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Machine learning to refine decision making
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Abstract

Background: Worldwide, syndromic surveillance is increasingly used for improved and timely situational awareness
and early identification of public health threats. Syndromic data streams are fed into detection algorithms, which
produce statistical alarms highlighting potential activity of public health importance. All alarms must be assessed
to confirm whether they are of public health importance. In England, approximately 100 alarms are generated
daily and, although their analysis is formalised through a risk assessment process, the process requires notable
time, training, and maintenance of an expertise base to determine which alarms are of public health importance.
The process is made more complicated by the observation that only 0.1% of statistical alarms are deemed to be
of public health importance. Therefore, the aims of this study were to evaluate machine learning as a tool for
computer-assisted human decision-making when assessing statistical alarms.

Methods: A record of the risk assessment process was obtained from Public Health England for all 67,505 statistical
alarms between August 2013 and October 2015. This record contained information on the characteristics of the alarm
(e.g. size, location). We used three Bayesian classifiers- naïve Bayes, tree-augmented naïve Bayes and Multinets - to
examine the risk assessment record in England with respect to the final ‘Decision’ outcome made by an epidemiologist
of ‘Alert’, ‘Monitor’ or ‘No-action’. Two further classifications based upon tree-augmented naïve Bayes and Multinets
were implemented to account for the predominance of ‘No-action’ outcomes.

Results: The attributes of each individual risk assessment were linked to the final decision made by an epidemiologist,
providing confidence in the current process. The naïve Bayesian classifier performed best, correctly classifying 51.5% of
‘Alert’ outcomes. If the ‘Alert’ and ‘Monitor’ actions are combined then performance increases to 82.6% correctly classified.
We demonstrate how a decision support system based upon a naïve Bayes classifier could be operationalised within an
operational syndromic surveillance system.

Conclusions: Within syndromic surveillance systems, machine learning techniques have the potential to make
risk assessment following statistical alarms more automated, robust, and rigorous. However, our results also
highlight the importance of specialist human input to the process.

Keywords: Syndromic surveillance, Public health, Decision making, Bayes’ theorem, Machine learning, Artificial
intelligence
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Background
In many countries, the automatic recording of health-
care seeking behaviour for public health surveillance is
increasingly efficient and sophisticated. For example,
such recording may include calls to medical telephone
helplines and emergency department attendances [1].
These developments in recording techniques have been
possible as a result of improved patient management
systems but they also satisfy a desire for improved and
early identification of potential public health threats.
The developments are also important for providing re-
assurance of the absence of a threat and, more generally,
reflect increased preparedness in relation to public health
issues or emergencies [2]. Collection and analysis of re-
corded healthcare seeking behaviour, in the form of symp-
toms/syndromes rather than confirmed diagnoses, is more
timely than other traditional surveillance schemes for
monitoring public health such as laboratory reporting,
and is described as ‘syndromic surveillance’ [3]. The col-
lected information and subsequent analytical processes
involved in syndromic surveillance provides a complex
statistical picture that represents both the actual incidence
of ill-health within a population and the pattern of health-
care seeking behaviour [4].
In England, the ‘rising activity, multi-level mixed

effects, indicator emphasis’ (RAMMIE) method for
anomaly detection is used to generate statistical
‘alarms’ from syndromic surveillance data [5]. Similar
statistical aberration detection systems exist elsewhere
(e.g. Farrington; [6], Early Aberration Reporting
System; [7]). Syndromic surveillance systems have to
follow up alarms with a second stage process to deter-
mine whether individual alarms are of potential public
health importance and thus need to be communicated
to public health colleagues. However, our experience
of other worldwide systems in operation is that these
processes are often based upon expert opinion and
largely undocumented. The syndromic surveillance
service in England is distinctive due to its size and
complexity. It analyses data from four different sur-
veillance systems, each of which are composed of mul-
tiple data sources. The English system has led to the
development of a formal risk assessment process to
standardise the second stage processes involved in de-
ciding which statistical alarms are of potential public
health importance [8].
The English risk assessment process comprises an ini-

tial assessment of the epidemiological data underlying
the alarm based upon several questions, such as the size
of alarm. Each question is scored and in the vast majority
of cases if the final score exceeds a specified value, a
second stage is performed. The second stage involves a
review of the data by a consultant epidemiologist, incorp-
orating further epidemiological data. Based on the total

