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Abstract

Background: Mathematical and statistical models are used to project the future time course of infectious disease
epidemics and the expected future burden on health care systems and economies. Influenza is a particularly
important disease in this context because it causes annual epidemics and occasional pandemics. In order to forecast
health care utilization during epidemics—and the effects of hospitalizations and deaths on the contact network and,
in turn, on transmission dynamics—modellers must make assumptions about the lengths of time between infection,
visiting a physician, being admitted to hospital, leaving hospital, and death. More reliable forecasts could be be made
if the distributions of times between these types of events (“delay distributions”) were known.

Methods: We estimated delay distributions in the province of Ontario, Canada, between 2006 and 2010. To do so, we
used encrypted health insurance numbers to link 1.34 billion health care billing records to 4.27 million hospital
inpatient stays. Because the four year period we studied included three typical influenza seasons and the 2009
influenza pandemic, we were able to compare the delay distributions in non-pandemic and pandemic settings. We
also estimated conditional probabilities such as the probability of hospitalization within the year if diagnosed with
influenza.

Results: In non-pandemic [pandemic] years, delay distribution medians (inter-quartile ranges) were: Service to
Admission 6.3 days (0.1–17.6 days) [2.4 days (-0.3–13.6 days)], Admission to Discharge 3 days (1.4–5.9 days) [2.6 days
(1.2–5.1 days)], Admission to Death 5.3 days (2.1–11 days) [6 days (2.6–13.1 days)]. (Service date is defined as the date,
within the year, of the first health care billing that included a diagnostic code for influenza-like-illness.) Among
individuals diagnosed with either pneumonia or influenza in a given year, 19% [16%] were hospitalized within the year
and 3% [2%] died in hospital. Among all individuals who were hospitalized, 10% [12%] were diagnosed with
pneumonia or influenza during the year and 5% [5%] died in hospital.

Conclusion: Our empirical delay distributions and conditional probabilities should help facilitate more accurate
forecasts in the future, including improved predictions of hospital bed demands during influenza outbreaks, and the
expected effects of hospitalizations on epidemic dynamics.
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Background
Influenza is a major global health concern that accounts
annually for tens of thousands of deaths in North America
[1, 2] and approximately 400,000 deaths worldwide [3].
Much effort has been invested in mathematical model-
ing of influenza dynamics in order to design improved
control strategies [4, 5] and to estimate their economic
impacts [6]. A fundamental limitation of such studies is a
lack of quantitative information concerning the relation-
ships between influenza infection and health care system
utilization. In particular, how should we expect changes
in influenza transmission dynamics induced by control
measures [5, 7, 8] to translate into (i) changes in influenza-
associated visits to physicians’ offices or hospitals and
(ii) health care system burdens from influenza-associated
hospitalizations?
Here we reduce this knowledge gap by exploiting an

unusual data set made available to us through a spe-
cial agreement with Statistics Canada. These data include
linked health records over a number of years, allowing
us to estimate the distributions of times from influenza
diagnosis to hospital admission, and hospital admission to
discharge or death.

Methods
Access toanonymized individualhealth records was obtained
throughaMemorandum of Understanding (MoU) between
the Ontario Ministry of Health and Long-term Care
(MOHLTC) and Statistics Canada. The MoU defined
a joint project on enhancing access to Ontario health
data by the research community. Administrative databases
were made available by MOHLTC to Statistics Canada,
who facilitated record linkage by providing an encrypted
health insurance number (EHIN) in each record. Files
were made available to us in the Statistics Canada
Research Data Centre (RDC) at McMaster University.

Data sources
ThreeMOHLTCadministrativedatabaseswereavailable tous:

OHIP Ontario Health Insurance Program claims, as recorded
in Medical Services Files. This database records all
fee-for-service billings for physician services in
Ontario; for each procedure, there is a service code
and a diagnostic code.

DAD Discharge Abstract Database, which contains hospital
inpatient records (all data years) and day procedure
records (datayearsprior to2003/04), including diagno-
sis codes (one of which is flagged as “most responsible”).
Inpatient records include the date of admission and
the date of discharge or death.

NACRS National Ambulatory Care Reporting System.
Since 2003/04, Ontario hospitals have reported day
procedure events to NACRS rather than the DAD.

All OHIP records included an EHIN, but a small num-
ber (≈ 2%) ofDADrecordswereexcluded from our analysis
because an EHIN was not available (likely because the
individuals in question were not Ontario residents at the
time of hospitalization). For hospital events, we restricted
attention to inpatients, so theNACRSdatabase was not used.

