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Abstract

Background: HIV programs are often assessed by the proportion of patients who are alive and retained in care;
however some patients are categorized as lost to follow-up (LTF) and have unknown vital status. LTF is not an
outcome but a mixed category of patients who have undocumented death, transfer and disengagement from care.

Estimating vital status (dead versus alive) among this category is critical for survival analyses and program evaluation.

Methods: We used three methods to estimate survival in the cohort and to ascertain factors associated with death
among the first cohort of HIV positive patients to receive antiretroviral therapy in Haiti: complete case (CC) (drops missing),
Inverse Probability Weights (IPW) (uses tracking data) and Multiple Imputation with Chained Equations (MICE) (imputes
missing data). Logjistic regression was used to calculate odds ratios and 95% confidence intervals for adjusted models for
death at 10 years. The logistic regression models controlled for sex, age, severe poverty (living on <$1 USD per day), Port-
au-Prince residence and baseline clinical characteristics of weight, CD4, WHO stage and tuberculosis diagnosis.

Results: Age, severe poverty, baseline weight and WHO stage were statistically significant predictors of AIDS related
mortality across all models. Gender was only statistically significant in the MICE model but had at least a 10% difference in
odds ratios across all models.

Conclusion: Each of these methods had different assumptions and differed in the number of observations included due
to how missing values were addressed. We found MICE to be most robust in predicting survival status as it allowed us to
impute missing data so that we had the maximum number of observations to perform regression analyses. MICE also
provides a complementary alternative for estimating survival among patients with unassigned vital status. Additionally, the
results were easier to interpret, less likely to be biased and provided an alternative to a problem that is often commented

upon in the extant literature.
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Background

HIV programs are often assessed by the proportion of
patients who are alive and retained in care, which has
direct consequences for funding and programmatic ser-
vices offered [1, 2]. However, among individuals who ini-
tiate antiretroviral treatment (ART), the reported rate of
lost to follow up ranges from 5 to 53% [1, 3—10]. Clinic-
ally, these LTF patients are at risk for adverse outcomes
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such as medication resistance, transmission to others,
lack of care, or at best, incomplete medical records when
they transfer care to another clinic [1, 6, 7]. Program-
matically, lost to follow up leads to underestimates of
retention which could be mis-interpreted as under-
performance on program outcomes [1, 5, 6, 11].

The category of lost to follow-up (LTF) is not a homo-
geneous outcome—e.g., “dead” or “alive”—but rather a
heterogeneous category of three disparate health states:
undocumented deaths, undocumented or silent transfers
to another source of HIV care, or alive and complete
disengagement from HIV care [12-14]. Alive and being
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retained in care is synonymous with the proportion of
patients who are neither dead nor LTF. The fact that
LTF is part of the definition makes this outcome com-
plex and problematic.

In reality, LTF is a marker for missing data on vital
status. We argue that LTF should not be treated as a le-
gitimate outcome category because it’s meaning can eas-
ily change over time and across sites. For example,
patients who silently transfer to another provider, move
domiciles or die outside of a healthcare facility could all
be classified as LTF. Thus, studying predictors of LTF
should be avoided. Instead, LTF should be considered a
missing data problem that needs to be solved. We
present a unique application of MICE to impute both
missing outcome (vital status) and missing covariates,
simultaneously, using a large longitudinal cohort of pa-
tients from Haiti who were treated for HIV infection,
and compare the results with MICE to the more trad-
itional analytic methods of using complete cases and in-
verse probability weights. We also evaluated associations
that were predictive of death using three different
methods: complete case, inverse probability weights and
multiple imputation with chained equations.

Statistical methods for handling missing vital status

In the HIV literature, for studies assessing predictors of
mortality/survival, the most common methods of dealing
with LTF are complete case analysis, survival models
that censor those LTF, and tracing with inverse probabil-
ity weights [10, 15-22]. But there are other methods, in-
cluding simple imputation, multiple imputation, and
Bayesian analysis [15]. Each method has different under-
lying assumptions about the missing data.

Complete case analysis

Complete case analysis omits observations with missing
data in multivariable analyses. It is the default method,
employed automatically, of most statistical software pro-
grams. As only complete observations are used, sample
size is decreased, statistical power is compromised, and
study results are often biased [10, 16].

