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What can urban mobility data reveal
about the spatial distribution of infection in a
single city?
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Abstract

Background: Infectious diseases spread through inherently spatial processes. Road and air traffic data have been
used to model these processes at national and global scales. At metropolitan scales, however, mobility patterns are
fundamentally different and less directly observable. Estimating the spatial distribution of infection has public health
utility, but few studies have investigated this at an urban scale. In this study we address the question of whether the
use of urban-scale mobility data can improve the prediction of spatial patterns of influenza infection. We compare the
use of different sources of urban-scale mobility data, and investigate the impact of other factors relevant to modelling
mobility, including mixing within and between regions, and the influence of hub and spoke commuting patterns.

Methods: We used journey-to-work (JTW) data from the Australian 2011 Census, and GPS journey data from the
Sygic GPS Navigation & Maps mobile app, to characterise population mixing patterns in a spatially-explicit SEIR
(susceptible, exposed, infectious, recovered) meta-population model.

Results: Using the JTW data to train the model leads to an increase in the proportion of infections that arise in central
Melbourne, which is indicative of the city’s spoke-and-hub road and public transport networks, and of the commuting
patterns reflected in these data. Using the GPS data increased the infections in central Melbourne to a lesser extent
than the JTW data, and produced a greater heterogeneity in the middle and outer regions. Despite the limitations of
both mobility data sets, the model reproduced some of the characteristics observed in the spatial distribution of
reported influenza cases.

Conclusions: Urban mobility data sets can be used to support models that capture spatial heterogeneity in the
transmission of infectious diseases at a metropolitan scale. These data should be adjusted to account for relevant
urban features, such as highly-connected hubs where the resident population is likely to experience a much lower
force of infection that the transient population. In contrast to national and international scales, the relationship
between mobility and infection at an urban level is much less apparent, and requires a richer characterisation of
population mobility and contact.
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Background
The spread of an infectious disease through a population
is an inherently spatial process. Increasingly, mechanis-
tic models of disease transmission seek to incorporate
this spatial dimension [1–13]. The spatial distribution of a
population is a key determinant of transmission, typically
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incorporated into a model by representing underlying
patterns of population mobility and their implications
for contact [4, 6, 12, 14]. Parameterising this mobility
behaviour is an ongoing challenge, as available data are
often incomplete and biased [15, 16]. Here, we explore
and evaluate the use of mobility data and influenza case
reports for modelling and predicting spatial patterns of
disease at an urban scale.
Non-spatial models of infectious disease models have

been successfully used to understand and predict coarse
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-019-6968-x&domain=pdf
http://orcid.org/0000-0002-4568-2012
mailto: rgmoss@unimelb.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Moss et al. BMC Public Health          (2019) 19:656 Page 2 of 16

characteristics of disease outbreaks. The spatial hetero-
genity of populations, however, contributes to the dynam-
ics of spread, and the availability of spatially-indexed
mobility and disease data is increasing. Models that incor-
porate space may therefore provide better explanations
for observed epidemiology and more accurate predic-
tions of future outbreaks. Similarly, control interventions
may be spatial in nature; for example, the imposition of
quarantine zones, or culling of livestock around infected
farms [17, 18]. Predictive models that incorporate a spa-
tial dimension are thus important to identify geographic
subpopulations at particular risk, and hence to more
effectively target preventative measures or allocate public
health resources [19].
A key requirement of spatial models is defining how a

disease spreads geographically. For human pathogens, this
is largely a consequence of populationmobility. Determin-
ing which types of mobility behaviour are most relevant
to disease transmission depends on the geographic scale
of interest. Many modelling studies have been concerned
with predicting the spread of an infectious disease at a
national or international scale. Examples of this include
evaluating the effectiveness of various strategies for con-
taining outbreaks of pandemic influenza [2, 20] and Ebola
[5]. Of particular interest are the patterns of international
movement that can rapidly increase the scale and human
cost of disease outbreaks that would once have remained
more geographically constrained. Other studies have con-
sidered transmission patterns at an urban scale. Again, a
key aim is to evaluate the likely effectiveness of spatially
defined control measures such as school closures [21].
In the case of dengue, urban-scale spatial models have
been used to help explain observed epidemiological pat-
terns, untangling the respective roles of human and vector
movement [10, 22]. At a smaller scale still, some stud-
ies have focused on disease transmission that may occur
within individual buildings such as schools and hospitals
[23–27].
We are concerned here with urban scale models that

capture the dynamics of disease transmission at the level
of a single city. Modern cities represent some of the dens-
est concentrations of human populations ever observed.
Larger cities also represent the highly connected hub
nodes in global mobility networks. They thus represent
ideal settings for incubating and amplifying outbreaks
of infectious diseases [28–30]. Urban authorities have
responsibility for coordinating public health preparedness
and response activities, and detailed models at this scale
can provide valuable support for decision making [31].
Spatial models at the urban scale face unique challenges.

