a standard normal curve (mean = 0, standard devi-
ation [SD] = 1) [11]. This PGS z-score allowed for a sim-
ple interpretation—a one SD increase in the PGS versus
the change of one risk allele within a race group. In our
primary analysis, PGS was included as a continuous
standardized score. In other words, a higher PGS score
reflected higher genetic susceptibility to diabetes. We
also performed sensitivity analyses with the PGS as a di-
chotomous variable (z-score < 0, z-score ≥ 0) and as a
categorical variable splitting the PGS into tertiles.

Covariates
We selected covariates based on their anticipated associ-
ation with diabetes. Sociodemographic covariates included
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sex (male, female), race (non-Hispanic white, non-
Hispanic black), foreign born (yes, no), level of education
(less than high school, high school/GED, some college,
college or above), and partnership status (married/part-
nered, not married/partnered). Measures of economic
well-being included employment status (employed, un-
employed, retired, disabled, not in labor force), household
income (log-transformed),1 household wealth (log-trans-
formed),2 and whether the respondent had Medicare (yes,
no), Medicaid (yes, no) or another form of health insur-
ance (yes, no). We assessed behavioral and lifestyle charac-
teristics by including respondent’s self-report of BMI
(continuous), exercise (waves 1-6: report of vigorous activ-
ity at least three times per week; waves 7-12: report of vig-
orous activity more than once per week), smoking status
(never smoker, current smoker, former smoker), and alco-
hol consumption (report of consuming 3+ alcoholic
drinks on days they drank). Extreme values of BMI (BMI <
10, BMI > 75), were recoded as missing values. We also
included self-reported binary indicators of whether the re-
spondent had been diagnosed between waves with high
blood pressure, cardiovascular disease, and arthritis, which
are important health comorbidities for diabetes [14, 18,
19]. For the purpose of this analysis, our main interest was
in the behavioral and lifestyle variables, and how they were
modified with the inclusion of our exposure. By adjusting
for all these sociodemographic covariates, measures of
economic well-being, and health comorbidities, we
attained better estimates of our behavioral and lifestyle
variables.
Additionally, we adjusted for birth cohort to account

for the structured sampling design of the HRS which in-
troduces new birth cohorts approximately every six
years. We also included ancestry-specific principal com-
ponents to account for possible confounding from popu-
lation stratification and possible ancestry differences in
genetic makeup that could bias estimates, as recom-
mended in the literature [11, 16]. See Ware et al. [11]
for detailed information on the construction of the
ancestry-specific principal components. Their estimates
are not displayed in our tables for brevity.

Statistical analysis
Our analytic sample consisted of 15,190 respondents, of
which 12,090 were non-Hispanic white and 3100 were

non-Hispanic black. Over the course of the study period,
this resulted in 103,059 person-years of follow-up.
Kaplan-Meir survival curves and multivariate Cox re-

gression models [20] were used to estimate the contribu-
tion of the diabetes PGS to diabetes onset after adjusting
for time-varying measures of behavioral and lifestyle
characteristics. First, models were run as a function of
all covariates except for the diabetes PGS and ancestry-
specific principal components, both on the analytic sam-
ple and stratified by race to account for ancestral differ-
ences between non-Hispanic whites and non-Hispanic
blacks [17, 21]. Most GWASs, including the one con-
ducted by Morris and colleagues [15], are done predom-
inantly on observations of European descent, so the
predictive ability of the PGS might differ by race. These
models were then run with the addition of the genetic
variables as independent variables, again, both on the
analytic sample and stratified by race. This second set of
models demonstrated how the relationships changed
with the inclusion of the genetic components. Concord-
ance values (i.e., the proportion of pairs of cases in
which the subject with higher risk had the event before
the subject with lower risk) were used as goodness of fit
measures [22]. Analyses of deviance, using log likeli-
hoods, were run between corresponding models in the
first and second sets [23]. Because of the nested nature
of these models, these analyses were able to determine
how the inclusion of the genetic component altered
model fit.
In all our survival models, we included cluster-robust

standard errors to account for household stratification in
the HRS and to address potential within-household spill-
over effects [24]. We used age as the time unit in all ana-
lyses with an individual’s age at study entry as the
baseline measure. All statistical analyses were performed
in R version 3.5.0 [25] with the “survival” package for
our primary analyses [26]. In all cases, significance was
reported at the five-percent level.

