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Abstract

Background: Zika virus (ZIKV) is an emerging mosquito-borne arbovirus that can produce serious public health
consequences. In 2016, ZIKV caused an epidemic in many countries around the world, including the United States.
ZIKV surveillance and vector control is essential to combating future epidemics. However, challenges relating to the
timely publication of case reports significantly limit the effectiveness of current surveillance methods. In many
countries with poor infrastructure, established systems for case reporting often do not exist. Previous studies
investigating the H1N1 pandemic, general influenza and the recent Ebola outbreak have demonstrated that time-
and geo-tagged Twitter data, which is immediately available, can be utilized to overcome these limitations.

Methods: In this study, we employed a recently developed system called Cloudberry to filter a random sample of
Twitter data to investigate the feasibility of using such data for ZIKV epidemic tracking on a national and state
(Florida) level. Two auto-regressive models were calibrated using weekly ZIKV case counts and zika tweets in order
to estimate weekly ZIKV cases 1 week in advance.

Results: While models tended to over-predict at low case counts and under-predict at extreme high counts, a
comparison of predicted versus observed weekly ZIKV case counts following model calibration demonstrated overall
reasonable predictive accuracy, with an R2 of 0.74 for the Florida model and 0.70 for the U.S. model. Time-series
analysis of predicted and observed ZIKV cases following internal cross-validation exhibited very similar patterns,
demonstrating reasonable model performance. Spatially, the distribution of cumulative ZIKV case counts (local- &
travel-related) and zika tweets across all 50 U.S. states showed a high correlation (r = 0.73) after adjusting for population.

Conclusions: This study demonstrates the value of utilizing Twitter data for the purposes of disease surveillance. This is
of high value to epidemiologist and public health officials charged with protecting the public during future outbreaks.
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Background
Zika virus (ZIKV) is an emerging mosquito-borne arbo-
virus that causes serious public health consequences.
Zika virus is primarily transmitted to people through the
bite of an infected Aedes species mosquito (Ae. aegypti
and Ae. albopictus) [1]. Although most infections carry
mild symptoms or are asymptomatic, the association
between ZIKV and microcephaly and Guillain-Barré
syndrome placed ZIKV as a global medical emergency

during the 2016 epidemic [2–6]. Currently there is no
medicine or vaccine to cure or prevent ZIKV infection.
Therefore, infection containment, vector control and
personal protection are the most important measures to
prevent infections and contain viral spread [7].
According to the U.S. Centers for Disease Control and

Prevention (CDC), ZIKV has been reported in over 60
countries and territories worldwide, during the 2015–
2016 ZIKV epidemic, with South America as the most
severely affected continent [8]. In the United States, lo-
cally acquired ZIKV cases have been reported in Florida
and Texas as well as the U.S. territories in Puerto Rico,
U.S. Virgin Islands, and American Samoa [8, 9]. Travel-
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associated U.S. cases of ZIKV infections have been
reported in all 50 States in the U.S. [9]. ZIKV can also be
sexually transmitted, which suggests concern for poten-
tial local outbreaks [9]. By November, 2016, U.S. travel-
associated ZIKV cases amounted to 4115. By this time,
there were 139 locally acquired mosquito-borne and 35
sexually transmitted cases in the U.S. Cases in U.S. terri-
tories amounted to 39,951 [9]. Although there were no
reports of microcephaly cases, 13 cases of Guillain-Barré
syndrome were reported in the continental U.S., and 50
in U.S. territories [9].
Regarding ZIKV surveillance and vector control, chal-

lenges exist that have significantly limited the effective-
ness of current methods. In the United States, disease
surveillance is supported by the CDC Division of Health
Informatics and Surveillance and is carried out through
a variety of networks that involve the collaboration of
thousands of agencies at the federal, state, territorial,
and tribal levels across health departments, laboratories,
and hospitals [10–12]. Importantly, while ZIKV cases
reported from official sources such as the CDC are of
high quality, such reporting is not timely due to an
internal protocol of these offices to collect and verify
data prior to formal publication. In addition, the cases
reported by any single source do not always reflect all
the cases that truly exist. More importantly, in many
countries or regions with poor infrastructure and health-
care systems, established systems for such case reporting
do not exist. To collect as much ZIKV case information
as possible with minimal delay, other services are avail-
able that can publish such information more timely.
Alternative data sources such as social media and other

digital services provide an opportunity to overcome exist-
ing surveillance obstacles by providing relevant informa-
tion that is temporally and geographically tagged. To date,
the variety of digital data streams that have been utilized to
help track diseases over time and space have included
internet search engines [13–18], electronic health records
[19], news reports [20, 21], Twitter posts [22–26], satellite
imagery [27], clinicians’ search engines [28], and crowd-
sourced participatory disease surveillance systems [29–31].
In terms of social media data streams, Twitter is a free

social networking service that enables millions of users to
send and read one another’s brief messages, or “tweets,”
each day. Tweets can be posted either publicly or intern-
ally within groups of “followers.” Currently, this service in-
cludes approximately 326 million registered users, with 67
million in the United States [32]. In spite of a fair amount
of noise due to general chatter and the sheer number of
tweets, Twitter contains useful information that can be
utilized for disease surveillance and forecasting.
Previously, Twitter has been utilized to measure public