Kaplan Meier survival analysis

Kaplan Meier analysis assumes that lost to follow up is
unrelated to mortality. To state this another way, pa-
tients who are censored due to LTF have the same prob-
ability of survival as those who are not lost to follow up
[23]. However, one cannot verify the Kaplan Meier
assumption without more information. From the extant
literature, studies have traced patients who are catego-
rized as lost and found that between 12 and 87% were
dead [24]. With this wide range in mind, it is impossible
to say if LTF is associated with higher mortality, lower
mortality, or if there is no association. Employing this

Page 2 of 11

method, patients who are LTF are censored at a time
point typically defined by the date when vital status was
last verified. It is often used for analyzing HIV cohort
data because all cases can be included, at least for the
duration that they were followed before being lost.

Inverse probability weights from tracing

Inverse probability weights (IPW) offer another general
method for dealing with missing data [17-21, 25]. In the
HIV literature, they are often used in conjunction with
tracing data. This approach involves using physical or
contact tracing to determine the true vital status among
a sample of those LTF [20-22, 25]. Then, assuming this
sample is representative of all LTF, tracing data is used
to apply weights to the subjects with no missing out-
come data, so that the weighted analysis provides less
biased results, compared to the biased results when
using (unweighted) complete cases. The results of the
tracing are used to calculate the inverse probability of
being a complete case (given the unique set of patient
characteristics, including predictors and outcomes),
which is used to weight each of the complete cases
[20-22, 25]. This method assumes that those who are
unsuccessfully traced have a mortality that can be accur-
ately estimated from those successfully traced.

For example, consider a simple analysis to assess
whether gender predicts mortality. Among 100 women
50 are documented dead and 50 are documented alive,
among 100 men there are 20 documented dead, 20
documented alive, and 60 LTF. A “complete case”
analysis suggests that men and women have the same
risk of dying (RR=1), since 50% of the men died and
50% of the women died. However, suppose all 60 of the
men LTF were successfully traced and found to be dead.
For women who died, all were complete cases, so the
IPW is the inverse of the probability of being a complete
case, or 1/1.0, or 1. For all women who did not die, all
were also complete cases, so the IPW is also 1/1.0. For
men who were alive, all were complete cases, so their
IPW is also 1/1.0. But for men who died (z =380, 20
complete case deaths and 60 traced deaths), the
probability of being a complete case was 20/(20 + 60),
and therefore the IPW is 1/.25, or 4. If we apply these
weights and do an IPW analysis—giving complete case
men who died 4x the weight of any other complete
case—then the average mortality among men is 20 x
4/(20 +20 x 4) =80%; and the risk of dying among
men compared to women is 80/50 = 1.6.

Note: If only a fraction (f) of the LTF get traced, then
each of the traced cases is weighted by the inverse prob-
ability of being traced, that is, by 1/f.

However the performance of the IPW model is
dependent on methods used to track patients. In
resource-limited settings, tracing is difficult, costly, and
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often unsuccessful. In our case study, Haiti does not
have a unique national identification number for its
citizens, making it difficult to track patients across
various health systems or to verify vital status by referen-
cing a current national death registry [3].

Multiple imputation with chained equations (MICE)
Multiple Imputation with Chained Equations (MICE) is
a less commonly used method for estimating the vital
status of those LTF. Although MICE is commonly used
to impute missing covariate (predictor) data, [10, 26, 27]
it can also be used to impute missing outcome data [26,
27]. MICE is optimal when less than 30% of a variable’s
data are missing and when subjects with missing data
are only randomly different (“missing at random”) from
those subjects who share an identical set of patient
characteristics, or covariate values [28-31]. However, to
our knowledge, no articles in the extant HIV literature
have reported results after imputing both the outcome
and covariates simultaneously.

The aim of this analysis is to present the application of
MICE to impute both missing outcome (vital status) and
missing covariates, simultaneously, using a large longitu-
dinal cohort of patients from Haiti who were treated for
HIV infection, and compare the results with MICE to
the more traditional methods of using complete cases,
survival analysis and inverse probability weights. Specif-
ically, we compare adjusted logistic regression models
for factors associated with death using complete case,
IPW and MICE.