Results
Table 1 shows summary characteristics for some basic
demographics and the behavioral and lifestyle character-
istics of the analytic (i.e., genetic) sample at baseline.
The analytic sample was 42.04% male and 79.59% of re-
spondents were non-Hispanic white. The mean age was
56.53 years. The non-Hispanic white sample was slightly
older and more male than the non-Hispanic black sam-
ple. The mean BMI of the non-Hispanic white sample
was about 27 kg/m2, which would be classified as over-
weight, while the mean BMI of the non-Hispanic black
sample was about 30 kg/m2, which is the threshold for
obese. There were fewer regular exercises among non-
Hispanic blacks, but fewer current smokers and heavy
drinkers among non-Hispanic whites.

1Household income was the sum of all income in a household,
including respondent’s and spouse’s income from wages, pension and
annuity, social security, disability, and retirement, unemployment and
workers compensation, other government income, as well as
household capital and other income.
2Household wealth was the net value of total household wealth
including primary residence, other real estate, transportation,
businesses, stocks and bonds, checking and savings accounts, bonds,
total mortgage, other home loans, debt, and individual retirement
accounts.
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A total of 4217 (27.76%) individuals reported being di-
agnosed with diabetes over the survey period. In Fig. 1,
we display the unadjusted cumulative hazard of diabetes
onset for non-Hispanic white and non-Hispanic black
respondents. As expected, the cumulative hazard in-
creased with advancing age. However, the curve for non-
Hispanic blacks rose more quickly than that for non-
Hispanic whites. By the end of the age range, the hazard
of diabetes onset was clearly more likely among non-
Hispanic blacks than non-Hispanic whites.
Table 2 shows the results from three separate multivari-

ate Cox regression models for diabetes onset as a function
of all covariates except the diabetes PGS and ancestry-
specific principal components. The first used the analytic
sample, the second used only non-Hispanic white respon-
dents, and the third used only non-Hispanic black respon-
dents. In the model using the analytic sample, non-
Hispanic whites had a lower risk of diabetes onset relative
to non-Hispanic blacks, which we demonstrated in Fig. 1.
Respondents who reported being married/partnered, be-
ing disabled (compared to employed), having higher BMI,

being a current smoker (compared to a never smoker),
having high blood pressure, and having a cardiovascular
disease were significantly associated with increased risk of
diabetes onset whereas those who reported being retired
(compared to employed), having higher levels of income
or wealth, being a Medicare recipient, being a heavy
drinker, and having arthritis were significantly associated
with reduced risk of diabetes onset. Sex, foreign-born sta-
tus, educational attainment, participation in Medicaid, use
of other health insurance, or physical activity were not
found to be significant.
The results from the model of non-Hispanic whites

were the same, likely due to the overwhelming propor-
tion of non-Hispanic whites in the analytic sample.
While partnership status, employment status, wealth, be-
ing a Medicare recipient, BMI, having high blood pres-
sure, and having arthritis registered significance in the
model for non-Hispanic blacks as well, there were some
discrepancies in other variables. Income, alcohol con-
sumption, and having a cardiovascular disease were no
longer significant at the five-percent level. Former

Table 1 Summary Characteristics for the Analytic Sample and Race Sub-Samples at Baseline

Characteristic Mean or %

Analytic sample (n = 15,190) Non-Hispanic whites (n = 12,090) Non-Hispanic blacks (n = 3100)

Age, mean 56.53 56.90 55.09

Male, % 42.04 42.98 38.39

BMI, mean 27.82 27.25 30.04

Regular exerciser, % 32.12 33.76 25.75

Smoking status, %

Current smoker 21.59 19.61 29.32

Former smoker 36.08 37.54 30.41

Never smoker 42.21 42.75 40.11

Heavy drinker, % 9.33 8.97 10.71

Note. Statistically significant differences between non-Hispanic white and non-Hispanic black respondents were observed for all characteristics at the p = 0.05 level