Population sizes are much smaller than at national and
international scales, thus the stochastic nature of infec-
tion events will play a stronger role in the dynamics of a
disease outbreak. The number of infections at this scale

is also likely to be much smaller, therefore the availabil-
ity of disease surveillance data to calibrate models is often
more limited. This issue becomes particularly pronounced
when considering spatially-disaggregated data, for exam-
ple, by suburb or similar statistical unit. For small case
counts, the possibility of surveillance data being affected
by reporting biases is also increased. Finally, contact and
mobility data at the urban scale can be very difficult to
observe and accurately infer from data.
In comparison to air and rail travel, or even road traf-

fic between major cities, data on individual patterns of
movement at the urban scale is much less readily avail-
able. While some data are available on public transport
usage, the vast majority of journeys (in Australian cities at
least) are by private car. Statistical data is often collected
on “journeys to work” (JTW), giving some information
on urban mobility patterns. Yet, JTW data only capture
a fraction of total journeys made, restricting both the
types of journeys captured (i.e., commuting), and the
time period captured (census day only). Small-scale
studies have measured urban mobility using GPS tracking
and/or structured interviews [32, 33]. Larger studies
have utilised data generated by mobile phone and social
media use [34, 35]. Although these efforts have advanced
our understanding of human mobility behaviour, a
general solution to parameterising spatial urban-scale
models of disease transmission remains an open
challenge [8].
The aim of this study is to evaluate the extent to which

incorporating urban mobility information into a mathe-
matical model of infection can characterise observed spa-
tial trends in seasonal influenza cases. We examine how
the introduction of spatial structure and heterogeneous
mixing into a meta-population model of influenza trans-
mission affects the spatial distribution of cases. In this
study, we address a particular gap in our understanding:
how does the nature of the mobility data, and the spatial
scale at which they capture mobility, influence the verac-
ity of the contact model? We therefore explore the impact
of different sources of mobility data, and different mod-
els of how this mobility translates into patterns of contact.
We evaluate how these patterns of contact and infection
relate to reported influenza incidence in the city of Mel-
bourne, Australian, given the limitations of these mobility
and disease data sets. Finally we discuss how spatial het-
erogenity in disease risk and reporting may be accounted
for in terms of underlying factors, and the implications for
improved outbreak forecasting and public health response
in the future.

Methods
Study area: spatial scale and boundaries
Melbourne is the state capital of Victoria, Australia, and
has a population of approximately 4.7 million, making it
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the second-most populous city in Australia. It is located in
south-eastern Australia and has a temperate climate, and
so the city experiences seasonal influenza epidemics in the
winter months (typically spanning July to October).
The Australian Statistical Geography Standard defines

six hierarchical levels, from mesh blocks that typically
contain 30–60 dwellings, to whole states and terri-
tories. In between these two extremes are four lev-
els of statistical areas: SA1s, SA2s, SA3s, and SA4s.
SA2s are the lowest level for which Estimated Resi-
dent Population data are available, and typically have
populations of 3,000 to 25,000 persons. SA3s typi-
cally have populations of 30,000 to 130,000 persons,
and respect geographic and socioeconomic similarities,
while SA4 regions typically have populations of 300,000
to 500,000 persons and are designed to reflect labour
markets [36].
Metropolitan Melbourne comprises 8 SA4s, 38 SA3s,

and 296 SA2s. We used SA3s as our spatial analy-
sis unit, representing a compromise between compet-
ing objectives: being sufficiently small to characterise
spatial variations, and being sufficiently large to have
a meaningful number of identified influenza cases in
each seasonal epidemic. The division of Melbourne into
SA4s and SA3s is shown in Fig. 1, and the variation
in resident population is shown in Fig. 2. The esti-
mated resident populations for each SA3 are provided in
Additional file 1.

Urbanmobility data sources
The Australian Bureau of Statistics (ABS) has undertaken
regular national censuses since 1911, with one held every
5 years since 1961. Here we used “Method of Travel to
Work” and “Place of Work” data for SA3 regions from the
2011 census1 to characterise urban JTW transport pat-
terns. These data describe the method(s) that employed
individuals used to travel from their place of usual resi-
dence to their place of work on the day of the census (Tues-
day 9th August). We classified each transport method as
being either private transport (e.g., car), public transport
(e.g., bus, ferry, train, tram), or other forms of transport
(e.g., walking, cycling).
We also obtained origin-destination (OD) data for

metropolitan Melbourne in 2016, collected and provided
by the “Sygic GPS Navigation & Maps” mobile app2. We
assumed that this data set only characterised journeys
undertaken using private transport, since it is primarily
intended for car navigation and is promoted as offering
“accurate real-time traffic information”, but the purpose of
the trip may vary and is not restricted to commuting.
The ABS census data are publicly available. The Sygic

data are not publicly available, and we obtained these data
for exclusive academic use.