anxiety related to stock market prices, national senti-
ment, and the impacts of earthquakes [33–35]. More

recently, Twitter was used in epidemic tracking and
forecasting for the H1N1 pandemic, general influenza,
and the recent Ebola outbreak [25, 36–39]. In terms of
ZIKV, studies have made use of Twitter data and devel-
oped predictive models for a variety of applications.
Mandal et al. (2018) developed Twitter-based models to
track zika prevention techniques and help inform health
care officials [40]. Other studies have performed content
analysis of Twitter data to explore and predict what
types of zika-related discussions people were having
during the recent ZIKV epidemic [41–44].
Since ZIKV outbreaks are influenced by many environ-

mental and social factors, such as local mosquito species
and density distributions, season, climate, land use, land
cover, human demographics, and mitigation efforts,
successful surveillance and forecasting of the disease can
be difficult [45–51]. Use of live streaming ZIKV-related
information via nationwide tweets could represent a
practical, timely, and effective surveillance tool, in turn
improving ZIKV case detection and outbreak forecasting
[14, 52]. To date, however, studies making use of Twitter
data to monitor the spread of ZIKV in real time and
space have been limited.
In one study, Teng et al. (2017) developed models to

forecast cumulative ZIKV cases [13]. However, these
models were developed to predict ZIKV cases cumula-
tively, and on a global basis. Further, these studies did
not make use of the Twitter data stream, but rather
Google Trends. Similarly, Majumder et al. (2016) devel-
oped models to forecast ZIKV case counts in Columbia
during the recent ZIKV epidemic [14]. Again, however,
the analysis utilized Google Trends data and considered
cumulative, rather than weekly, case counts. In our re-
search, we identified only a single study that attempted
to forecast ZIKV using the Twitter data steam, and on a
weekly basis. In this study by McGough et al. (2017), the
authors demonstrated the utility of developing Twitter-
based models to forecast ZIKV in countries of South
America [26]. However, given the lack of robust diagnos-
tic capabilities in the region, the study was limited to
using “suspected,” rather than “confirmed,” ZIKV cases.
Additionally, the study did not examine spatial patterns
of ZIKV cases and tweets, nor did it compare local- ver-
sus national-level modeling. To the best of our know-
ledge, there has been only a single study to date to
harness digital data streams for near-real time weekly
forecasting of ZIKV cases, and no such study to date
that has utilized Twitter data for ZIKV forecasting in the
United States and offered a comparison of national- and
state-level models [26].
In this study, we demonstrate the value of utilizing

time- and geo-tagged information embedded in the
Twitter data stream to 1) examine the relationship
between weekly ZIKV cases and ZIKV-related tweets
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temporally and spatially, 2) assess whether Twitter data
can be used to predict weekly ZIKV cases and, if so, 3)
develop weekly ZIKV predicative models that can be
used for early warning purposes on a state and national
level. This study contributes to the body of literature.

Methods
Twitter data
We utilized a general-purpose system called Cloudberry
to filter a 1% random sample of U.S. Twitter data.
Cloudberry is a subscription client of the Twitter stream
application program interface (API). It is connected to
the big data management system Apache AsterixDB,
which allows for the efficient transformation of front-
end data requests, and the continuous ingest and storage
of data [53]. In the Cloudberry system, the geographic
location filtering parameters are set by a rectangular
bounding box that includes all U.S. territory. Since this
boundary box also covers Canada and parts of Mexico,
tweets that are not published in the U.S. are deleted.
Cloudberry enables interactive analytics and visualiza-
tions of large amounts of data containing temporal,
spatial, and textual components common to Twitter and
other social media applications. Data collection from
Cloudberry began on November 17, 2015, with approxi-
mately one million tweets stored per day, and over 874
million tweets collected so far. The Cloudberry system
enables the filtration of millions of tweets according to
specific parameters set by the API user.
Live tweet counts from Cloudberry were collected

using Twitter’s open streaming API, which has been
shown to be representative of Twitter’s greater informa-
tion database and therefore useful for research purposes
[54–56]. The Streaming API can take three parameters;
namely, keywords (words, phrases, or hashtags), geo-
graphical boundary boxes, and user ID. For the first two
parameters, in order to identify and compile tweets that
were relevant to ZIKV, we filtered data for the entire
U.S. and for Florida during the year 2016 using the
keywords zika and mosquito. The latter keyword was
employed to explore whether it could provide an early
warning signal of impending ZIKV activity. For the third
parameter, no user ID was specified so as not to restrict
sample size. Tweet counts were summed by week in
order to be used in weekly prediction models. In using
Twitter data for this study, we complied with Twitter’s
terms, conditions, and privacy policies.