Methods

Study population

The study population is a cohort of 910 individuals age
13 years or older who initiated antiretroviral therapy
(ART) for HIV according to international guidelines
between March 2003 and April 2004 in Haiti [32, 33].
The cohort was followed for ten years through 2015.
Details of this cohort are described in previous publica-
tions [32, 33].

Clinical measurements and outcomes

Clinical characteristics available from routinely docu-
mented data included body weight, CD4+ cell count
(CD4), WHO stage, and diagnosis of tuberculosis. Socio-
demographic data included age, sex, severe poverty, and
residence within the city of Port au Prince. Severe pov-
erty was defined as living on less than one United States
dollar per day. Date of death and transfer were docu-
mented in the medical record. Lost to follow-up was de-
fined as no documented death or transfer and no clinical
visit or pharmacy pick-up during the last 180 days of the
10-year follow-up. Patients who were classified as LTF
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were traced by clinic staff at the time of their 10-year
anniversary to ascertain vital status.

Missing data

The frequency of missing data at baseline was 3% for
weight, 12% for CD4 count, and 12% for vital status at
10 years of follow-up. The 71 subjects who were
documented to have transferred their care to another
clinic (8%) were assumed to be alive at 10 years.

Multiple imputation with chained equations (MICE)

Data were assumed to be missing at random; i.e. consid-
ered only randomly different from other subjects that
share the same pattern of values for the non-missing vari-
ables. MICE was used to impute all missing values,
whether for missing covariates, such as CD4 count and
weight, or for missing vital status (LTF) at 10 years of
follow-up. We used Stata’s implementation of MICE,
which allows the imputation of various types of variables
(categorical, ordinal, or continuous) in chained equations
using a semi-Bayesian approach in [30] In this study, CD4
and baseline weight were continuous variables and vital
status was a dichotomous variable. Results from multivari-
able fractional polynomial models on complete case data
indicated that CD4 is best represented as a cubic function
and baseline weight is best represented as a squared func-
tion. These transformations were included in the multiple
imputation model. Equations were created to impute
missing values and were composed of all variables used in
the fully adjusted models [30]. Predictive mean matching
using 5 nearest neighbors was used to impute CD4 and
baseline weight [34—37]. Twenty imputations were com-
puted based on current guidelines in the literature [30].
Various diagnostic measures were performed to check the
fitness of the generated datasets. Specifically, proportions
were calculated to assess imputed values of categorical
variables and continuous variables were assessed using
trace plots [38]. The Stata command midiagplots was used
to assess the imputed datasets [38].

Classification and regression trees (CART)

Classification and regression trees were utilized to ascer-
tain if any interaction should be incorporated into the
multiple imputation [39]. Classification trees, in contrast
to traditional statistical models, are especially useful for
assessing for interactions when there are significant
amounts of missing data [40]. After building the tree
and pruning it using the R command cptable, no statisti-
cally significant interactions were found [41].

Statistical analysis

Kaplan Meier

Survival estimates were calculated using Kaplan Meier
analyses and a Kaplan Meier curve was generated. Time
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from enrollment to death or end of study censor
(ten years after enrollment with a maximum date of
June 26, 2014) was calculated. Participants who were clas-
sified as LTF were censored at their last visit to the clinic.

Inverse probability weights from tracing

In September 2013, staff attempted to contact all 156
patients who were classified as LTF, using telephone and
home visits. Results of this tracing method were used to
create inverse probability weights (IPW) that were
applied to cases with similar covariates and known vital
status.

Multiple imputation with chained equations

The mi suite of commands from STATA was used to
perform analyses using the multiply imputed datasets.
Stata’s mi suite of commands follows Rubin’s rules for
the combination of results across imputed datasets [42].

Logistic regression

For each predictor (covariate), logistic regression models
were created to calculate odds ratios and 95% confidence
intervals for being dead after 10 years of follow-up (uni-
variable models). Additionally, we created multivariable
(fully adjusted) models that included all clinical and socio-
demographic variables. Although age, weight, and CD4
count were measured as continuous variables, when
reporting the results of the logistic regression models, we
describe the effects of a 10-year age difference, 10-kg
weight difference, and 100-cell difference in CD4 count.