Urbanmobility mixing matrices
For both data sets we constructed master OD matrices,
where each entry represented the number of journeys

Fig. 1 The SA3 and SA4 regions that comprise metropolitan Melbourne. Each SA4 is shown in a different colour, and contains 3–7 SA3s. Each SA3 is
identified by a 5-digit number, beginning with the SA4 code (shown in the figure legend) and followed by a number between 1 and N (where the
SA4 contains N SA3s). For example, the central business district (CBD) has the ID 20604; it is located in the Inner (206) SA4, which contains 7 SA3s,
and is identified here by the digit “4”
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Fig. 2 The ABS estimated resident population of each SA3, shown as a percentage of the entire metropolitan population. SA4 boundaries are
depicted by thicker lines, and the CBD is identified by the cross

from the origin SA3 (row) to the destination SA3 (col-
umn). Matrices were constructed for the following JTW
transport modalities: car transport; public transport; and
all forms of transport (car, public, and other forms). We
separated the JTW data into these modalities so that we
could compare the relative effects of public and private
transport on the spatial distribution of infection in the
model, and also so that we could compare the private
transport data to the Sygic GPS data (which is exclusively
private transport).
We assumed that these data sets characterised mobil-

ity and contact between regions but not within the region
of residence, where the majority of contact is likely to
occur in and around the primary residence, which is not
captured in these data sets. To keep these two types of
contact separate, the diagonal entries (representing jour-
neys that start and end within the same SA3) were set to
zero. In order to characterise the relative proportion of
journeys from one region to another, we then normalised
the matrix rows to sum to unity:

F =

⎛
⎜⎜⎜⎝

f1,1 f1,2 · · · f1,r
f2,1 f2,2 · · · f2,r
...

...
. . .

...
fr,1 fr,2 · · · fr,r

⎞
⎟⎟⎟⎠ (1)

fi,i = 0 (2)
r∑

j=1
fi,j = 1 ∀i ∈[ 1..r] (3)

For each data set we constructed a family of mixing
matrices M, under the assumption that some proportion
of infections δHi arising from a resident of region δi occur
in the resident’s home region i and that the remaining pro-
portion δ∗

i = 1 − δHi of infections occur outside of region
i (4):

M =

⎛
⎜⎜⎜⎝

δH1 δ∗
1 f1,2 · · · δ∗

1 f1,r
δ∗
2 f2,1 δH2 · · · δ∗

2 f2,r
...

...
. . .

...
δ∗
r fr,1 δ∗

r fr,2 · · · δHr

⎞
⎟⎟⎟⎠ (4)

Mixing in the central business district
Melbourne’s Central Business District (CBD, SA3 20604)
sits at the centre of hub-and-spoke public transport and
road transport networks. It has a resident population of
about 148,000 and attracts around five times asmany daily
visitors for a variety of purposes, such as employment,
recreation, and tourism. Given this disparity in resident
and transient population sizes, we hypothesise visitors to
the CBD are muchmore likely to mix with each other than
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they are to mix with residents of the CBD. To account for
this feature, we also varied the proportion (δC) of mixing
in the CBD that involves the resident population. The rest
of the mixing in the CBD, which exclusively involves non-
residents, was redistributed to the resident population of
each non-CBD region, in proportion to the intensity of
mixing between that region and the CBD. Note that this
non-resident mixing is entirely different from the effect
of δHi , which distributes an individual’s force of infection
across the resident populations of their home SA3 and
other SA3s that they visit.
We identify the CBD as region c, and calculate the rel-

ative mixing that occurs between each non-CBD region
and the CBD (Ĉ), accounting for the resident population
Ni in each region i:

C =[M1,c · N1, . . . ,Mc−1,c · Nc−1, 0,Mc+1,c · Nc+1, . . . ,
Mr,c · Nr] (5)

Ĉ = C/|C| (6)

Then, assuming that a proportion δC of mixing in
the CBD involves the resident population and that the
remaining proportion δ∗

C = 1 − δC occurs exclusively
between non-residents, we re-distribute some of the mix-
ing between each region i and the CBD to the non-CBD
regions (including i) in proportion to how strongly each
region mixes with the CBD:

The three clauses above represent: unadjusted mixing
from the CBD to other regions (7a); reduced mixing from
non-CBD region i to the CBD (7b); and increased mixing
from non-CBD region i to non-CBD region j that is medi-
ated by residents from both regions interacting in the CBD
(7c). Note that, just like the unadjusted mixing matrix M,
each row of this adjusted mixing matrixM′ sums to unity.

Mathematical model of infection and spatial interaction
We used an SEIR (susceptible, exposed, infectious, recov-
ered) deterministic compartment model in which the
population was divided into 38 patches (1 for each SA3).
We assumed that all individuals experienced the same fre-
quency and intensity of interactions, regardless of factors
such as age. We also assumed that individuals adhered to
their regularmobility patterns irrespective of their current
disease state. This assumption is reasonable for infec-
tions that are asymptomatic or associated with only mild
symptoms. Recent evidence supports a role for asymp-
tomatic cases in the transmission of influenza, showing
that aerosol transmission from normal breathing is suffi-
cient for transmission [37], and sneezing and coughing are
not required for infection to occur.