Fig. 1 Unadjusted Cumulative Hazard of Diabetes Onset for the Analytic Sample Stratified by Race with 95% Confidence Intervals
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smokers (in addition to current smokers) were found to
be at an increased risk of diabetes onset compared to
never smokers among non-Hispanic blacks. Additionally,
regular exercise was associated with a decreased risk of
diabetes onset among non-Hispanic blacks.
We re-estimated the three models in Table 2, but in-

cluded the diabetes PGS and ancestry-specific principal
components. The results from these runs are in Table 3.
For the analytic sample, the estimated hazard ratio (HR)
of the diabetes PGS was 1.16 (95% confidence interval
[CI] = 1.12, 1.20), suggesting that a one SD increase in
the diabetes PGS increased the risk of diabetes by 16%

while holding adjusted covariates constant. In these
analyses, the diabetes PGS was statistically significant
for both non-Hispanic whites (HR = 1.38, 95% CI =
1.30, 1.46) and non-Hispanic blacks (HR = 1.22, 95%
CI = 1.06, 1.40). The HR for the analytic sample did
not fall between those obtained from the stratified
analyses for non-Hispanic whites and non-Hispanic
blacks. The stratified models implicitly allowed for in-
teractions between race and all other covariates in the
model. Thus, it is possible that allowing for these in-
teractions affected the coefficient estimates for the
diabetes PGS.

Table 2 Hazard Ratios from Multivariate Cox Regression Models Without the Diabetes PGS Included as a Covariate

Characteristic Hazard ratio
(95% confidence interval)

Analytic sample (n = 15,190) Non-Hispanic whites (n = 12,090) Non-Hispanic blacks (n = 3100)

Male 1.070 (0.982, 1.166) 1.071 (0.971, 1.183) 0.981 (0.819, 1.176)

Non-Hispanic white 0.735 (0.659, 0.819) NA NA

Foreign-born 0.944 (0.778, 1.146) 0.892 (0.706, 1.126) 1.059 (0.749, 1.496)

Education

Less than high school (reference group) 1 1 1

High school/GED 1.018 (0.904, 1.147) 0.986 (0.856, 1.135) 1.023 (0.821, 1.274)

Some college 1.003 (0.880, 1.143) 0.986 (0.846, 1.149) 0.980 (0.763, 1.259)

College or above 0.892 (0.773, 1.029) 0.875 (0.741, 1.033) 0.955 (0.713, 1.278)

Married/partnered 1.597 (1.447, 1.763) 1.594 (1.419, 1.790) 1.540 (1.288, 1.840)

Employment status

Employed (reference group) 1 1 1

Unemployed 0.981 (0.772, 1.247) 0.816 (0.593, 1.123) 1.383 (0.953, 2.007)

Retired 0.599 (0.540, 0.665) 0.568 (0.503, 0.642) 0.738 (0.604, 0.902)

Disabled 1.932 (1.498, 2.491) 1.818 (1.270, 2.602) 2.247 (1.533, 3.294)

Not in labor force 0.919 (0.770, 1.097) 0.862 (0.707, 1.052) 1.189 (0.786, 1.801)

Income 0.907 (0.867, 0.950) 0.889 (0.841, 0.941) 0.953 (0.878, 1.035)

Wealth 0.920 (0.899, 0.942) 0.912 (0.885, 0.939) 0.949 (0.913, 0.987)

Medicare 0.190 (0.168, 0.214) 0.173 (0.150, 0.199) 0.253 (0.199, 0.320)

Medicaid 1.032 (0.864, 1.232) 0.993 (0.763, 1.292) 1.136 (0.893, 1.445)

Health insurance 1.034 (0.950, 1.127) 0.996 (0.903, 1.098) 1.191 (0.999, 1.420)

BMI 1.086 (1.079, 1.093) 1.098 (1.090, 1.107) 1.057 (1.045, 1.069)

Regular exerciser 1.002 (0.923, 1.089) 1.076 (0.980, 1.183) 0.833 (0.699, 0.994)

Smoking status

Never smoker (reference group) 1 1 1

Current smoker 1.370 (1.211, 1.550) 1.382 (1.192, 1.602) 1.320 (1.044, 1.667)

Former smoker 1.076 (0.989, 1.171) 1.034 (0.940, 1.138) 1.228 (1.029, 1.465)