scores from stage one and stage two, and considering all
other available evidence, a decision is made. The deci-
sion can be to initiate an ‘Alert’ identifying the alarm
as of potential public health importance. Alternatively,
the decision can be to continue to ‘Monitor’, or sim-
ply assign ‘No-action’ to the statistical alarm (Further
detail in [8]).
Automated time-series analysis of actual healthcare

seeking behaviour needs to avoid false negatives, and so
it produces a high proportion of alarms that, on consid-
eration, require no further action. To achieve this ana-
lysis, the risk assessment process used in England
requires notable investments in terms of syndromic
surveillance analyst time, training, and maintenance of
an expertise base. In England, around 100 statistical
alarms are generated every day but only one in every
thousand is identified as requiring public health action.
Only six in every thousand alarms are identified as re-
quiring further monitoring. These rates make data in-
terpretation challenging from a human perspective as
the risk assessment process has to consider an informa-
tion supply in which events that require public health
action or monitoring are embedded within a much
larger volume of events which do not require action or
further monitoring.
Therefore, the aims of this study were to evaluate ma-

chine learning as a tool for computer-assisted human
decision-making when assessing statistical alarms.
Specifically we explore whether machine learning
techniques for multi-state classification (i.e. ‘No-ac-
tion’, ‘Monitor’, ‘Alert’), can refine the decision making
process. Such an investigation is unique from a syn-
dromic surveillance perspective and challenging from
a computational perspective due to the very small pro-
portion of alarms which are classified as ‘Alerts’. This
imbalance, usually called asymmetric data, makes the
interpretation of statistical variations problematic.
In this paper, we use machine learning techniques to

build a classifier that can support the existing risk
assessment process. We have concentrated on Bayesian
classifiers, where the assignment of outcomes is based
on probabilities learned from the data set. Other ap-
proaches - such as the C4.5 classifier defined by Quinlan
[9], support vector machines and random-forests - are
equally relevant. Bayesian networks are chosen because
they give particularly intuitive results and they are useful
when implementing machine learning in a new context,
in this case syndromic surveillance. Here, three Bayesian
classifiers are applied to the Decision record from the
risk assessment process. Two further Bayesian classifiers
were implemented to account for the predominance of
‘No-action’ outcomes in the risk assessment. The results
from each classifier are fully evaluated using a range of
classification performance metrics.
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Methods
Syndromic surveillance data
Public Health England (PHE) coordinates a national syn-
dromic surveillance service based around four real-time
syndromic surveillance systems. The first two systems
are based on records of consultations with medical doc-
tors known as General Practitioners (GP). Data are ob-
tained for out-of-hours consultations (GP out-of-hours
syndromic surveillance system; GPOOHSS) and in-hours
consultations (GP in-hours syndromic surveillance system;
GPIHSS). Syndromic data are also obtained from a senti-
nel network of emergency departments (EDSSS) and
the National Health Service telephone advice system
(NHS111) [1, 10]. In this study we additionally included
a very small number of events from the NHS Scotland
telephone advice system (NHS24) to which PHE con-
tributed in the past [11]. Anonymized data from these
syndromic surveillance systems are aggregated to daily
totals to produce time-series for many syndromic indi-
cators, with aggregation at multiple levels of geograph-
ical resolution (e.g. regional totals per day) and age
bands. Every day the RAMMIE statistical aberration
detection system analyses more than twelve thousand
separate time-series. Two types of alarms are generated
indicating whether the activity is unusual given the
time of year (historical alarm) or whether there has
been a recent increase in activity (spike alarm) [5].

Data pre-processing
PHE maintains a database of the risk assessment deci-
sion making process for audit purposes, which it made
available to our research. The database covered a con-
tinuous period between August 2013 and October 2015
and contains details of 67,505 statistical alarms with the
corresponding decision outcomes. This database pro-
vided the training data set for this study [8]. These data
were systematically pre-processed. This pre-processing
was completed manually using systematic tools in a text
editor to correct spellings, remove duplicate records etc.
Table 1 lists the fields of these data, the permissible

values and statistics on field completeness. Further pre--
processing of the training data set, as summarized below,
generated several of these fields. In Table 1 we are trying
to determine the “Decision” which is whether at the end
of the risk assessment process the outcome was ‘Alert’,
‘Monitor’ or ‘No-action’. There are 25 attribute variables
that are used to determine the Decision. In Table 1, these
25 attributes are listed and categorized into those from
the inherent features of the event, followed by those from
the two stages of risk assessment.