The spread of infection between patches was charac-
terised by mixing matrices that were derived from each
of the four OD matrices (JTW car transport, JTW public
transport, JTW all modalities, and Sygic GPS data). In this
study, we ran model simulations for each of 504 different
mixing matrices (4 ODmatrices, 18 values for δHi , 7 values
for δC), where each outbreak was started by seeding expo-
sures in a randomly-selected SA3. For each mixing matrix
M′, the daily force of infection vector (�) was defined as:

� = β · I × M′ (8)

We recorded the cumulative number of infections in
each SA3 (i.e., the epidemic final size) and compared these
to the spatially-uniform scenario where infection is dis-
tributed uniformly across the whole population. Model
parameter values are listed in Table 1, and further details
regarding the model are provided in Additional file 1.

Influenza case notifications data
In the state of Victoria, medical practitioners and labora-
tories are required to notify the Department of Health and
Human Services of cases that meet the Communicable
Diseases Network Australia case definition for laboratory-
confirmed influenza (one of: detection of virus by nucleic
acid testing; isolation of virus by culture; detection of
antigen by a validated antigen assay; seroconversion or a
fourfold or greater rise in antibody titre to virus). Aggre-
gate notifications data are publicly available, but not for
individual SA3s. Permission to use and publish influenza
case notifications data for individual SA3s was obtained
from the Department of Health and Human Services.
We obtained influenza case notifications data for the

2010–16 influenza seasons in metropolitan Melbourne
[38], and allocated each case to an SA3 based on the
patient’s postcode of primary residence. Where a post-
code defined a region that belonged to multiple SA3s,

Table 1 Parameter values for the SEIR model and the mixing
matrices

Parameter Value

Ro 1.4 Basic reproduction number

σ 2.0 Inverse of incubation period

γ 0.5 Inverse of infectious period

β 0.7 Daily force of infection (R0 · γ )
E0 10 Initial number of exposures

δHi : i ∈[ 1..r] { 1
20 ,

2
20 , . . .

18
20 ,

19
20

}
Fraction of infections that occur in
the home region

δC
{ 1
5 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

4
5

}
Fraction of mixing in CBD that
involves residents

Ni varies Region resident populations

The SA3 resident populations are provided in Additional file 1
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we allocated fractional cases to each SA3 according to
population-weighted correspondences.
The weekly number of influenza cases reported in any

SA3 are small (90 cases or fewer, with only 28 occur-
rences of 50 or more cases in the 38 SA3s over 365 weeks).
These time-series are noisy and do not clearly charac-
terise a consistent epidemic, and are thus not appropriate
benchmarks against which to evaluate the model output.
However, we can estimate the relative risk of infection in
each SA3 from these data. These relative risks may in
turn better reflect the spatial interaction patterns of the
population.
The epidemic model characterises infected individuals,

and the case notifications data characterise observed dis-
ease (“cases”). Clearly, not all infections will be observed.
The relationship between infections and cases is funda-
mentally complex and uncertain [39], and is affected by
factors that may themselves be spatially dependent. The
probabilities of exposure, of infection given exposure, and
of observed disease given infection are all likely to be
spatially dependent. Exposure risk is influenced by mobil-
ity patterns and the frequency and intensity of interac-
tions, which are associated with age and location [40, 41].
Similarly, the risk of exposure resulting in infection is
influenced by prior experience of disease, vaccination sta-
tus, and by co-morbidities, all of which are known to vary
with geographic location and socioeconomic status [42].
Finally, the probability of being observed given disease
will depend in part on an individual’s healthcare seek-
ing behaviour, which has also been observed to vary with
socioeconomic status [43].

Results
Introducing spatially-heterogeneous population mix-
ing into the infection model results in a spatially-
heterogeneous distribution of infection. The degree of
heterogeneity is primarily controlled by the parameter δHi
— the proportion of infections acquired from an individ-
ual that occur in that individual’s home region. This can
be seen in Figs. 3 and 4, which show the spatial distri-
bution of infection for each of the OD matrices. Figure 3
shows these distributions for δC = 0.33 (i.e., mixing in the
CBD primarily involves visitors) and Fig. 4 shows them for
δC = 0.67 (i.e., mixing in the CBD primarily involves CBD
residents). As δHi → 1 (red points) the dynamics approach
that of the non-spatial infection model (and when δHi = 1
the epidemic would be confined to the region(s) where
infections are introduced).
The public transport JTW matrices clearly capture

the impact of the spoke-and-hub structure of the pub-
lic transport network on spatial interactions, with Inner
Melbourne (SA4 206) home to an extra 20% of all infec-
tions. Smaller increases (≈ 1% of all infections) are clus-
tered in the inner east/south: Boroondara (Inner East