ZIKV data
Updated case reports for total U.S. ZIKV were available
on a weekly basis throughout the duration of the 2016
ZIKV epidemic. Data was obtained using the Morbidity
and Mortality Weekly Reports maintained by the CDC
[57]. For cumulative state-by-state ZIKV prevalence

data, we accessed an updated CDC online report on
January 24, 2017 [9]. ZIKV cases for the state of Florida
were available approximately every day during the ZIKV
epidemic, and were obtained via the Florida Department
of Health [58].
The Florida Department of Health reports only cumu-

lative case counts. To convert this to weekly case counts
for use in this study, we simply took the difference of
cumulative cases from 1 week to the next. All ZIKV case
counts used in this study were based on date of reporting.

Statistical analysis
Temporal correlation
Time-series analysis was conducted for weekly ZIKV
cases and zika tweets to illustrate their patterns over the
2016 study period. This was also conducted for mosquito
tweets. To assess the correlation of weekly zika tweets
with weekly ZIKV cases, we produced Pearson correl-
ation coefficients. To assess the potential lag in time
between ZIKV cases and each tweet keyword, we exam-
ined the change in these coefficients after applying lags
ranging from 0 to 6 weeks. This time range takes into
account the approximately 1–2 week incubation period
of ZIKV as well as the potential 2–4 week delay between
ZIKV laboratory testing and reporting [59, 60].

Spatial correlation
The cumulative prevalence of ZIKV cases was also ex-
amined and correlated (using Pearson correlation) with
cumulative zika tweets spatially across the U.S. Results
were depicted in the form of two maps, each divided
into four shaded quartiles. For this analysis, cases and
tweets for each state were calculated as the sum of cases
and tweets from January 1, 2016 through January 24,
2017. Cases were depicted as raw case counts. However,
for proper spatial comparison, cumulative tweets were
adjusted according to state population, using 2016 U.S.
Census Bureau population estimates [61]. Therefore,
tweets per 100,000 people were reported, and referred to
as tweet prevalence. Cumulative data was calculated
through January 24, 2017 because the CDC only pro-
vides cumulative state-by-state ZIKV prevalence data for
the date that data is accessed, not historically. That is,
the CDC maintains an online report that is updated each
week, at which point historical numbers are no longer
available [9]. In our case, we accessed the CDC website
on January 24, 2017. This additional 24 day period is
unlikely to have impacted our analysis as the ZIKV
epidemic had dramatically slowed by this point, adding
relatively few additional cases.

Model development
Univariate analyses using 1) weekly ZIKV case counts
lagged by 1 week and 2) weekly zika tweet counts lagged
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by 1 week as predictors of weekly ZIKV case counts in
Florida and the U.S. was first carried out. This was to
assess the potential utility of using Twitter data where
quantitative ZIKV case reporting is not reliable, as well
as to understand the extent to which each term alone is
predictive of future case counts.
Next, prediction models combining both prior ZIKV

case counts and Twitter data to estimate weekly ZIKV
case counts were explored. Specifically, we applied an
auto-regressive (AR) model using zika tweet counts as
an input series. Two types of covariates were used;
namely, prior weekly ZIKV case counts and prior weekly
zika tweet counts. Prior to model development, first-
order differencing was applied to both dependent and
independent variables. This is standard practice to
address the issue of stationarity that is common to time-
series data. After differencing, we examined various
models using 1–6 week lags [AR(1,1)-AR [1, 6]] for both
the auto-regressive variable as well as the tweet variable
according to the following general equation:

ZIKV0
t ¼ αþ

X6

k¼1

βkZIKV
0
t−k þ

X6

k¼1

γkTweet
0
t−k þ Ɛ

ð1Þ
where ZIKV0

t is the difference between the ZIKV case
count on week t and week t-1 (first-order difference); βk
is the effect estimate of the weekly ZIKV case count k
week(s) prior to t after first-order differencing; γk is the
effect estimate of the weekly zika tweet count k week(s)
prior to t after first-order differencing; α is the regres-
sion intercept; and is the error term.
In order to select an appropriate predictive model for

Florida and a model for the U.S., several steps were
taken. First, candidate models were identified. A model
was considered a candidate model only if all predictor
terms were significant at p < 0.05 and if auto-correlation
of residuals passed the white noise test (p > 0.05). Candi-
date models were then compared and the model with
the lowest Akaike Information Criterion (AIC) value was
selected as the final model (one model for Florida and
one for the U.S.). Using the AIC criterion ensured that
the chosen models were not over fit. Final models were
also evaluated to ensure normality of residuals.
In testing models, two highly inflated weekly zika

tweet counts that occurred well before the major onset
of the ZIKV epidemic, and which could be explained by
high profile media events, were reduced to the mean of
their before and after values. These inflated points oc-
curred during the first 2 weeks of February, coinciding
with the timing of the first ZIKV cases reported in the
United States by the CDC (week of Jan. 30). Additionally,
the World Health Organization (WHO) officially declared
a ZIKV public health emergency of international concern

that same week (Feb. 1) followed by an announced request
by President Obama the following week (Feb. 8) for $1.8
billion in ZIKV-related emergency funds [62]. Inflation of
these points was accounted for prior to analysis to prevent
this prominent media activity from influencing model
coefficients. Final models were also regressed with the
inclusion of these original values to ensure minimal model
sensitivity.
After model calibration, both predicted and measured

weekly ZIKV case counts for each model were plotted
for comparison.