Data: inherent features of event
The first attribute was the acquisition date which was
partitioned into three fields representing the year, the

quarter (Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec) and the
day of the week (labelled “Year”, “Q” and “D”). The next
attribute was “Alarm” which indicates whether the event
produced a statistical alarm. Although the vast majority
of events in these data were statistical alarms, a small
fraction (~ 0.1%) were added manually by an analyst
based on other surveillance observations. These manual
additions may be a visually observed change in syn-
dromic activity which was thought noteworthy but did
not lead to a statistical alarm.
Each event can be identified by several elements. The

attribute “System” encodes the syndromic surveillance
system that is the source of the record (i.e. NHS111,
NHS24, EDSSS, GPOOHSS, or GPIHSS). The next iden-
tification is the syndromic indicator that alarms. This
identification is “IndicatorS” which can take on 53 pos-
sible values, reflecting the wide range of conditions that
are monitored and the different categories of symptoms
used between syndromic systems (e.g. diarrhoea, asthma,
fever). Coding is not directly comparable between sys-
tems. Hence, a child with influenza could be classed as a
fever on NHS 111 but influenza-like illness on GPIHSS
[12]. For simplicity, we also mapped the 53 possible
values of “IndicatorS” onto a coarse-grained attribute
“IndicatorG” with only 8 categories. The indicator attribute
is further partitioned into “IndicatorP” which captures
whether the indicator is general or specific. “IndicatorL”
specifies EDSSS events that reflect severity ranging from a
standard consultation to a High Dependency Unit/Intensive
Care Unit. Grouping the indicators in this way helps to re-
duce noise in the data and the possibility of overfitting.
Almost 250 geographical locations are identified in the

training data set and these are mapped onto one of 13
PHE regions (“Region”). The geographical scale of location
information (i.e. local, regional or national) is encoded with
“LocationP”. Finally, the training data set identifies the
syndromic surveillance analyst as one of 15 different indi-
viduals. This identification was used to establish the experi-
ence of the analyst which is coded as a binary variable
called “Experience”. In principle “Experience” could capture
the influence of new analysts within the decision making
process. An experienced analyst was classified as an individ-
ual who had undertaken the risk assessment process for
more than 5% of the previous 2500 assessments.

Data: stages 1 and 2 of the risk assessment
During the risk assessment, the attributes of each event
are interpreted by the syndromic surveillance analyst
(Table 1 and [8]). In stage 1 four attributes are scored:
the size of the “Excess” recorded by syndromic data;
whether the alarm is a recent “Repeat”; whether it is
counter to the national trend “Nattrend”; and whether it
is signalled by multiple systems “Multi-system”. The “Ex-
cess” and “Nattrend” scores are based upon heuristic
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judgements. The four first round scores are summed to
provide “Score1”. Using this score and any additional
unrecorded information, such as consultations with field
epidemiologists, the analyst decides on whether stage 2
of the assessment, where a consultant epidemiologist is
engaged, should occur. This consequence is captured in
a field “Binitial”.
If stage 2 occurs, four more scores are added to the

data set. These scores indicate whether the alarm is
counter to a seasonal trend (“Season”), whether there is
an atypical geographical clustering (“Geography”),
whether the event is centred on a particular age group
(“Age”) and whether there is an unusual increase in
illness severity (“Severity”). These four scores are added
to Score1 to create “Score2”. An attribute “BScore” indi-
cates whether the second stage scores are completed. In
addition, the risk assessment record contains a free text
field where the consultant epidemiologist can provide a
summary of each event. The free text field has not been
interpreted but an attribute has been created - “BSum-
mary” - recording the presence or absence of information
in this field. Approximately a third of the recorded events
contain such information.
The data set includes many missing values so in the

decision outcome field the absence of an outcome is
interpreted as ‘No-action’. The first stage scores are
sometimes left blank, possibly when the expert has
jumped to an immediate decision choice. Where this
happens, the corresponding scores were all assigned to
zero. The same recoding was performed in the second
stage analysis. In the analysis, all scores and totals are
considered as labels rather than as numerical values.
Higher overall scores are more likely to correspond

with the alert outcome, but this mapping is not deter-
ministic and some low scoring alarms may also lead to
an alert. The average first stage score for alarms that
generate an alert is higher than that for alarms that gen-
erate ‘No-action’ (6.81 vs 5.04, p = 1.8 × 10− 8).