Data years
Access was provided to data from 1994 to 2010. However,
format changes and the difficulty of working with large
volumes of data using the computing infrastructure avail-
able in the RDCmade it impractical to analyze all the data.
The data years used in the present study were 2006/2007,
2007/2008, 2008/2009, and 2009/2010. Thus, the data cov-
ered the three influenza seasons preceding the 2009 pan-
demic and the pandemic year itself. The data file format
was identical for these four years.
We defined the start and end dates of data years via the

“influenza year”, running from 1 April to 30 March of the
next year. Thus, for example, “data year 2006” refers to the
time period from 1 April 2006 to 30March 2007. This def-
inition captures the typical seasonal influenza epidemic in
the northern hemisphere from November to March.

Relevant diagnosis codes
We restricted attention to records with diagnosis codes
corresponding to influenza, pneumonia or other diseases
of the respiratory system (Table 1). Ontario began to
implement ICD10 (the tenth revision of the International
Classification of Diseases) before our study period; how-
ever, the diagnosis codes recorded in the administrative
databases used ICD9 for the duration of the study period.
All records for individuals with at least one record with a
code in Table 1 were included.

Linked data
Linking the data by EHIN made it possible to obtain the
anonymized individual-level temporal sequences of OHIP
claims, hospital admissions, hospital discharges, and death,
for Ontario residents during the data years investigated.
First we filtered individuals with at least one influenza-
like illness diagnosis in the OHIP database and aggregated
to the earliest date within an influenza year (individuals
with multiple claims in the full study period may be
counted multiple times, but will only be counted once
per influenza year). Then, we filtered all individuals with
influenza-like illnesses that had a hospitalization record
in DAD. We were therefore able to establish relationships
between physician visits associated with influenza-like ill-
ness and hospitalization (even if influenza or pneumonia
was listed in only one record of the sequence for a given
patient). Note that individuals who have influenza-like
illnesses and present with pneumonia are often given a
diagnosis of pneumonia rather than influenza.

https://en.wikipedia.org/wiki/ICD-10
https://en.wikipedia.org/wiki/International_Statistical_Classification_of_Diseases_and_Related_Health_Problems#ICD-9
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Table 1 ICD-9 respiratory disease codes for diagnoses included
in the present study

Code Definition

460–466 Acute respiratory infections (ARI)

460 Acute nasopharyngitis (common cold)

461 Acute sinusitis

462 Pharyngitis, acute

463 Tonsillitis, acute

464 Acute laryngitis and tracheitis

465 Acute upper respiratory infections of multiple or
unspecified sites

466 Acute bronchitis and bronchiolitis

480–488 Pneumonia and influenza (P&I)

480 Viral pneumonia

486 Pneumonia, organism unspecified

487 Influenza

488 Influenza due to identified Avian influenza virus

488.1 Influenza due to identified 2009 H1N1 virus

Codes 481–485 were excluded because they indicate types of pneumonia not
associated with influenza. Subcodes are not listed, except 488.1, which is
highlighted because pandemic H1N1 is not normally considered a subset of “Avian
influenza” and would not be expected to be found in this category

Time distributions
Inprinciple, it was straightforward to construct the desired
distributions, i.e.,

(i) the distribution of times from physician diagnosis to
hospitalization;

(ii) the distribution of times from hospitalization to
discharge or death.

The primary practical challenge that we faced was work-
ing with the large event-data files.

Time series
In order to contribute to understanding of seasonal
patterns of respiratory illnesses, we aggregated events
according to diagnosis and billing date. Because multiple
billings are frequently associated with the same individ-
ual during a single illness, a given individual is likely to
contribute to counts in multiple categories on multiple
days during any given illness. Thus, the aggregated counts
provide a time series of health service utilization (which
counts the frequency of each diagnosis observed per day)
rather than an epidemic time series (which would count
each case of a disease once).

Software
We used SAS to filter, link and extract data from the
MOHLTC administrative databases available to us, and
R (version 3.5.3) for all analyses. R packages glmmTMB

(version 0.2.3, [9]) and depmixS4 (version 1.3-5, [10])
were used to fit Gamma and finite mixture Poisson distri-
butions to the delay distributions (see Additional file 1).