Model evaluation
To validate the models we applied forecast evaluation
with a rolling origin, which is a form of leave-one-out
cross-validation. That is, a model was fit to all but one
(left out) weekly data point. The fitted data was then
used to predict the left out data point. This process was
repeated 52 times (for all weeks), with each iteration
holding out a new weekly data point. This process
generated a new data set composed entirely of predicted
weekly ZIKV case counts for each model. The predicted
and measured values for these aggregated datasets were
then plotted in the form of two scatter plots (one for the
Florida model and one for the U.S. model) as well as
two time-series plots. Goodness of fit for predictions
was assessed using the coefficient of determination (R2)
and root mean squared error (RMSE) for the scatter plots
of predicted and measured weekly ZIKV case counts.

Results
Temporal correlation
Figure 1 is a time-series plot of total (local- and travel-
related) ZIKV cases and zika tweets occurring in the
United States for each week during the year 2016. As
shown, the pattern of case reports and tweets was very
similar, exhibiting a gradual increase in both tweets and
cases during the spring months, with a prominent peak
occurring during summer months. An increase of ZIKV
cases during summer months is consistent with the
primary mode of ZIKV transmission, namely mosquito
bites, since mosquitoes are more prevalent in warmer,
humid conditions. After the summer months, tweets and
cases both declined. A prominent spike in zika tweets
that did not coincide with ZIKV cases was apparent in
the first half of February. This peak coincides with the
occurrence of the high profile media events previously
described; namely, reports of the first ZIKV cases in the
U.S., as well as the public health emergency announce-
ment by the WHO and the ZIKV-related emergency
funds requested by President Obama. In examining the
relationship between weekly ZIKV cases and weekly zika
tweets during the study period, applying a 1 week lag term
for zika tweets resulted in a better correlation (r = 0.67)
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when compared with either no lag (r = 0.51) or greater lag
periods (r = 0.50–65).
Figure 2 is a time-series plot of total (local- and travel-

related) ZIKV cases and zika tweets occurring in Florida
for each week during the year 2016. As with Fig. 1, the
pattern of case reports and tweets was very similar,
exhibiting a strong increase during the months of July,
August, and September. Tweet counts exhibited a trimo-
dal distribution during the peak of the outbreak. A very
similar pattern was apparent for ZIKV cases. Locally
acquired ZIKV was not reported until the end of July
and peaked during the month of September, after which
the pattern of decline followed a similar trajectory as
total ZIKV cases.
In examining Fig. 2, we observed a sharp increase in

zika tweets that predated the increase in total ZIKV
cases by 1 week. In examining the relationship be-
tween weekly ZIKV cases and weekly zika tweets
during the study period, applying a 1 week lag term

for zika tweets improved the correlation from 0.64
(zero lag) to 0.77. As with Fig. 1, a peak in tweets dur-
ing February coincided with the previously described
high media activity.
Use of mosquito tweets was explored for its poten-

tial to serve as an advanced warning signal for
impending rises in ZIKV cases. A very similar
pattern in tweet frequency existed between the
mosquito and zika keywords. A time-series plot of
weekly zika tweets and mosquito tweets occurring in
Florida in 2016 is presented in Additional file 1: Fig-
ure S1. The correlation between weekly zika and
mosquito tweets during 2016 was 0.87 (p < 0.001),
which is considerably high. Use of the keyword
mosquito therefore provided no added benefit as a
temporal indicator of ZIKV compared to the key-
word zika. This was most apparent during the peak
of the outbreak, when both keywords responded
nearly identically over time.

Fig. 1 Total ZIKV cases and zika tweets during the year 2016 in the United States

Fig. 2 Weekly ZIKV cases and zika tweets during the year 2016 in Florida
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Spatial correlation
Figure 3 depicts the cumulative prevalence of ZIKV
cases and zika tweets by state, from January 1, 2016
through January 24, 2017. Cases are presented as case
counts, whereas tweets are presented as tweets per 100,
000 people. As shown, states with the highest prevalence
of tweets and cases (darkest shade) showed high similar-
ity. A Pearson correlation coefficient of 0.73 (p < 0.001)
was produced when assessing cases and population-
adjusted tweets across all 50 states.
Of the ten states with the most ZIKV cases, seven

also had the highest prevalence of zika tweets. In
order of descending case count, these states included
Florida, New York, California, Texas, Maryland,
Massachusetts, Virginia, and Illinois. States that were
in the top quartile for tweets, but not for ZIKV
cases, were states that were geographically adjacent
(shared border) to states with the highest ZIKV case

counts. Such states included Louisiana, Nevada, and
Arizona. Of the ten states with the fewest ZIKV
cases, six also had the lowest zika tweet prevalence.
Regions with fewest ZIKV cases and tweets were the
upper Midwest (Idaho North Dakota, South Dakota,
and Wyoming) and Northeast (New Hampshire,
Vermont, and Maine).