Method: Naïve Bayes (NB)
The naïve Bayes (NB) classifier is a special type of prob-
abilistic graphical models known as Bayesian networks.
NB is the simplest, and often most effective, Bayesian
classifier [13]. NB assumes that the state of an attribute
depends on the decision outcome but, given this infor-
mation, it is conditionally independent from all the other
attributes. An example of NB can be represented by the
connection between the presence of an event leading to
an alert D and observations of three binary attributes A,
B and C. NB assumes that if the event is an alert, the
probability of observing attribute A does not depend on
attribute B (Fig. 1). Thus, NB says that if the event is
classified as an alert D the probability that A is true or
false does not depend on whether B is true or false. The

independence assumption means that the very complex
probability that describes whether the event is an alert D
- given observations for all three attributes, A, B and C -
is easy to calculate using Bayes’ theorem. The calculation
can be represented by a simple fan-like node and arrow
diagram such as in Fig. 1, where the arrows represent a
“depends on” relationship between nodes. For example,
the presence or absence of attribute A depends on the
presence or absence of the alert D, but not on the values
of the other two attributes.
Thus, if the class of an individual event is known, it is

possible to assign probabilities to the states of each attri-
bute without knowing the state of other attributes. For
example, if the Decision is ‘Alert’ it is possible to assign
the probability that “System” is ‘EDSSS’ without knowing
the condition (i.e. that “IndicatorS” is ‘Gastrointestinal’).
In terms of probability the NB structure means that

the complex joint probability of the attributes can be
expressed as a simple product, i.e. p(A1, A2, … AN| C) =
p(A1| C) x p(A2| C) x … x p(AN| C) where Ai are N attri-
butes and C is the class variable. Further, each of the
component probabilities on the right can be estimated
from the data set by counting frequencies of the states
of each attribute. For example when the “Decision” is
‘Monitor’ how often is the “System” equal to ‘GPOOHSS’.
Crucially, Bayes’ theorem then connects the conditional
probability for the attributes with the opposite conditional
probability that determines classification - P(C | A1, A2, ..
AN) - so that within the naïve Bayes’ approximation the
global classification problem is a relatively simple compu-
tational step. This computation is easy to perform manu-
ally but is also supported in many sophisticated Bayesian
Network software tools, such as Hugin (Hugin Expert A/
S, Aalborg). The learning is initiated with uniform prior
frequencies [14], which do not have a significant influence
on the results. Each case in the database then adds one to
the frequency count in the learning process.

Method: tree-augmented Naïve Bayes (TAN)
Natural extensions for the NB classifier address the possi-
bility that some of the attribute variables may be dependent
on each other given the class variable. In such a situation,
returning to Fig. 1, the presence or absence of attributes A
and B may depend on each other as well as the presence or
absence of an alert D. NB neglects these dependencies and
may therefore include some double counting of evidence
leading to misclassification [15]. One solution to this situ-
ation is to augment the structure of the network by adding
links between attributes. This structure accommodates the
additional between-attribute dependencies that are cap-
tured in the data set. Discovering optimal feature sets or
optimal augmentation is computationally complex but, with
some restrictions placed on the possible set of additional
links, it is practical to induce valuable augmented network
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classifiers from data. This latter option is implemented in
this paper through TAN where additional links are created
between attributes, constrained only within a tree structure,
i.e. each attribute has a maximum of two parents including
the class variable and one other attribute. The best set
of tree-augmenting links can be discovered with the
Chow-Liu algorithm [16]. Corresponding conditional
probability tables can be established from the training
data set using an expectation-maximization approach
that is often used for learning Bayesian networks [17].

Method: Bayesian multinets (multinet)
TAN represent dependency among the attributes in
agreement with that captured in the complete training
data set. As a technique TAN assumes that the depend-
ency structure is independent of the state of the class
variable. This assumption means that for a strongly
asymmetric data set, such as the one used here, the
dependency of attributes will be mainly the result of in-
formation in ‘No-action’ events. However, from a public
health perspective we are more interested in ‘Alerts’ and
‘Monitor’.
Bayesian Multinets are a generalization of TAN that

allow the relations between the features to be different
for different values of the class node [18]. Thus, for each
Decision separate networks are produced with different
structures, unlike TAN where the relations between at-
tributes are the same for each class attribute.

Method: weighted networks (TAN* and multinet*)
Large asymmetry in the data source, in this case the
predominance of ‘No-action’, has a major impact on
classifier construction and performance, particularly in
relation to classification of the rare outcomes. For
probabilistic tools the classification process usually in-
volves identification of the output class that has the
highest probability, but alternative decision steps can
be used to account for the data asymmetry. In a modified

TAN approach (TAN*) outcomes were classed as ‘Alert’ if
the ‘Alert’ probability was ≥0.2. If not, they were classified
as ‘Monitor’ if the ‘Monitor’ probability was ≥0.2. If nei-
ther of these two thresholds were met then the Decision
was classified as ‘No-action’.
A variety of weighted learning procedures, which either

oversample the minority class or undersample the majority
class during the learning step, have been developed to ad-
dress the asymmetry issue [19, 20]. It is possible to mimic
the oversampling approach by modifying the prior prob-
abilities placed on the decision outcomes in the Multinet
construction. In our case, this amounts to oversampling the
minority class (i.e. Decision = ‘Alert’) by approximately
1000. This is implemented for the Multinet classifier
(Multinet*).