Sensitivity analysis — Multiple imputation then deletion

As a sensitivity analysis, we performed multiple imput-
ation of all missing data, followed by deletion of all cases
of missing outcomes. In this method, both the outcome
and covariates are imputed and after the datasets are
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created, observations where the outcome was imputed
are deleted from the dataset running the same univari-
able and multivariable models [43]. This method has
been reported to lead to more efficient estimates and
narrower confidence intervals [43].

All analyses were performed using STATA version 13
and R version 3.4.2. Additional file 1.

Ethics and consent to participate

The institutional review boards at GHESKIO and at
Weill Medical College of Cornell University approved
this analysis.

Results

Outcome tracing

Among the 156 patients who were categorized as LTF,
the clinical team was able to trace and find 45 (29%). Of
the 45 patients successfully traced, 37 (82%) were found
to be alive and 8 (18%) had died prior to 10 years of
follow-up. Based on the 18% risk of death among those
successfully traced, we assume that 18% of the 156 LTF
(n=28) were dead at 10 years and the remainder were
alive. Since the probability of being known alive at
10 years among all patients who were actually alive
(known alive plus number estimated to be alive among
LTF by the tracing method) is 0.79, then the IPW for all
those subjects who are known alive is 1/0.79.

Missing data/ diagnostics of the multiple imputation

Convergence was achieved when MICE was performed.
To assess the results of the multiple imputation, kernel
density and trace plots were constructed. The kernel
density plots for the imputed values of CD4 and weight
are shown in Fig. 1 for the first 5 imputed datasets. The
means and interquartile ranges for CD4 and weight are
similar to the observed non-missing observations in the

-
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6 560 10‘00 15‘00 6 560 10‘0ﬁ 15‘00 42‘0 4‘0 6‘0 S‘D 160 42‘0 4‘0 6‘0 s'n 160
l Observed Imputed Completed l l Observed Imputed Completed l
Fig. 1 Kernel Density plots for imputed CD4 and Weight for first five imputed datasets. Panel a shows the plots specific to the imputation of the
CD4 variable. Panel b shows the plots specific to the imputation of the Weight variable
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dataset (Table 1). Figure 2 displays the trace plots for the
twenty imputed datasets. These plots show no discern-
able pattern, which is the result expected of a well-
executed multiple imputation.

Probability of death after 10 years of follow-up using
Kaplan Meier, IPW and MICE: A comparison

At 10 years, and accounting for the tracing efforts de-
scribed above, 53% of patients (N = 482) were alive and
engaged in care, 27% (N =246) were confirmed dead,
12% (N = 111) were LTF, and 8% (N = 71) had transferred
to another clinic for care. Survival was ascertained to be
71% (95% CI: 68—74%) by Kaplan Meier, 63% (95% CI:
59-67%) by IPW, and 67% (95% CIL: 64—71%) by MICE
(Fig. 3) [44].

Predictors of death using complete case, IPW and MICE: A
comparison

The weighted sample when using IPW weights from
tracing had 111 fewer observations (N =799) compared
to the MICE dataset, which included all observations
(N'=910), because any subject with missing covariate
data was dropped. The complete case model should
have the least number of observations (N =735) be-
cause any case with any missing value was dropped
from the analysis.

Table 2 displays the logistic regression results for each
individual predictor of death using three types of
models: complete case (CC), inverse probability weight-
ing (IPW) and multiple imputation with chained equa-
tions (MICE). Severe poverty was statistically significant
across all models and the odds ratio had an approximate
20% difference between CC and IPW (CC OR=1.78,
IPW OR = 1.59, MICE OR = 1.74). WHO stage and base-
line weight were statistically significant across all models
and had similar odds ratios from the three methods
(Table 2). CD4 had a similar point estimate across all 3
models (CC OR=0.86, IPW OR=0.86, MICE OR=
0.85). However, the point estimate was not statistically
significant in the CC model. Age was slightly different
across all three models (CC OR =1.17, IPW OR =1.26,
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MICE OR =1.20). Similar to CD4, age was not statisti-
cally significant for CC. Baseline tuberculosis was statis-
tically significant across all models and had a slight
variation in the point estimates (CC OR =1.97, IPW OR
=1.92, MICE OR =1.98). Gender and residence were
not statistically significant in any model.