Prediction model
The model chosen to predict ZIKV case counts in
Florida was an AR [1, 3] model using a one-week lag for
zika tweets. That is, the model included a term for
weekly ZIKV case counts one, two, and 3 weeks prior (
ZIKV0

t−1 , ZIKV0
t−2 , and ZIKV0

t−3 ) as well as a term for
weekly zika tweets 1 week prior ( Tweet0t−1 ). Models
tested without a term for prior zika tweets exhibited a
lower AIC when compared to candidate models that

Fig. 3 Comparison of cumulative ZIKV cases and population-adjusted zika tweets for approximately 1 year (2016) in the United States
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used tweet information. This suggests that Twitter data
improved the predictive ability of the model. Addition-
ally, models that used fewer AR terms resulted in a
higher AIC, suggesting that the use of multiple AR
terms did not produce a model that was overfit.
For U.S. predictions, a similar model was chosen, but

with one fewer auto-regressive term [AR [1, 2]]. That is,
the model included a term for weekly ZIKV case counts
one and 2 weeks prior (ZIKV0

t−1 and ZIKV0
t−2) as well as

a term for weekly zika tweets 1 week prior (Tweet0t−1 ).
As with Florida, models tested without a term for prior
zika tweets had a lower AIC than those that included
tweet counts, again suggesting an improvement of the
model when using Twitter data. And similarly, models
that used alternate number of AR terms had higher
AICs, suggesting a less appropriate model.
Table 1 presents regular effect estimates and standard-

ized estimates for covariates, along with standard errors,
and p-values for the multivariate and univariate models
calibrated in Florida and the U.S. The R2 value for the fit
of observed versus predicted weekly ZIKV case counts
following calibration for each model is also presented.
All covariates in the presented models were significant
at p < 0.05. Intercept effects were not significant, thus
contributing little to the models. This is expected since

first-order differencing was applied (mean should ap-
proximate zero).
AIC values for the two chosen multivariate models as

well as all candidate models and the univariate models
are presented in Additional file 1: Table S1. Additional
diagnostic criteria including the white noise test and
partial auto-correlation functions for each model are
presented in Additional file 1: Figures S2 and S3. Resid-
uals plots are presented in Additional file 1: Figures S4
and S5, and showed that the models tended to over-
predict at low case counts and under-predict at high
counts. Lastly, Additional file 1: Table S2 presents zero
mean test results, allowing us to affirm that no unit root
exists and that the data series used in this analysis is
stationary.
Figure 4 depicts predicted versus measured weekly

ZIKV case counts after calibrating the univariate model
using only Twitter data (Fig. 4a) and the multivariate
model (Eq.1) using Twitter data and prior ZIKV case
counts (Fig. 4b) for the state of Florida. Models were
calibrated using 52 weekly data points. However, since
forecasts required 3 weeks of prior data, only 49 points
could be predicted and plotted. Results for predicted
and observed case counts in Florida using the univariate
model (Fig. 4a) demonstrated that Twitter data alone

Table 1 Output for ZIKV predictive models

Effect Estimate Standardized Effect
Estimate

Standard Error P-Value Model R2

Florida Models

Multivariate Intercept 0.2750 0.0013 0.6350 0.6670 0.74

ZIKVt-1 − 0.6993 −0.6993 0.1352 < 0.0001 –

ZIKVt-2 −0.6271 −0.6271 0.1432 < 0.0001 –

ZIKVt-3 −0.4264 −0.4264 0.1373 0.0033 –

Tweett-1 0.0626 0.4104 0.0136 < 0.0001 –

Univariate Intercept 0.2711 0.0007 2.1455 0.9000 0.60

Tweett-1 0.0443 0.2903 0.0211 0.0408 –

Univariate Intercept 0.2720 −0.0002 1.5694 0.8631 0.61

ZIKVt-1 −0.3282 −0.3281 0.1350 0.0187 –

U.S. Models

Multivariate Intercept 1.0587 0.0107 3.4241 0.7586 0.70

ZIKVt-1 −0.5221 −0.5221 0.1402 0.0005 –

ZIKVt-2 −0.3806 −0.3806 0.1457 0.0120 –

Tweett-1 0.0242 0.2622 0.0114 0.0392 –

Univariate Intercept 0.4715 0.0001 7.2653 0.9485 0.63

Tweett-1 0.0325 0.3517 0.0123 0.0114 –

Univariate Intercept 0.2720 0.0023 1.5694 0.8631 0.64

ZIKVt-1 −0.3282 −0.3756 0.1350 0.0187 –

*Note, effect estimates represent the effects of covariates after first-order differencing; thus explaining the negative coefficients of AR terms that are otherwise
positively auto-correlated
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can be a useful predictor of weekly case counts (R2 =
0.60), predicting about as well as prior ZIKV case counts
(R2 = 0.61). However, Fig. 4b demonstrated that combin-
ing prior ZIKV case counts and Twitter data results in a
substantially improved model, with a higher R2 of 0.74
(RMSE = 11.7 cases). The combined model using prior
ZIKV and Twitter data suggests good predictive ability.
Plotting predicted and observed case counts following
cross-validation of the multivariate model produced an
R2 of 0.67 and RMSE of 13.3 cases. This further indi-
cates reasonable performance of the model considering
that in this case no information from the plotted points
was used in model calibration.
Figure 5 is similar to Fig. 4, depicting predicted versus

measured weekly ZIKV case counts according to a uni-
variate model (Fig. 5a) and multivariate model (Fig. 5b).