Heavy drinker 0.808 (0.699, 0.933) 0.779 (0.660, 0.921) 0.940 (0.705, 1.253)

High blood pressure 1.852 (1.700, 2.016) 1.898 (1.724, 2.090) 1.564 (1.290, 1.896)

Cardiovascular disease 1.112 (1.016, 1.216) 1.142 (1.032, 1.263) 1.053 (0.858, 1.294)

Arthritis 0.790 (0.729, 0.855) 0.771 (0.704, 0.845) 0.845 (0.716, 0.998)

Concordance 0.874 0.872 0.835

Note. Models also control for birth cohort
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As before, the variables that were significant in the over-
all model were also significant in the model for non-
Hispanic whites, but these did not necessarily line up with
the variables that were significant in the model for non-
Hispanic blacks. Again, income, alcohol consumption, and
having a cardiovascular disease were not significant for
diabetes onset among non-Hispanic blacks, while being a
former smoker (compared to being a never smoker) and
being a regular exerciser were significant. Additionally,
arthritis was no longer a significant health comorbidity for
non-Hispanic blacks once the diabetes PGS was included.

The variables that were significant before, for the most
part, remained significant in the corresponding models
that included genetic information, so the inclusion of
the diabetes PGS and ancestry-specific principal compo-
nents generally did not change the significance of any of
the associations between the other characteristics and
diabetes onset. However, these models informed us that
the PGS was also a significant variable for diabetes onset
and that its relationship should not be ignored.
Furthermore, models with the diabetes PGS and

ancestry-specific principal components performed better

Table 3 Hazard Ratios from Multivariate Cox Regressions Model With the Diabetes PGS Included as a Covariate

Characteristic Hazard ratio (95% confidence interval)

Analytic sample (n = 15,190) Non-Hispanic whites (n = 12,090) Non-Hispanic blacks (n = 3100)

Diabetes PGS 1.159 (1.116, 1.204) 1.380 (1.300, 1.464) 1.219 (1.059, 1.402)

Male 1.075 (0.986, 1.172) 1.096 (0.992, 1.211) 0.964 (0.802, 1.158)

Non-Hispanic white 0.735 (0.659, 0.820) NA NA

Foreign-born 0.912 (0.749, 1.110) 0.905 (0.713, 1.148) 1.076 (0.761, 1.523)

Education

Less than high school (reference group) 1 1 1

High school/GED 1.032 (0.916, 1.162) 1.006 (0.873, 1.159) 1.002 (0.803, 1.251)

Some college 1.014 (0.890, 1.156) 1.012 (0.867, 1.181) 0.976 (0.759, 1.255)

College or above 0.883 (0.764, 1.021) 0.883 (0.745, 1.047) 0.911 (0.679, 1.224)

Married/partnered 1.607 (1.456, 1.774) 1.594 (1.418, 1.793) 1.536 (1.283, 1.838)

Employment status

Employed (reference group) 1 1 1

Unemployed 0.979 (0.771, 1.242) 0.818 (0.597, 1.121) 1.339 (0.924, 1.942)

Retired 0.602 (0.542, 0.668) 0.571 (0.505, 0.645) 0.726 (0.594, 0.887)

Disabled 1.965 (1.527, 2.527) 1.829 (1.285, 2.604) 2.227 (1.518, 3.267)

Not in labor force 0.931 (0.781, 1.110) 0.873 (0.716, 1.065) 1.184 (0.788, 1.778)

Income 0.904 (0.863, 0.947) 0.891 (0.842, 0.943) 0.946 (0.871, 1.026)

Wealth 0.922 (0.901, 0.943) 0.913 (0.887, 0.940) 0.949 (0.912, 0.986)

Medicare 0.190 (0.168, 0.214) 0.176 (0.153, 0.204) 0.251 (0.198, 0.318)

Medicaid 1.019 (0.853, 1.218) 1.005 (0.774, 1.306) 1.130 (0.889, 1.435)

Health insurance 1.032 (0.948, 1.123) 0.991 (0.900, 1.092) 1.181 (0.990, 1.409)

BMI 1.086 (1.079, 1.093) 1.098 (1.090, 1.107) 1.056 (1.044, 1.068)