1), Whitehorse – West (Inner East 3), Stonnington East
(Inner South 4), and Monash (South East 5); and also
in the inner west: Maribyrnong (West 3, adjacent to
the CBD). The private transport JTW matrices and GPS
matrices produce spatial distributions that are (a) simi-
lar to each other; and (b) markedly different to those of
the public transport JTW matrices. The combined pri-
vate and public transport JTW matrices also yield results
that are near-identical to the GPS matrices, because more
than two-thirds of the working population reported that
they used private transport to travel to work. This sup-
ports our initial assumption about the bias towards private
transport in the GPS dataset.
As the value of δC increases, so too does the proportion

of all infections that occur in the CBD (20604). Relative to
the spatially-uniform scenario, this proportion only ever
decreases when using the GPS OD matrices and only for
small values of δC (δC < 0.5). This is apparent in the
top-left panel of Fig. 3. For all other mixing matrices (i.e.,
those using JTW data and/or large values of δC) there is
always an elevated proportion of infections in the CBD.
This highlights the CBD-centric nature of the JTW data
in general, and public transport trips in particular.
While the results obtained from the public trans-

port JTW matrices are straightforward to interpret — a
marked increase in infections in the central and inner
east regions — the geographic trends obtained from
the other mixing matrices are not immediately evident
in Figs. 3 and 4. The results capturing the increase or
decrease of the proportion of predicted cases relative to
the spatially-uniform scenario by SA3 for each mixing
matrix (Fig. 5) show a consistent increase in infections
within and around Inner Melbourne (206), and a decrease
in the peripheral SA3s in all directions: North East (209),
North West (210), Outer East (211), South East (212),
and West (213). There are also clear differences between
the results from JTW and GPS matrices, particularly in
the Inner South (208) and North East (209), and also in
the inner regions of the North West (210), Outer East
(211), and South East (212). The JTW matrices pro-
duce a lower proportion of infections in the Outer North
(209) and West (213) than the GPS matrix, which also
yielded an increased proportion of infections in the inner
north-west.
The division between SA3s with increased and

decreased infections is not aligned with the SA4 bound-
aries shown in Fig. 1. This suggests that SA4 regions
are not a suitable higher-level spatial aggregation of
metropolitan Melbourne for characterising patterns of
urban mobility and their consequences for influenza
infection. Instead, the boundary between inner SA4s
(206–208) and peripheral outer SA4s (209–213) should
be pushed outwards, while retaining the radial division of
the outer SA4s.
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Fig. 3 The change in model infections in each SA3 compared to the spatially-uniform model for δC = 0.33, expressed as a percentage of the total
number of infections across all SA3s. For the GPS data (top-left) when δhi = 0.1, an extra 1% of all infections occurred in the each of the Inner 5 (Port
Phillip) and Inner 7 (Yarra) SA3s, and about 0.5% fewer of all infections occurred in the CBD. In contrast, for the private journeys to work data
(bottom-left) when δhi = 0.1, an extra 1.5–2% of all infections occurred in each of those SA3s. And for the public journeys to work data
(bottom-right) when δhi = 0.1, these same SA3s experienced an even greater proportion of all infections

The distribution of influenza cases over metropolitan
Melbourne for the 2010–16 influenza seasons is shown
in Fig. 6. With the exception of the CBD (20604), the
case distribution in Inner Melbourne (206) aligns well
with the population distribution. A similar pattern is evi-
dent in the Inner East (207), where only Boroondara
(20701) has an increased proportion of cases. Most of
the Inner South (208) also have an increased propor-
tion of cases, while the North East (209) has increases
in Banyule (20901) and Nillumbik - Kinglake (20903) and
a decrease in Whittlesea - Wallan (20904). The North
West (210) has a near-uniform distribution of cases, and
most of the Outer East (211) have a small decrease. The
South East (212) has a marked increase in Casey - North
(21202), and the West (213) has very large decreases in

Brimbank (21301), Melton - Bacchus Marsh (21304), and
Wyndham (21305). In comparison to the model results,
the distribution of influenza cases exhibits less clustering
of SA3s where disease activity is consistently increased
or decreased. The blue SA3s (decreased activity) and
green SA3s (increased activity) are scattered amongst
each other to a greater degree than observed for themodel
simulations.
Figure 7 shows the spatial variation of the differences

between the spatially-uniform scenario and the median
annual proportion of notified cases (over the 2010-16 sea-
sons) in each SA3. These variations share a number of
similarities with the spatial distributions of infection that
are produced by the simulation model for each of the OD
data sets (shown in Fig. 5):
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Fig. 4 The change in model infections in each SA3 compared to the spatially-uniform model for δC = 0.67, expressed as a percentage of the total
number of infections across all SA3s. In comparison to Fig. 3, and as expected, a larger value for δc means that a greater proportion of all infections
occur in the CBD. In particular, for the GPS data (top-left) the CBD now experiences an increase in infections, relative to spatially-uniform model

• Little spatial heterogeneity across Inner Melbourne
(206), except for the CBD;

• A small increase in the inner west (West 2);
• Large reductions in the outer west (West 1, West 4,

West 5);
• Large reductions in the outer north (North East 4);

and
• Large reduction in the outer east in the model

simulations, and a small reduction in the influenza
cases data in all SA3s except Maroondah (Outer East
3), where the reduction was 0.93% (slightly smaller
than the 1% threshold).

There are also clear differences between the median
distribution of influenza cases and the model outputs:

• An increase in influenza cases in the outer north east
(North East 3) and outer south east (South East 1,

South East 2), where the JTWmodels predict a
decrease in infections and the GPS model predicts
only a very small increase;

• An increase in influenza cases in the inner south,
where the model generally predicts a decrease in
infections; and

• A decrease in influenza cases in the mid-east, where
the JTWmodels predict an increase in infections and
the GPS model predicts no change.