In this case, however, the U.S. model was applied using
data for the entire nation. Similarly, results for predicted
and observed case counts using the univariate model
(Fig. 5a) demonstrated that Twitter data alone can be a
useful predictor of weekly case counts (R2 = 0.63); again
predicting about as well as the univariate model using
prior ZIKV case reports. However, in Fig. 5b we again
observed that combining prior ZIKV case counts and
Twitter data led to model improvement, with a higher
R2 of 0.70 (RMSE = 44.5 cases). Following internal cross-
validation of the multivariate model, predicted and ob-
served case counts in the U.S. resulted in an R2 of 0.57
and RMSE of 54.2 cases. This suggests that the Florida
model performed better following validation than the
U.S. model. Upon elimination of a single outlier predic-
tion in October, however, validation results for the U.S.

Fig. 4 Relationship between predicted and measured weekly ZIKV case counts during 2016 in Florida after calibrating a model using a) only
Twitter data and b) Twitter data plus prior ZIKV case reports

Fig. 5 Relationship between predicted and measured weekly ZIKV case counts during 2016 in the United States after calibrating a model using a)
only Twitter data and b) Twitter data plus prior ZIKV case reports
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model improved markedly, with an R2 of 0.63 and RMSE
of 49.4 cases.
Figure 6 shows a time-series plot using cross-validation

results of observed and predicted weekly ZIKV case
counts during 2016 using the multivariate Florida model.
Since validation results were used, none of the predicted
data shown in this plot was incorporated in the model
calibration process. Rather, each weekly prediction
represents the single held out point that was predicted on
during each iteration of the validation process. As shown,
a very similar pattern in weekly predicted and observed
case counts exists over time. The general increase in case
counts during spring, followed by a summertime peak,
and subsequent decline in the fall is predicted well by the
model. The two major outbreak peaks observed during
summer were also predicted well in terms of magnitude
and time of onset. However, in the case of the largest
peak, the duration of this major outbreak period was
under-predicted slightly. The correlation between
predicted and measured weekly ZIKV case counts was
high, with a correlation coefficient of 0.82 (p < 0.001) over
the study period.
Figure 7 shows a time-series plot of observed and

predicted weekly ZIKV case counts during 2016 in the U.S
using the nationally calibrated multivariate model. Similar
to Fig. 6, predictions represent results from the internal
cross-validation process. As shown, the national model
predicted the general increase in case counts during
spring, followed by a summertime peak, and subsequent
decline in the fall. However, the model missed the onset of
the first major peak in summer case counts and under-
predicted the second peak. The third and highest peak
that occurred in August, however, was predicted well by
the model in terms of timing, magnitude, and duration. A
subsequent summertime peak was predicted prematurely,
followed by a false prediction peak. Overall, the correl-
ation between predicted and measured weekly ZIKV case

counts was still high, with a correlation coefficient of 0.75
(p < 0.001) for the 2016 study period.

Discussion
Weekly ZIKV case reports and zika tweets in the U.S.
and in Florida exhibited very similar temporal patterns,
peaking during summer and declining in fall. A multi-
variate auto-regression analysis using Florida and U.S.
data demonstrated zika tweets to be an important pre-
dictor of weekly ZIKV case counts during the 2016 study
period. Combined with information of previous ZIKV
case counts, we calibrated two models that were able to
estimate weekly ZIKV cases 1 week in advance with
reasonable accuracy; one model for Florida and one
model for the U.S. Both models performed best when
both prior ZIKV case count data and Twitter data were
included. Following calibration of the models, and
subsequent internal cross-validation, a comparison of
predicted versus observed weekly ZIKV case counts
demonstrated reasonable model performance for the
Florida model and reduced, but still moderate, perform-
ance for the national model. A time-series plot of
predicted and observed case counts similarly showed the
Florida model to predict reasonably well and the
national model to predict moderately well. While a
comparison of observed and model-predicted ZIKV case
counts produces R2 values ≥0.70 for the Florida model,
we must be careful not to overstate the model perform-
ance given that disease forecasting models can some-
times yield R2 > 0.9. Nonetheless, results for both models
in this study suggest that Twitter data can be used to
help track ZIKV prevalence during outbreak periods.
Given that Twitter data is immediately available, com-
pared to a delay of cases often reported by the CDC,
Twitter represents a particularly useful tool for epidemi-
ologist and public health officials involved in disease
surveillance.