Results
Data characteristics
Over the four data years (2006–2010), there were a total
of 1.34 billion OHIP billing records. Of these, 31.9 million
(2.39%) contained at least one of the ARI or P&I diagnosis
codes listed in Table 1; after restricting attention to this
subset, there were 7.60 million unique individuals in the
database. During the same period, 4.27 million hospital
inpatient stays were recorded in the DAD.
Most individuals were associated with a small number

of billing records. Table 2 provides a quantile summary
of the number of billing records (with diagnosis codes
listed in Table 1) per person. Given the size of the data set
(7.6 million individuals), the upper 2.5% tail in Table 2
(individuals with > 17 billing records in the data set)
corresponds to approximately 190,000 individuals.
Table 3 lists precise counts of records and patients, bro-

ken down by diagnoses of pneumonia or influenza (not for
all diagnoses in Table 1) and by year.
FromTable 3 it is straightforward to estimate various outcome

probabilities given specific events having occurred during the
focaldata year (Table 4). For example, P(Hospitalized |
P&I diagnosis) is defined as the probability that
an individual who was diagnosed with pneumonia or
influenza during a given influenza year was hospitalized
during that year; the reason for hospitalization may not
have been related to pneumonia or influenza. Similarly,
P(P&I diagnosis |Hospitalized) denotes the
probability that someone who was hospitalized during
the influenza year was diagnosed with pneumonia
or influenza that year; the P&I diagnosis might have
occurred before, during or after the hospitalization.
The one exception is the final row of Table 4, where
P(Died in hospital |Hospitalized) denotes the
probability that someone who was hospitalized during
a given influenza year died in hospital that year, which
could have happened only after hospitalization (though
potentially after multiple distinct hospitalizations);
note that P(Hospitalized |Died in hospital)

would not be exactly 1 because some individuals
who died in hospital in a given influenza year were
hospitalized before the beginning of that influenza
year.

Table 2 Quantile summary of the number of OHIP billing records
per person for records with a diagnosis code in Table 1

2.5% 5% 25% 50% 75% 95% 97.5% mean

1 1 1 3 5 13 17 4.201

https://en.wikipedia.org/wiki/List_of_ICD-9_codes_460-519:_diseases_of_the_respiratory_system
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Table 3 Detailed event and patient counts

Code Category 2006 2007 2008 2009

1 OHIPall OHIP billing records 314,533,393 318,206,249 334,075,651 370,249,708

2 OHIPpi •P&I only 1,087,450 1,002,877 1,021,636 1,738,838

3 OHIPi •Influenza only 305,092 281,213 290,552 654,836

4 DADall DAD/IP hospital records 1,068,648 1,068,888 1,065,756 1,070,806

5 upi Unique EHINs with P&I in at least one OHIP record 467,746 440,606 445,195 627,733

6 ui • ⊂ upi; influenza 236,433 222,971 229,131 414,415

7 upiDAD • ⊂ upi; EHIN appears in a DAD/IP record 88,159 83,901 85,159 98,840

8 uiDAD • ⊂ upiDAD; influenza 20,042 18,738 18,894 33,039

9 DADu Unique EHINs in DAD/IP records 826,314 828,860 827,458 831,011

10 OHIPupiDAD OHIP records associated with unique EHINs in upiDAD 9,932,713 9,791,074 10,289,693 13,246,852

11 OHIPupiDADpi • ⊂ OHIPupiDAD; P&I 508,937 476,228 494,670 845,637

12 OHIPuiDAD OHIP records associated with the unique EHINs in uiDAD 28,840 25,472 26,274 65,172

13 DADupiDAD DAD/IP records associated with the unique EHIN list in upiDAD 114,146 137,229 139,459 157,247

14 DADuiDAD DAD/IP records associated with the unique EHINs in uiDAD 27,849 25,886 25,819 44,514

15 DADd deaths in DAD/IP records 40,396 40,567 41,761 41,142

16 DADdpi •P&I deaths within the year 11,241 11,239 11,715 11,516

17 DADdpi1 •P&I deaths during first admission 7,117 7,190 7,495 7,396

18 DADdi •Influenza deaths within the year 600 587 642 928

19 DADdi1 •Influenza deaths during first admission 401 402 422 620

Abbreviations: P&I = “pneumonia or influenza” (i.e., ICD-9 codes 486 or 487; see Table 1), OHIP = “Ontario Health Insurance Plan”, DAD/IP = “Discharge Abstract Database
inpatient”, EHIN = “Encrypted Health Insurance Number”, ⊂ = “subset of”

Service billing by day of week
The daily time series of billings show a small-amplitude
weekly oscillation. Figure 1 shows that most acute respi-
ratory illnesses have a characteristic weekly pattern of ser-
vice billings (generally decreasing from Monday through
Sunday, with a slight dip on Wednesday and a peak on
Thursday). Pneumonia stands out as having smaller fluc-
tuations over the course of the week.