Regular exerciser 1.000 (0.921, 1.087) 1.079 (0.982, 1.185) 0.833 (0.698, 0.994)

Smoking status

Never smoker (reference group) 1 1 1

Current smoker 1.370 (1.211, 1.550) 1.380 (1.193, 1.597) 1.330 (1.050, 1.683)

Former smoker 1.070 (0.983, 1.165) 1.021 (0.926, 1.125) 1.239 (1.036, 1.483)

Heavy drinker 0.824 (0.714, 0.952) 0.797 (0.674, 0.942) 0.943 (0.706, 1.261)

High blood pressure 1.851 (1.699, 2.017) 1.871 (1.699, 2.060) 1.582 (1.304, 1.920)

Cardiovascular disease 1.116 (1.019, 1.221) 1.157 (1.045, 1.281) 1.054 (0.857, 1.295)

Arthritis 0.796 (0.735, 0.862) 0.774 (0.706, 0.849) 0.853 (0.721, 1.008)

Concordance 0.877 0.876 0.838

Note. Models also control for birth cohort and ancestry-specific principal components
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than those without them. Concordance was consistently
higher for the models in Table 3 than the corresponding
models in Table 2. Analyses of deviance were computed
for corresponding models in Tables 2 and 3, and these
results are presented in Table 4. For the analytic sample,
the non-Hispanic white subset, and the non-Hispanic
black subset, the tests were statistically significant. That
is, the inclusion of these genetic components signifi-
cantly improved model fit in the explanation of diabetes
onset.

Discussion
In the current study, we utilized a national population-
based sample of older Americans to explore diabetes on-
set and better understand the effects of genetic endow-
ment and time-varying behavioral characteristics
commonly associated with diabetes. Models with the
genetic information performed significantly better than
models without it. The diabetes PGS was consistently
statistically significant with diabetes onset after testing
different operationalizations and adjusting for a range of
characteristics. Respondents with a higher genetic pro-
pensity for diabetes were at higher risk of diabetes, irre-
spective of the other characteristics we included in our
model. We found a number of these other characteris-
tics to be statistically significantly associated with dia-
betes onset, including sociodemographics, economic
well-being, behavior and lifestyle, and health comorbidi-
ties. Similar behavioral variables were also found to be
significant in other population-based studies [27].
Our cumulative hazard curves demonstrated that dia-

betes onset differed between non-Hispanic whites and
non-Hispanic blacks, both in rate of onset as well as
overall levels of onset, which has been observed previ-
ously in the literature [28, 29]. In stratified models by
race, we found that the association between the diabetes
PGS and onset of diabetes to be statistically significant
among both non-Hispanic white and non-Hispanic black
respondents, but the relationship was stronger among
non-Hispanic whites. Although PGSs were calculated
separately for European and African ancestry groups, the
GWAS meta-analysis used to estimate SNP weights were
derived from analyses based on European ancestry
groups; thus, the predictive power of the PGSs for Afri-
can ancestry groups may vary [13, 17]. Therefore, the
weaker relationship of the diabetes PGS among the non-

Hispanic black sample could be due to a myriad of fac-
tors. For example, it could be an artifact of how the PGS
was calculated, it could be due to the smaller sample size
for non-Hispanic black respondents, or possibly a true
weaker association between the diabetes PGS and dia-
betes onset. Extending GWASs to other ancestry groups
is essential for a better understanding of how well these
PGSs can actually perform for groups that are not non-
Hispanic white.
Regardless of race, genetics were associated with dia-

betes onset. However, this should not downplay the role
of behavioral or lifestyle characteristics. These behavioral
and lifestyle characteristics “ultimately interact with risk
alleles in susceptibility genes to initiate common forms
of [diabetes]” [30]. For both non-Hispanic whites and
non-Hispanic blacks, BMI was significantly associated
with a higher propensity of diabetes onset, as was being
a current smoker (compared to being a never smoker).
Interestingly, being a former smoker (compared to being
a never smoker) was also associated with a higher pro-
pensity of diabetes onset for non-Hispanic blacks. Heavy
drinking was associated with a decreased risk of diabetes
onset for non-Hispanic whites but not non-Hispanic
blacks, while exercising was associated with a decreased
risk of diabetes onset for non-Hispanic blacks but not
non-Hispanic whites. These results demonstrate the po-
tential ability of behavioral characteristics as a mechan-
ism for delaying or preventing diabetes onset, and
lifestyle interventions have indeed been useful in preven-
tion of type II diabetes [31, 32]. However, differences be-
tween non-Hispanic whites and non-Hispanic blacks in
stratified models reveal the potential need for targeted
interventions, as well as the need to expand this line of
research to other race and ethnic population segments.
There are a few limitations to note. In our study, the