Fig. 6 Time-series plot using cross-validation results of observed and predicted weekly ZIKV case counts during 2016 in Florida
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During model development, 1 week lagged zika tweets
were best correlated with weekly ZIKV cases. This is
visually apparent during the major outbreak period in
Florida, where a sharp rise in zika tweets appeared to
precede ZIKV cases by 1 week. A possible explanation is
that an inherent temporal difference exists between
Twitter chatter and ZIKV diagnosis. For instance, it is
plausible that discussion of ZIKV (potentially due to the
presence of symptomatic or hospitalized family members
or friends) predates actual diagnosis. In this case, a rise
in zika tweets would predict a rise in ZIKV cases.
Whether or not this temporal difference in zika tweets is
truly reflecting chatter related to the impending rise in
ZIKV cases, however, cannot be confirmed here.
It is worth noting that reports of the first locally

acquired ZIKV in Florida corresponded with the sharp
rise in zika tweets occurring in August. Therefore, an al-
ternative explanation is that the initial sharp rise in zika
tweets occurring in summer could reflect chatter related
to the first few cases of locally acquired ZIKV, rather
than the impending increase in total ZIKV cases that
occurred the following week. This explanation, however,
fails to explain the overall higher correlation between
ZIKV case counts and 1 week lagged zika tweets over
the entire study period.
The primary strength of these models is the use of

readily available, real-time Twitter data to estimate ZIKV
cases. Additionally, the use of 1 week old ZIKV case
reports to generate a good estimate means reduced
dependence on the timely publication of case reports by
government agencies in order to track ZIKV and predict
outbreak trends. Where states report case counts on a
daily basis during an outbreak (e.G. Florida), estimates
of the following week’s ZIKV case counts can similarly
be updated on a real-time (daily) basis. This enables
better epidemic preparedness by local and state public
health agencies in charge of disease response.

A primary limitation of these models is the need for
historical ZIKV case count information. This requires
the government to continue monitoring and publishing
case reports. Though such surveillance takes place in the
U.S. and other industrialized nations, it does not take
place in many developing countries. Furthermore,
government data may not always be released in time to
enable ZIKV case predictions. In such regions where
quantitative case count data is not accurately and/or
consistently reported, or potentially delayed, univariate
analyses using only prior zika tweets demonstrated that
Twitter data may still be useful for disease surveillance.
This assumes that Twitter is used among the local popu-
lation and that sufficient knowledge of the disease and
disease activity exists among the population.
Also noteworthy, since these are statistical models that

depend on previous case reports, they cannot be used to
predict a ZIKV outbreak where no prior case reports
exist. Additionally, given their dependence on historical
trends, these models are limited in their ability to predict
historically anomalous events that could give rise to
dramatic changes in disease prevalence. To this end,
mechanistic models that take into account meteorology,
vector distribution, population distribution and move-
ment would provide more insight. Also, a diagnosis issue
related to the cross-reactivity of diagnostic assays with
other arboviruses presents a unique challenge for ZIKV
surveillance. This challenge exists with traditional
surveillance methods and is still an issue using our
modeling approach.
Residuals plots for our models exhibited a departure

from normality, with models tending to over-predict at
low case count values and under-predict at high case
counts. The models’ capability in predicting the full
range of cases is compromised because of its over-
prediction at extremely low values and under-prediction
at extremely high values. Although this tendency toward

Fig. 7 Time-series plot using cross-validation results of observed and predicted weekly ZIKV case counts during 2016 in the United States

Masri et al. BMC Public Health          (2019) 19:761 Page 10 of 14



extreme value prediction is quite common in statistical
predictive models trained based on a limited number of
measurement data, it nonetheless represents a limitation
in this type of statistical modeling that needs to be
acknowledged.
Importantly, this work presents predictive models

designed with the goal of using covariates to forecast an
outcome variable; namely, ZIKV cases. This is distinct
from explanatory modeling, which seeks to understand
the causal relationships between covariates and outcome
variables [63]. In this study, we do not pursue such
causal inference. Therefore, while zika tweets serve
useful in predicting ZIKV cases, we do not make claims
about the relationship between tweets and ZIKV cases.
Understanding why zika tweets correlate well with

ZIKV case counts and therefore offer utility as a surveil-
lance tool is an interesting question. It is possible that
zika tweets are capturing tweets related to first-hand
illness, or that such tweets are merely capturing ZIKV
awareness, or a combination of both. While this is an
area of active research, the lack of a complete under-
standing of this relationship does not prevent zika
tweets from serving as a useful predictor variable in the
development of ZIKV forecasting models.
In discussing this study, it is important to avoid ‘big

data hubris’ [64]. That is, while our models demonstrate
the ability of Twitter data to serve as an indicator of
disease activity, such data should not be viewed as a
substitute for traditional data collection and analysis, but
rather a supplement to such traditional approaches. In
future work, combining Twitter data with traditionally
collected data related to vector population density,
vaccine injection, transmissibility, and basic repro-
ductive number would be useful to incorporate into
modeling efforts.
A prominent, temporary spike in tweets that did not

coincide with ZIKV cases occurred in early February.
This was visible in total U.S. data and Florida data. Such
a spike was months ahead of actual major ZIKV activity
in the U.S. and can be explained by several important
media-related occurrences. This time period marked the
occurrence of the first cases of ZIKV to be reported in
the United States by the CDC (week of Jan. 30). Of add-
itional relevance was the WHO having declared a ZIKV
public health emergency of international concern (Feb.
1) and President Obama announcing a request for $1.8
billion in ZIKV-related emergency funds the following
week (Feb. 8). This was a very high profile week for
ZIKV in terms of media attention. The inflation of such
tweets by these respective events was reflected in actual
Twitter content. A qualitative content analysis of trend-
ing ZIKV-related topics during this time period
supported the existence of particular concern among the
population over the arrival of ZIKV to the U.S., showing