Seasonal patterns by week
Figure 2 shows the weekly billings time series over each of
the four influenza years in our data set. All the diagnoses
display an annual oscillation. Pneumonia and tonsilitis
have the least pronounced cycle while influenza has the

most pronounced cycle. All diagnoses, including pneumonia,
show a stronger seasonal peak during the 2009–2010
influenza season, which was dominated by pandemic
H1N1. The dips just before the New Year are presumably
driven by the holiday season (and associated delays in pro-
cessing records), as is the case for well-known childhood
disease time series [11].
We note that virological testing practices for influenza

changed in Ontario during the 2009 pandemic. While
fairly systematic testing was conducted for the first few
months of the outbreak, testing restrictions were imposed
in mid June 2009 [12]. The extent to which this policy
change influenced the number of OHIP billing diagnoses
is not clear.

Table 4 Estimated conditional probabilities of various outcomes

Probability 2006 2007 2008 2009 Formula

1 P(Hospitalized |P&I diagnosis) 0.188 0.190 0.191 0.157 upiDAD/upi

2 P(Died in hospital |P&I diagnosis) 0.024 0.026 0.026 0.018 DADdpi/upi

3 P(Hospitalized |Influenza Diagnosis) 0.085 0.084 0.082 0.080 uiDAD/ui

4 P(Died in hospital |Influenza diagnosis) 0.003 0.003 0.003 0.002 DADdi/ui

5 P(P&I diagnosis |Hospitalized) 0.107 0.101 0.103 0.119 upiDAD/DADu

6 P(Died in hospital |Hospitalized) 0.049 0.049 0.050 0.050 DADd/DADu

The formulae for the probabilities are given in terms of the codes defined in Table 3
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Fig. 1 Service billings by day of week

Fig. 2Weekly time series of service billings categorized by disease diagnosis
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Time delay distributions
Finally, we exploited the linked data to measure the
elapsed time between various health-based outcomes.
The resulting frequency distributions of these delays are
shown in Fig. 3. We refer to the time of the first relevant
diagnosis (influenza, pneumonia, or “other respiratory”)
as the “service time”. The five panels of Fig. 3 show the
frequency distributions of time delays for:

• service to hospital admission,
• hospital admission to hospital discharge,
• hospital admission to death,
• service to hospital discharge,
• service to death.

Figure 3 reveals that short delays (e.g., < 30 days) are
most common overall; the exceptions are a very long
tail in the distribution of delays from service to admis-
sion, and a roughly flat distribution for influenza-related
service to mortality (for which sample sizes may be too
small to draw confident conclusions). Delay distributions
are similar for influenza and “other respiratory” diseases;
pneumonia generally has a longer time from admission to
discharge or mortality. The latter pattern may be driven

by the more substantial negative tail of delays from service
to admission, which represents people who were admitted
to hospital during the focal season but were first billed for
services relating to one of the diagnostic codes listed in
Table 1 some time after their admission.
Normalizing the distributions in Fig. 3 by the total

counts in the diagnostic category yields the estimated
probability densities in Fig. 4; these densities are normal-
ized, and shown, on a 30 day timescale rather than the 100
day timescale presented in Fig. 3 (in order to focus on pairs
of events that are more likely to be causally connected).
The leveling-off of the influenza distribution at a higher
value than the pneumonia and other respiratory diagnoses
in most of the plots (admission to discharge, admission to
mortality) is an artifact of the smaller number of influenza
cases; if the total number of cases is 10,000, then the
non-zero values of the distribution cannot go below 10−4.
Figure 5 summarizes and facilitates comparison of the

various delay distributions. Delays corresponding to the
2.5%, 25%, 50%, 75%, 97.5% quantiles are interpolated
from the cumulative delay distributions.
In addition to summarizing the delay distributions by

their quantiles, we also fitted parametric distributional
models (see Additional file 1). Gamma models, using only