Method: evaluating classifier performance
Classifier performance can be estimated using ten-fold
cross validation [21]. This method involves splitting the
training data set into ten random subsets of approxi-
mately equal size. The first subset is used as a validation
set, and the remaining nine subsets are combined as a
training set for constructing the classifier. The process is
repeated with each subset acting as the validating set,
enabling the trained classifier to predict each of the
three outcomes ‘Alert’, ‘Monitor’, and ‘No-action’ on the
validation set. These results are compared with the
actual decisions recorded in the validation set. Cross
validation provides a prediction for each event in the full
data set. A confusion matrix is then produced as a table
that shows how events with a particular Decision out-
come in the full training data are assigned to a particular
Decision outcome by the classifier. A perfect classifier
would have a confusion matrix where the number of
misclassifications was zero. Four measures of perform-
ance are calculated, with each measure described in
Table 2 [23].

Fig. 1 A simple 4 node network representing the conditional independence of observed symptoms A, B and C given a patient with disease D
and a representation of naïve Bayes decision making
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Results
The performance of each of the five classifiers is pre-
sented as a confusion matrix in Table 3. The NB classi-
fier has an accuracy of 99.1% indicating that 99.1% of
the produced classifications were correct. Accuracy
values for TAN, TAN*, Multinet and Multinet* are 99.5,
99.3, 99.4, and 98.5% respectively. However, from a
public health perspective accuracy is a poor indicator of
performance as it is dominated by the high proportion
of ‘No-action’ Decisions. The Decisions ‘Monitor’ and in
particular ‘Alert’ are most important from a public health
standpoint.
Table 4 presents further performance measures for

each Decision separately, focussing upon ‘Alert’ and
‘Monitor’ which are most important from a public health

standpoint. We additionally provide metrics for the
Decision ‘Alert’ or ‘Monitor’, as they both require some
kind of action. These metrics were generated by merging
the ‘Alert’ and ‘Monitor’ data from Table 3. They are
therefore not completely consistent as the classifier
probabilities reflect three possible outcomes.
Table 4 indicates that for the Decision ‘Alert’, the NB

classifier has an MCC, similar to a Pearson correlation,
of 0.398. The precision for ‘Alert’ outcomes are 0.308
indicating that 30.8% of ‘Alert’ outcomes produced by
the NB classifier were similarly classified in the risk
assessment database. The recall for ‘Alert’ was 0.516
indicating that 51.6% of ‘Alert’ outcomes in the risk
assessment database were similarly classified by the NB
classifier. A similar pattern emerges for the ‘Monitor’
Decision, but the metrics are uniformly higher, with a
notable jump in recall over precision (0.708 vs 0.354).
For public health decision making, sometimes a high
recall is preferred to a high precision. A preference for
high recall is because the purpose of the system is outbreak
detection, and systems are designed to deal with a modest
burden of investigation even if some of the alarms investi-
gated are assessed as false positives. For the NB classifier,
when ‘Alert’ and ‘Monitor’ outcomes are merged there is an
increase in MCC, precision and recall over their constitu-
ents. For recall, the value is 0.826 indicating that 82.6% of
‘Alert’ or ‘Monitor’ outcomes in the risk assessment data-
base were similarly classified by the NB classifier.
Table 4 shows that, in comparison to NB, augmenta-

tion introduced by the TAN and Multinet classifiers
leads to higher precision values for ‘Alert’ and ‘Monitor’
outcomes and for both these outcomes combined. This
result indicates that in public health terms TAN and
Multinets are better than NB in avoiding false ‘Alert’ and
‘Monitor’ outcomes. This situation is especially the case
for the Multinet, with a precision value of 0.846. How-
ever, such augmentation leads to lower recall of ‘Alert’
and ‘Monitor’ outcomes, and of both these outcomes
combined, in comparison with NB. The Multinet has an
especially poor recall (0.177) for ‘Alert’ outcomes.

Table 2 Classification performance measures

Measure Description

accuracy Proportion of correct predictions made by the classifier.