an overwhelming prevalence of such tweets as “Zika
Health Emergency,” “Zika Virus is in the US!,” and
“Great, Zika cases here.” Additionally, tweets that in-
cluded “#CDC” were 2–4 times higher during the period
when these events took place than during any week over
the following 3 month period. Since these instances of
media-related tweet inflation were infrequent, they did
not appear to impact our predictive models. In using
Twitter data for disease surveillance in the future it is
nonetheless important for researchers to be mindful of
the influence such major media headlines can have on
tweet count, so as not to infer disease.
Two other points of deviation between tweet counts

and ZIKV cases occurred during the months of Novem-
ber and December. In these cases, ZIKV cases increased
sharply without corresponding increases in zika tweets.
A possible explanation for this is the announced ending
of the ZIKV public health emergency on November 18th
by the WHO [65]. This announcement potentially re-
lieved public concern of ZIKV, which may have in turn
depressed zika tweets in the weeks following.
When comparing national versus Florida ZIKV cases

and tweets, time-series analyses showed national tweets to
increase more dramatically during the major outbreak
period, responding less to weekly vicissitudes in case
counts (Figs. 1 and 2). Although this could suggest the
potential for over-prediction of ZIKV cases for a national-
based model, application of a U.S. model showed this to
not be an issue. However, false prediction and timing of
high ZIKV activity periods were apparent issues in the
national model. That U.S. tweet counts responded less
sensitively to ZIKV case counts, and that the U.S. model
did not perform as well as the Florida model, makes sense
given the higher spatial coverage of the entire U.S. relative
to ZIKV hotspot regions (e.g. FL, CA, NY, and TX).
The keyword mosquito was also examined for its

potential to serve as an early signal of locally acquired
ZIKV, given that a rise in mosquitoes (the primary ZIKV
vector) would expectedly lead to a rise in ZIKV. This
keyword, however, provided no added benefit over use
of the keyword zika. Rather, zika and mosquito tweets
were tightly correlated throughout the entire year.
In general, the increase of ZIKV in the summer and

subsequent decrease in the fall season can be explained
by higher temperatures and humidity during summer
months, which provides conditions ideal for mosquito
breeding, as well as increased person travel. Additionally,
pesticide spraying campaigns during the height of the
outbreak, particularly in late summer, may have helped
to control mosquito populations and prevent the spread
of ZIKV. For instance, aerial spraying of the organophos-
phate pesticide Naled was conducted in Miami-Dade
County, Florida, multiple times in September in order to
combat ZIKV [66]. In addition to dropping temperatures
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in the fall, this was another likely contributor to the
sharp decrease in ZIKV cases and related tweets during
this season.
In terms of spatial distribution across the U.S., ZIKV

case reports were highly correlated with population-
adjusted zika tweets. States with the most ZIKV cases also
had the highest zika tweet prevalence while states with the
fewest cases had the lowest tweet prevalence. This sug-
gests that in addition to temporal accuracy, Twitter data
may be a useful tool for predicting disease prevalence
spatially. Additionally, this reinforces the potential utility
of using Twitter data for ZIKV disease surveillance at the
national level.
More research is necessary to identify an appropriate

national-level predictive model. Additionally, future
modeling efforts should attempt to separate tweets indi-
cating awareness from tweets indicating infection. This
could be accomplished by conducting a detailed content
analysis of zika tweets. For instance, researchers could
assemble a list of keywords or phrases in order to filter
out non-infection related zika tweets. Once validated,
this approach would produce a new time-series dataset
of zika tweet counts that could be used to calibrate a
new predictive model of ZIKV case counts. This ap-
proach would enable us to understand the underlying re-
lationships between tweets and case counts. Lastly,
calibration of other state-wide models for comparison
with our Florida model is a worthwhile area of future re-
search in order to understand how the relationship be-
tween Twitter data and disease incidence might vary
from state-to-state, and to better utilize such data for
predictive purposes in other regions.

Conclusions
Zika tweets exhibited a very similar temporal pattern
as ZIKV case counts in the U.S. during the 2016
ZIKV epidemic. An auto-regression analysis using
data from Florida showed zika tweets to be a signifi-
cant predictor of ZIKV cases, with model evaluation
demonstrating that weekly ZIKV case counts could be
predicted 1 week in advance with reasonable accur-
acy. By comparison, a nationally calibrated model
showed reduced, but still moderate predictive ability.
Model performance was improved for both models
with the inclusion of prior ZIKV case count data, as
opposed to just Twitter data. This study suggests that
Twitter data can serve to signal changes in disease
activity during an outbreak period. Additionally,
spatial mapping of ZIKV and zika tweets across the
U.S. showed similar patterns. States with the most
ZIKV cases had the highest zika tweet prevalence
while states with the fewest cases had the lowest
tweet prevalence, indicating that spatial ZIKV predict-
ive modeling may be possible at the national level.
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