The smallest differences between the distribution of
influenza cases and the distribution of model infec-
tions, for both the JTW data and the GPS data, are
shown in Fig. 8. Here we can see a trend in over-
prediction of incidence in the west, north-west, and
mid-east, and an under-prediction of incidence in the
inner east, inner south-east, outer north-east, and outer
south-east.
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Fig. 5 The change in infection distributions, classified by magnitude and direction, for δC = 0.33 and δHi = 0.1. Results are shown relative to the
spatially-uniform scenario. The GPS data and private journeys to work data exhibit similar trends, where increases in disease occur along a
north-west to south-east axis, extending beyond the inner-most SA4 regions, and moderate to large decreases in disease in the outer-most regions
and inner north-east. The public journeys to work data exhibit a greater concentration of disease in and around the CBD, and also in the inner-east,
but without increases in the north-west or south-east

We also examined the effects of allowing δHi to vary
between SA3s, by setting it to the proportion of residents
in each SA3 who work within their SA3. This had a rela-
tively small effect on the proportion of infections in each
SA3, and did not improve the model agreement with the
observed distribution of notified influenza cases.
To account for the near-ten-fold difference in resident

populations (ranging from 27,426 to 233,138 in each SA3),
we also compared the relative risk of infection in the
model to the relative risk of influenza case notifications, as
shown in Fig. 9. This figure shows model results for δC =
0.2, which is the region in parameter space where both the
absolute and population-weighted differences between
the relative risks were smallest. The primary differences

are similar to those previously identified: under-estimated
risks in the Inner South (208), North East (209), and South
East (212), and over-estimated risks in the mid-east (outer
regions of 207 and inner regions of 211), and West (213).

Discussion
Principal findings
Introducing spatial structure and heterogeneous mix-
ing into the infection model, as informed by Australian
Bureau of Statistics journey to work (JTW) data and Sygic
GPS data, resulted in a greater proportion of infections
occurring both in and around Inner Melbourne (SA4
206), and particularly in the Inner East (207). These are
also the most densely-populated regions in metropolitan
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Fig. 6 The change in notified influenza cases in the 2010–16 influenza seasons compared to the spatially-uniform model, expressed as a percentage
of the total number of cases across all SA3s. Values for each season are shown as hollow points, median values are shown in black. SA3s with greater
heterogeneity are more likely to exhibit a consistent increase (alternatively, decrease) in cases for each season

Melbourne (3,000–5,000 persons per km2). In most of
the outer regions, where the population densities are low-
est, there was a decreased proportion of infections. Yet,
heterogeneous mixing also predicted lower proportion of
infections occurring in some of the Inner South (208)
and inner regions of the North East (209) and North
West (210), where population densities are high. Thus,
the spatial heterogeneity in interaction intensities cap-
tured by mobility data does not appear to directly reflect
population density.
Model results obtained from both the JTW and GPS

data sets showed an increase in infections along a north-
west to south-east axis, extending from Inner Melbourne
(206) into the outer ring of SA4 regions, and also showed
a decrease in infections in the outer-most SA3 regions.
The influenza case notifications data did not exhibit such
a consistent increase in cases from north-west to south-
east, while an increase in cases was observed in the Inner
South (208) and the some of the outer-east regions.

Comparing the JTW and GPS data sets, the clearest
difference is the proportion of all infections that are pre-
dicted to occur in the CBD (20604). Models informed by
JTWdata always resulted in a large increase in CBD infec-
tions, even when as little as 20% of all mixing in the CBD
involved the resident population. This is the consequence
of (a) Melbourne’s spoke-and-hub transport network; (b)
the concentration of the labour workforce in and around
the CBD; and (c) the interaction data capturing exclusively
journeys to work. In contrast, the GPS data characterise
a greater variety of private transport journeys across the
city, with a somewhat lesser — but still substantial —
concentration of journeys to the CBD. When the major-
ity of mixing in the CBD did not involve the resident
population (i.e., δC < 0.5) there was a decrease in CBD
infections.
The CBD population is notably under-represented in

the influenza case notifications data. While these data
are subject to ascertainment biases that render them an
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Fig. 7 The median spatial distribution of reported influenza cases, relative to the spatially-uniform model. The threshold between small and large
changes is 1% of all infections city-wide. In comparison to the model predictions shown in Fig. 5, a greater proportion of cases are observed in the
outer east, and there is less clustering of increased cases in and around the CBD

unsuitable indicator of the spatial heterogeneity of dis-
ease, it is worth noting that (a) other SA3s in Inner
Melbourne (206) are not under-represented in these data;
and (b) the only mixing matrices able to reproduce this
pattern were derived from the GPS data and used small
values of δC . The spatially-explicit SEIR model was able
to reproduce some of the features of the case notifica-
tions data, particularly in Inner Melbourne (206), the
inner west, and many of the outer regions. But there
were also clear differences between the model output and
the case notifications data in the outer north-east, outer
south-east, and Inner South (208). If these urban mobil-
ity data sets accurately characterised populationmixing as
it pertains to human-to-human infection, then these dif-
ferences would be indicative of the ascertainment biases
in the case notifications data. But given the richness of
population mobility and contact patterns [33, 44] and the
limitations of themobility data sets available (e.g., in terms
of the population sample, the limited capture of trans-
port by transport modalities other than personal vehicles,
lack of knowledge regarding lengths of stay), this cannot
be claimed. Further untangling this relationship between
observed mobility and notified disease cases requires a
richer characterisation of mobility and interaction in the
urban environment, and having a better understanding
of “the processes that determine how persons are iden-
tified by surveillance systems” [39], such as access to
healthcare.