Matthews correlation coefficient (MCC) Calculated for each outcome separately. Varies between − 1 and 1, and is similar to a Pearson correlation.
It is evaluated from all the elements of the confusion matrix. Gives a more balanced quantification of
performance than accuracy as it considers how closely the predicted results follow the decisions in the
test data. Other correlation measures exist, but the MCC is suited to asymmetric classes and multi-state
systems [22].

Precision (positive predictive power) Calculated for each outcome separately. Expresses the fraction of classifications that match the true outcome.
True positives/(true positives + false positives). E.g. proportion of ‘Alerts’ produced by the classifier that were
‘Alerts’ in the risk assessment database.

Recall (sensitivity) Calculated for each outcome separately. Expresses the proportion of each outcome that is correctly returned
by the classifier. True positives/(true positives + false negatives). E.g. proportion of ‘Alerts’ in the risk assessment
database that were identified by the classifier.

Table 3 Confusion matrix for classification of statistical alarms
recorded by a multi-system syndromic surveillance service in
England

Classification

Alert Monitor No-action

Decision NB Alert 32 22 8

Monitor 42 269 69

No-action 30 469 66,564

TAN Alert 21 27 14

Monitor 12 227 141

No-action 17 144 66,902

TAN* Alert 27 24 11

Monitor 22 260 98

No-action 27 293 66,743

Multinet Alert 11 19 32

Monitor 1 173 206

No-action 1 138 66,924

Multinet* Alert 24 36 2

Monitor 8 315 57

No-action 17 866 66,180

*Modified approach to account for data asymmetry i.e the predominance of
‘No-Action’ outcomes
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TAN* and Multinet* take account of the asymmetric
data. Comparing TAN and TAN*, Table 4 indicates that
for our preferred public health metric recall, the ‘Alert’
outcomes increase from 0.339 to 0.435, the ‘Monitor’
from 0.597 to 0.684 and the combination of these two
from 0.649 to 0.754. This improvement is even greater
when comparing Multinet and Multinet*. For Multinet*
the merged ‘Alert’ and ‘Monitor’ Decision has a recall
value of 0.867 indicating that 86.7% of ‘Alert’ or ‘Monitor’
outcomes in the risk assessment database were similarly
classified by the Multinet* classifier.
The dependency structure of the TAN classification of

the variable “Decision”, induced from the recorded statis-
tical alarms in data from the PHE multi-system syndromic
surveillance service, is illustrated in Fig. 2. The variable
“BInitial” (Is second stage risk assessment initiated?) is
chosen as the base of the decision tree because it is the
most discriminating attribute in the decision tree con-
struction (Fig. 2). Alternative assignments have minimal
effect. The TAN network has 48 links and as expected this
structure adds dependency, in the form of directed links,
between attributes such as “IndicatorS” and “System” and
between “Score1” and “Score2”.
Figure 3 presents the dependency structure for ‘Alert’,

‘Monitor’, and ‘No-action’ Decisions produced by the
Multinet classifier. The results illustrate variation in the
dependence of attributes for each decision. For example,
for the ‘Alert’ and ‘Monitor’ outcomes there is depend-
ency between “Score2” and “IndicatorS” which is absent
for the ‘No-action’ outcome.
In terms of the attributes having most influence upon

the Decision outcome, Table 1 includes two measures,
evaluated from the risk assessment process. The first
measure is mutual information, which expresses how
much of the information content of an attribute is
shared with the information in the Decision outcome.
The second is the p-value (calculated using a Pearson
χ2) which is a measure of statistical significance with

respect to a hypothesis that the attribute is independent
from the Decision outcome. In this assessment of indi-
vidual attributes, all of them are significant at a 10%
level and only “Q”, “Year” and “Experience” are insignifi-
cant at a 1% level. As expected, “BInitial” where a con-
sultant epidemiologist is engaged, and “Score2” the score
from stage 2 of the risk assessment process, share most
information with the decision outcome. The scores from
the second stage of the risk assessment (e.g. Season,
Geography, Age, Severity) are also influential on the out-
come. The size of the alarm as measured by “Excess”, is
the stage 1 attribute that has most influence on the
decision.