Fig. 3 Time delay frequency distributions
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Fig. 4 Time delay probability densities, obtained by normalizing the data shown in Fig. 3, restricted to events separated by at most 30 days

two parameters (shape and scale), did a poor job fitting the
delay distributions, which tend to have both sharp peaks
and heavy tails relative to a Gamma distribution. We also
fitted four-component finite mixtures of Poisson distribu-
tions; with 7 parameters (four rate parameters and three
parameters determining the relative weights of the mix-
ture components) these captured much more of the over-
all pattern, but still left some features unexplained. Other
models, such as a finite mixture of negative binomial
distributions, may provide better summaries; how com-
plex a summary is most useful (e.g. a simple Gamma vs.
a many-parameter finite mixture) will depend on particu-
lar applications. Additional file 1 provides the full details
of the delay distributions fits. Full delay data are avali-
ble at https://zenodo.org/record/3340201 for researchers
wishing to derive other summaries of the data.

Discussion
Infectious disease epidemics have substantial impacts on
health care systems and economies. Mathematical mod-
els are extremely important for the purposes of planning
[13], because the best we can do is to make decisions
based on comparing the effects of various interventions
on simulated epidemics (real experiments are usually

impossible or unethical). For example, planners may need
to decide whether to close schools [8, 14, 15] (and for how
long to close them) or how to prioritize the use of limited
supplies of vaccine [5].
In order predict the future time course of an epidemic,

and the associated burden on societal structures, math-
ematical and statistical models require prior information
[16, 17]. The most basic ingredients of such models are
the mode of transmission and natural history of infection
(latent, incubation and infectious periods). If we wish to
predict patterns of health care system utilization, then
we also need to quantify the relationship between the
time of initial infection and the time at which health
care resources (especially hospital beds) are likely to be
exploited.
The time of initial infection is generally unobservable.

However, for each influenza season that we examined,
we were able to identify the time at which an individual
was first diagnosed with influenza, pneumonia or another
acute respiratory infection (Table 1). By taking advan-
tage of database linkage, we were able to estimate several
“delay distributions”, i.e., the distributions of time from ini-
tial diagnosis to hospital admission, discharge and death.
Fortuitously, the data years available to us included the

https://zenodo.org/record/3340201
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Fig. 5 Quantiles of the delay distributions shown in Fig. 4

2009 influenza pandemic, so we were also able to compare
distributions in non-pandemic years with a pandemic year.
Furthermore, we were able to compare various outcome

probabilities given specific events (P&I diagnosis, hospital-
ization, and death) during different years. We emphasize
that these conditional probabilities reflect associations,
not causal links. Neverthless, they are useful for identify-
ing patterns in the data that may be valuable to explore
more thoroughly in the future. For example, we found
that the probability of hospitalization for an individual
who was diagnosed with pneumonia or influenza during
the pandemic year was, surprisingly, lower than in non-
pandemic years; mortality in hospital was roughly the
same for both pandemic and non-pandemic years.
Regardless of whether the style of modelling is detailed

and individual-based with quantitative goals [18] or
abstract with qualitative goals [19], the delay distributions
that we have estimated—andmade available electronically
in online additional material—provide a useful empirical
backbone.

Limitations
Our study was restricted to the Canadian province of
Ontario, a region where the population is primarily con-
centrated in a large megalopolis (the Greater Toronto
Area). The extent to which the delay distributions we have

estimated can be applied to regions other than Ontario
is not known. However, it is reasonable to expect that
they are similar in other parts of Canada, and in many
other industrialized countries. Ideally, it would be better
to repeat our study using data for particular populations
of interest.

Conclusion
Forecasting of influenza epidemics and associated pat-
terns of health care system utilization can be conducted
with greater confidence using the empirically estimated
delay distributions that we have presented here (Figs. 3, 4
and 5; data in Additional file 1). While quantifying delay
distributions was our primary goal, we were able to obtain
a number of statistics that are of independent interest
(Table 4). For example, approximately 5% of people admit-
ted to hospital died there, and if they died in hospital
then the probability that they had been diagnosed with
influenza or pneumonia within the year was 10%.
The primary challenge in conducting the kind of

research presented here is the size of the data sets and the
requirement to analyze them in a secure environment. As
computing power and the sophistication and availability
of software for analyzing “big data” increases, much more
extensive studies of linked individual-level health-related
databases should become feasible.
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Additional file

Additional file 1: Additional file 1 provides the full details of the
parametric fits of the delay distributions. (PDF 134 kb)
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