analytic sample comprised of respondents who con-
sented and provided DNA samples for genotyping. The
Additional file 1 presents the summary characteristics of
our analytic sample and the summary characteristics of
the complete HRS sample. Our analytic sample differed
significantly when compared to the complete HRS sam-
ple, which perhaps is not surprising, as there was selec-
tion into the genetic sample. For example, respondents
in the analytic sample were more likely to be younger
(56.53 years vs. 62.76 years) and have higher BMI (27.82
kg/m2 vs. 27.05 kg/m2). This is a caveat that has been

Table 4 Test Statistics from Analyses of Deviance Comparing Models Without and With the Diabetes PGS Included as a Covariate

Analytic sample (n = 15,190) Non-Hispanic whites (n = 12,090) Non-Hispanic blacks (n = 3100)

Without diabetes PGS Log lik = −33,196 Log lik = −24,940 Log lik = − 6368

With diabetes PGS Log lik = − 33,159 Log lik = − 24,865 Log lik = − 6364

Test statistic χ2 = 74.41 χ2 = 149.41 χ2 = 9.09

Note. Statistically significant differences between models without and with the diabetes PGS for each sample at the p = 0.05 level
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noted in several prior studies [33–35], and unfortunately
cannot be rectified with the use of weights. These differ-
ences should be taken into account when considering
the results and interpretations of our findings.
Mortality selection could also be a concern, as respon-

dents had to survive to age 50 (or be the spouse of
someone who survived to age 50) in order to be in the
HRS sampling frame. While this is an issue with all stud-
ies using the HRS, respondents in studies also using the
genetic component had to survive to 2006-2012 in order
to be included for potential genetic sampling.
Another caveat is that the survey question used in the

HRS to assess regular physical activity changed after
wave 6. In our analysis, a respondent was considered a
regular exerciser during waves 1-6 if they reported vigor-
ous physical activity 3+ times per week or, for waves 7-
12, if they reported vigorous physical activity at least
once per week. We opted to classify vigorous physical
activity based on how it was defined in the wave by
HRS.

Conclusion
Despite the limitations, this paper has shown the im-
portance of looking at the effects of genetic and behav-
ioral characteristics together, and that both are
necessary in understanding the etiology of diabetes. Al-
though previous papers have examined them together,
the advantage of this paper is that we studied their rela-
tionship in both non-Hispanic white and non-Hispanic
black respondents using a national population-based
study. Our findings suggest that although genetic vari-
ants are associated with diabetes onset, behavioral and
lifestyle characteristics remain an important part of dia-
betes management. BMI, smoking, alcohol, and exercise
were all found to be significant in various specifications
of our models. Thus, despite the statistically significant
role genetic endowment plays in diabetes onset, individ-
uals might still be able to reduce their risk by engaging
in protective behaviors, which has substantial clinical
relevance.
Diabetes is a multifaceted trait that has both a herit-

able and lifestyle component. A 2015 review by Prasad
and Groop [36] reported that the heritability of type two
diabetes mellitus varied between 25 and 80%, depending
on the length of follow-up, which may indicate a change
in heritability with age and thus the changing import-
ance of modifiable risk factors for diabetes onset. In the
context of our findings that both lifestyle factors and
genetic risk play a role in diabetes onset, it is important
to target lifestyle factors that may mitigate the role of
genetic endowment. Thus, future studies should exam-
ine gene-environment interactions in the onset of dia-
betes. Understanding the contribution of lifestyle factors
over the lifespan to epigenetic changes in the expression

of genetic risk for diabetes would be a valuable contribu-
tion to this line of work.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12889-019-7618-z.

Additional file 1. Summary Characteristics for the Analytic and
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sample used for this study differed from the complete HRS sample.
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