Discussion
One important output of our results is that they provide
confidence in the current risk assessment process. The
attributes of each individual risk assessment shown to be
linked to the final decision as the p-values in Table 1
were nearly all significant, indicating that the current
system is robust and provides consistent results. The five
classifiers had relatively high accuracy but this metric
was dominated by ‘No-action’ outcomes. From a public
heath perspective recall is sometimes more useful, as
recall records the proportion of events detected, even if
some of these are eventually assessed as false. The NB
classifier was shown to have a higher recall for ‘Alert’
and ‘Monitor’ outcomes, in comparison with TAN or
Multinet which permit augmentation between attributes.
Modified versions of TAN and Multinet, TAN* and
Multinet*, were implemented. These modified versions
improved their recall.
The NB recall for ‘Alert’ was 0.516 indicating that

51.6% of ‘Alert’ outcomes in the risk assessment data-
base were similarly classified by the NB classifier. This
modest recall for ‘Alert’ decisions indicates that add-
itional information is available to the decision maker
that is not recorded in the data set. In this respect, it is

Table 4 Performance measures (tenfold cross validation) for multi-state classification of statistical alarms in the PHE multi-system
syndromic surveillance service

NB TAN TAN* Multinet Multinet*

Decision Alert MCC 0.398 0.377 0.393 0.387 0.435

Precision 0.308 0.420 0.355 0.846 0.490

Recall 0.516 0.339 0.435 0.177 0.387

Monitor MCC 0.497 0.581 0.552 0.486 0.459

Precision 0.354 0.570 0.450 0.524 0.259

Recall 0.708 0.597 0.684 0.455 0.829

Alert + Monitor
(merging decisions/classifications
from Table 3)

MCC 0.587 0.643 0.617 0.521 0.507

Precision 0.422 0.641 0.510 0.595 0.303

Recall 0.826 0.649 0.754 0.462 0.867

*Modified approach to account for data asymmetry i.e the predominance of ‘No-Action’ outcomes
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notable that if the Decisions ‘Alert’ and ‘Monitor’ are
combined, then the recall for the NB classifier rises to
0.826. The increased recall when ‘Alert’ and ‘Monitor’
are combined shows that expert decision makers separ-
ate ‘Alert’ and ‘Monitor’ outcomes better than machine
learned systems and suggests that the information used
in the second stage risk assessment is not fully repre-
sented in the data set. This result is likely due to public
health experience and awareness of wider threats and is-
sues. It is possible that interpretation of this distinction
might be helped by data in the textual summary dis-
cussed above. In turn, the increased recall when ‘Alert’
and ‘Monitor’ are combined, indicates that the decom-
position of the machine learning approach into two or
more steps, in accord with the current risk assessment
process, may assist with classification.
One potential public health benefit of the findings pre-

sented is the ability to use the machine learning results
as a decision support system. In the case of PHE’s
syndromic surveillance system, an analyst would enter
the routine information relating to each statistical event
into a computer programme. It would also be possible

for some of the statistical event information to be input
automatically from the RAMMIE statistical aberration
detection system. The system would then process these
data, and using the machine learning results from a
chosen classifier, present the public health decision
probabilities for each outcome. This approach would be
presented as Decision probabilities such as 1% ‘Alert’, 3%
‘Monitor’, 96% ‘No-action’. In choosing the most appropri-
ate classifier a strategic decision might be taken to priori-
tise classifiers which maximise the recall rate for ‘Alert’
outcomes, to enhance the number of alerts correctly
returned by the classifier. Hence, based on our results, the
NB classifier would be recommended for implementation
due to its higher recall values. The advantages of NB have
been observed previously in clinical studies and possible
explanations are provided elsewhere [24].
Such a decision support system would be particularly

useful for the training of new analysts and consultants,
providing them with reassurance or otherwise that the
decisions made accord with those made in similar circum-
stances previously. Having a system incorporating mul-
tiple classifiers could be particularly useful in this respect.

Fig. 2 A tree-augmented naïve Bayes network structure induced from details of recorded statistical alarms within the PHE multi-system syndromic
surveillance system
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As part of an operator training exercise, high accuracy
across all outcomes might be viewed as important, in
which case a TAN classifier - which produced the highest
accuracy - would be most appropriate.
However, it is imperative to see such a system as a

decision support system and not as a decision making
tool. Human input is required throughout the risk as-
sessment process and, especially in stage 2, other factors
taken into account by the consultant epidemiologist are
not recorded by the risk assessment process. Our results
highlight the importance of the “BInitial” attribute which
relies on human expertise via the engagement of a con-
sultant epidemiologist. Human expertise is also import-
ant in the individual components of “Score2”.
The potential uses of these results as a decision

support system for syndromic surveillance, fit into a
wider UK ambition to make machine learning and artifi-
cial intelligence techniques more accessible and to