Study strengths
In this study we investigated the implications of human
mobility for the spread of infection at the urban scale.
The novelty of this study is two-fold. First, thus far much
greater attention has been paid to the role of mobility on
infection at either large spatial scales (e.g., national [2, 12,
14, 45, 46] and international [6, 15, 47, 48]) or substantially
smaller scales (e.g., individual schools [49] and universi-
ties [27]), than the scale of a single city. At large scales,
the analyses are less nuanced and hence the bias in the
mobility data may be of less importance. Conversely, at
very fine scales, rich data at individual levels can be cap-
tured. Second, comparatively few studies have combined
detailed mobility data with spatially-indexed disease data
in order to investigate the spatial risk profile of infection;
we are not aware of any studies that have done so at an
urban scale. Existing studies have primarily focused on
using high-resolution mobility data and individual-based
models to estimate or fit the basic reproduction number
[10, 21, 50, 51], or have used spatially-indexed disease data
to infer “effective” contact patterns [52] (i.e., combining
contact and case ascertainment).
We further incorporated domain knowledge about Mel-

bourne’s transport network and the role of the CBD as
a central hub with an extremely high number of non-
resident visitors and workforce. This characterisation of
the CBD is evident in the influenza case data: compared
to all of the neighbouring SA3s, the CBD has a markedly
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Fig. 8 The smallest difference between model infections and influenza cases in each SA3. The scale is the percentage of all infections; positive
values mean that the model over-estimates infections, negative values mean that the model under-estimates infections. For 10 of the 38 SA3
regions, the spatially-heterogeneous model predicts the opposite trend (i.e., an increase in infections where there is a decrease in influenza cases, or
a decrease in infections where there is an increase in influenza cases) no matter what data set is used. These SA3s are labelled with their identifying
digits, as per Fig. 1: Inner 7 (Yarra), Inner East 3 (Whitehorse West), Inner South 1 and 2 (Bayside, Glen Eira), North East 1 and 3 (Banyule, Nillumbik
Kinglake), Outer East 3 (Maroondah), South East 1 and 2 (Cardinia, Casey North), and West 1 (Brimbank)

lower relative risk of notified influenza cases (Fig. 6). This
approach can be extended to other transport and work-
force hubs, and can also be generalised to incorporate
other forms of domain knowledge about urban mobil-
ity that are not explicitly captured in the mobility data.
This represents a fundamental shift from treating incom-
ing mobility as exerting a force of infection on the resident
population, to treating the resident and transient popula-
tions as distinct groups with disparate risks of infection.

We also identified the misalignment of SA4 boundaries
with clusters of increased or decreased infections. There-
fore, if a higher level of spatial aggregation than SA3s were
desired, the use SA4s as the unit of aggregation would
not be appropriate. A better fitting spatial aggregation
would retain the radial division of SA4s, but would push
the boundary that separates the inner SA4s (206–208)
from the outer SA4s (209–213) outwards. This unsuitabil-
ity is not surprising, as SA4s are designed to reflect labour
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Fig. 9 The relative risks of model infection and influenza case notifications, with respect to the spatially-uniform model. Model risks (coloured
points) are compared to the influenza case notification risks (black crosses depict median risk, vertical black lines depict interquartile range), for
δC = 0.2. The GPS data is the only data set for which we observe a decreased risk of infection in the CBD. Both the GPS data and journeys to work
data are capable of yielding relative risks that are similar to those of the influenza case notifications in many SA3s. For 10 of the 38 SA3s, neither data
set provides a good match (as identified in Fig. 8)

markets rather than the spread of infection, and there-
fore focus on the employed workforce. This highlights
differences in mobility between urban sub-populations.
Consequently, appropriate spatial aggregations are not
necessarily well-aligned across different sub-populations
and scales.
We targeted seasonal influenza in this study as it pro-

duces regular, large-scale epidemics, resulting in a large
absolute number of cases in each SA3. The spatial patterns
of the infection are thus discernible, even though only a
small fraction of the infections are captured by the case
notifications. For diseases where even a few cases merit
intensive interventions (e.g., measles, smallpox), having
a detailed understanding of the relationship between
urban mobility and infection is indispensable for targeted
localised actions (e.g., contact tracing, school closures,
outbreak investigations). Similarly, enhanced surveillance
protocols in the event of an influenza pandemic, such
as first-few-hundred studies, could also be supported by
insights derived from mobility data.