deliver complex data into the hands of specialist groups
such as health professionals [25]. This goal is particularly
relevant in relation to medicine and health because of a
growing complexity in the provision of care, coupled
with a rapid move to digital information collection.
Optimization of healthcare informatics is an emerging
issue and leverage of new data sources pertaining to
syndromic surveillance is a priority. Recently, there have
been innovative uses for machine learning methods in
relation to diagnostics and prognostication for human
and veterinary medicine [26, 27], but applications in
healthcare surveillance are rare [28, 29].
This analysis could be extended, and one improvement

could be gained by obtaining information from the text-
ual summary present on each record. The textual sum-
mary was present in approximately 30% of events, but
replaced by a simple binary (yes/no) value for this ana-
lysis. Natural language processing may be an approach

Fig. 3 Three components of a multinet classifier, structured as Chow-Liu trees rooted on the “BInitial” variable. Trees corresponding to the ‘Alert’,
‘Monitor’ and ‘No-action’ outcomes of the “Decision” variable are at the top left, top right and bottom of the figure
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to obtain further information from this field which could
then be fed into machine learning (e.g. [29]). A further
area for development is that the NB classifiers used in
this paper assume that all attributes are conditionally in-
dependent given the Decision outcome. If this condition
is not met, the corresponding classification may become
biased. This bias issue was overcome using TAN and
Multinets which have network augmentation, which are
additional links representing dependency between attri-
butes. An extension to this research would be to imple-
ment an alternative approach that avoids augmentation
but addresses the issue of attributes not being condition-
ally independent. This alternative is called feature selec-
tion and classifies using a subset of the attributes that do
not include strong dependencies (e.g. [15, 30]). A not-
able challenge in such an approach is the identification
of an appropriate subset of attributes.
The evaluation of classifier performance and the learn-

ing process itself, relies on the risk assessment database.
This manually labelled database is treated as established
truth, but the reality is that actual truth is rarely available
and difficult to separate from the effect of any actions. Put
simply, the outcomes in the risk assessment database are
the outcomes of the risk assessment process but may not
be correct in a public health sense. This means that we do
not know for certain whether a statistical event should
have been labelled as an Alert. Furthermore, we acknow-
ledge that the labelling process includes uncertainty, for
example, in situations that are equivocal, as well as some
inter-operator variability. Both of these issues will degrade
measured classifier performance [31].
The classifiers used in this paper assume that the rela-

tionships in these data did not change over time. In real-
ity, our experience is that decision makers learn from
experience. Hence, any decision support system based
on machine learning would need to be future-proofed by
linking the learning step to a data stream with a fading
memory to ensure that the machine learning would be
regularly updated from the most recent data. In addition,
syndromic systems need to cope with emerging threats
for which there may be no precedent in the training data
set, thus again highlighting the importance of human in-
put throughout the process.

Conclusions
This paper has successfully explored the use of machine
learning methods to assist public health decision making
in an operational multi-system syndromic surveillance.
The attributes of each individual risk assessment were
shown to be linked to the final decision providing confi-
dence in the current process. The NB classifier was
shown to have a higher recall for ‘Alert’ and ‘Monitor’
outcomes in comparison to TAN or Multinet. The NB
recall for ‘Alert’ was 0.516 indicating that 51.6% of ‘Alert’

outcomes in the risk assessment database were similarly
classified by the NB classifier. When the Decisions ‘Alert’
and ‘Monitor’ are combined, then the recall for the NB
classifier rises to 0.826. The combination of ‘Alert’ and
‘Monitor’ indicates that expert decision makers separate
‘Alert’ and ‘Monitor’ outcomes better than machine
learned systems and suggests that the information used
in the second stage risk assessment is not fully repre-
sented in the data set. The machine learning techniques
could be developed into a decision support system for
risk assessment within syndromic surveillance. In such a
system, the analyst would input the risk assessment data,
and be presented with a set of Decision probabilities
such as ‘Alert’ 1%, ‘Monitor’ 25%, ‘No-action’ 74%. This
system would be particularly useful for the training of
new analysts and consultants, providing reassurance or
otherwise that the decisions made accord with those in
the past. Should such a system be implemented, a NB
classifier would be a valuable starting point as this would
maximise the number of ‘Alerts’ identified. It is also fast,
robust and relatively insensitive to missing values.
Within such a system we highlight the importance of
introducing a fading memory so that the classifier is
regularly updated to take account of new data and the
fact that decision makers learn from experience. Finally,
it is essential to see such a system as a means to support
decision making as our results highlight the importance
of specialist human input with public health knowledge
throughout the process.
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