Study limitations
An inherent challenge in realising this goal is to appropri-
ately identify and account for the limitations of, and biases

in, the data capturing mobility. At urban and smaller spa-
tial scales, the stochastic nature of the infection events can
dominate the outbreak dynamics and the average mobility
patterns of the population may not be strongly reflected
in the time-series data for any single outbreak [27]. The
mobility patterns at an urban scale are also fundamen-
tally different to those at other scales [53]: they include
a mixture of routine journeys (e.g., journey to work or
school), work related and logistic journeys, and irregu-
lar social trips (e.g., ad-hoc social activities, emergencies).
The duration of stay at the journey destination(s) can also
vary from minutes to days, and this has different con-
sequences for the risk of infection than in national and
international travel, where the minimum duration of stay
is likely to be on the order of hours or days. Finally and
most importantly these journeys are much less readily
observable than major highway traffic, airline travel trips,
and individual movement in enclosed environments such
as schools, shopping malls, and military bases, in particu-
lar due to privacy concerns associated with extensive and
spatially resolved population tracking [54].
In this study, we characterised urban mixing by origin-

destinationmatrices that captured the frequency of movement
from an origin region to a destination region, ignoring
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the time of day at which these movements occurred. It
would be interesting to see how these results compare
to a nuanced treatment of time-dependent movement
patterns. Such an analysis was not feasible in this study
because (a) the journey to work data only characterise the
trip to work (and do not include journey times); and (b)
the GPS data do not include a sufficient sample size at
smaller temporal scales, and so we would expect the data
to be substantially affected by sampling bias.
Mobile phone tracking data could provide an alter-

native perspective on urban mobility, by virtue of cap-
turing a broader range of transport modalities, and by
representing a much larger (but still biased) sample
of the total population due to high mobile ownership
rates for adults, adolescents, and even children. How-
ever, access to such data is constrained by legislation
and would also require data-sharing agreements with
individual telecommunications providers. These data are
highly sensitive, since they can characterise private fea-
tures (such as location of residence and daily routines) and
are potentially re-identifiable unless provided in a highly
aggregated form (such as the OD matrices used in this
study).
The alternatives are large datasets (such as those used

in this study) that are either spatially and temporally
coarse (e.g., JTW), or conversely, with a fine temporal
and spatial resolution but covering only a coarse and
likely biased sample of the population, (e.g., GPS track-
ing data such as Sygic). Fine-scale and detailed data
have only small coverage, and are compiled by time- and
resource-intensive methods, such as computer assisted
telephone interviews [33] and contact diaries [44, 55]. Two
of these studies [33, 44] were conducted in the Boroon-
dara and Hume local government areas in Melbourne,
which approximately correspond to (a) Boroondara (Inner
East 1); and (b) Sunbury (North West 4) and Tullama-
rine – Broadmeadows (North West 5) in our study. These
detailed studies provide a much richer depiction of indi-
vidual mobility and social encounter behaviour, capturing
heterogeneity by age, gender, type of location and geo-
graphic area. In contrast, the JTW and GPS data used
in the study reported here comprise substantially larger
population samples with a greater geographic coverage,
but cannot capture the diversity of mobility and contact
experience.
Different surveillance systems for the same popula-

tion can report different patterns of disease, even after
adjusting for the effects of geographical region and age
group [56]. This has implications for using surveillance
data to characterise and predict disease dynamics [57].
Using spatially-indexed surveillance data to characterise
urban disease activity and to detect spatial disease clus-
ters and other patterns is challenging [58]. For this reason,
spatially-explicit models of infection at urban scales are of

real value, despite the limitations of the available mobility
data sets informing the models.

Conclusions
Human mobility and contact at urban scales are fun-
damentally more complex and less measurable than at
national and international scales, where spatio-temporal
patterns of infection are more clearly discerned and
for which there exists a range of methods and tools
for infectious disease risk assessment. We investigated
how two different data sets characterise urban mobility
in metropolitan Melbourne, Australia, and the implica-
tions mobility has on the spread of infection across the
urban system. We have in particular demonstrated how
to account for features such as highly-connected regions
(hubs) where the resident population is likely to experi-
ence a much lower force of infection than the transient
population. We have further shown that population mix-
ingmodels informed bymobility data sets yield spatial dis-
tributions of infection that reproduced some of the spatial
features of influenza case notifications, despite the inher-
ent limitation of these mobility data and the influenza
cases data. Amore robust treatment of urbanmobility and
contact in the context of infectious diseases requires (a)
a richer characterisation of population mobility and con-
tact, which are typically only obtainable through intensive
small-scale studies; and (b) deeper knowledge of spa-
tial ascertainment biases in the disease surveillance data.
The pervasiveness of mobile phone ownership means that
mobile phone data could provide a sufficiently-detailed
picture of mobility and contact across most demograph-
ics. Until available, the relationship between reported
disease cases and the population experience of infection
remains a fundamental challenge for infectious diseases
epidemiology, which new and emerging data sources may
help to address [59–61].

Endnotes
1 http://abs.gov.au/websitedbs/D3310114.nsf/home/

Home
2 http://www.sygic.com
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