Although in univariable analysis (single predictor), the
beta coefficients have similar point estimates regardless
of method; differences are seen among the point esti-
mates in multivariable models. Table 3 displays results
from multivariable logistic regression models using the
three methods. Severe poverty was statistically signifi-
cant across all models and the odds ratio had an
approximate 10% difference between CC and MICE (CC
OR =1.63, IPW OR =1.64, MICE OR =1.80). Similarly,
WHO stage was statistically significant across all models
and had an approximate 15% difference between the
odds ratios from the CC models (OR =1.50) compared
to the MICE model (OR = 1.76). Age and baseline weight
were statistically significant across all the models with a
slight variation in the point estimates and 95% confi-
dence intervals. Female gender was found to be protect-
ive for death across all three models; however, it was
statistically significant only in the MICE model (OR
0.62; 95% CI: 0.44-0.87) and there was about a 10%
difference between the IPW and the MICE models’ odds
ratios. Baseline tuberculosis infection was associated
with a higher odds of death across the three models,
however it was only statistically significant in the
complete case model (OR 1.83; 95% CI: 1.05-3.20).
Additionally, there was an approximate 20% difference
between the odds ratios of the CC and the MICE models
for baseline tuberculosis infection. Port au Prince resi-
dence and CD4 were not statistically significant across
the three models.

Sensitivity analysis

Results from the sensitivity analysis were very similar to
the results from the MICE models for univariable and
multivariable models. For severe poverty and baseline
weight, with the multivariable model only, the 95%

Table 1 Comparison of CD4+ and weight using Complete Case, Imputation and Imputation then Deletion

Clinical Characteristic Without Imputation

With Imputation With Imputation then Deletion

CD4+ count (cells/uL)

Median (IQR) [range] 131 (51-212) [0-1400]

Missing 12%

Body weight (kg)
Men median (IQR) 56 (50-63)
Women median (IQR) 49 (44-56)
Missing 3%
Outcome 12%

141 (60-223) [1-1416] 124 (53-138) [1-1416]

N/A N/A
55 (48-62) 55(48-62)
48 (42-54) 48 (42-55)
N/A N/A

N/A 12%
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Fig. 2 Trace Plots of imputed data across 20 imputed datasets

confidence intervals were slightly narrower for the MICE
with deletion compared to the MICE models without
deleting cases with imputed outcomes (Table 2).

Discussion

Among the first cohort of HIV patients who initiated anti-
retroviral therapy in Haiti from 2003 to 2014, we aimed to
find associations that were predictive of death using three
different methods: complete case, inverse probability
weights and multiple imputation with chained equations.

———

Kaplan Meier

Inverse Probability Weights

[P Multiple Imputation

50 55 60 65 70 75 80

Proportion Alive with 95% Confidence Intervals

Fig. 3 Survival estimates from Kaplan-Meier, IPW, and MICE

These three procedures have different assumptions and
differed in the number of observations included in the ad-
justed model due to how missing values for co-variates
were addressed. Although the point estimates were similar
across the three models, for statistically significant factors
we found as much as a 20% difference in odds ratio values.
For statistically significant factors, such as severe poverty
and WHO stage, the odds ratios in the MICE models were
farther away from the null compared to the CC and IPW
models. Severe poverty was a statistically significant pre-
dictor of death in the MICE model (OR 1.80; 95% CI:
1.28-2.52). In a similar cohort from the same clinic in
Haiti, income was associated with a higher odds of attri-
tion (OR 1.65; 95% CI: 1.25-2.19) [45]. Additionally, these
estimates are similar to those from an intensive contact
tracing program performed in Malawi on HIV positive pa-
tients, which found about 70% of people who were initially
categorized as LTF were alive and 30% were dead [13].
Worldwide, LTF rates for patients who have initiated
ART treatment for at least one year range from 5 to 53%
[1, 3-10]. Patient characteristics associated with becom-
ing LTF include being clinically ill, as measured by CD4
count or WHO symptom staging, low socioeconomic
status, and concern for stigma, as well as structural fac-
tors such as transportation issues [3, 7-10, 45-47]. Sev-
eral studies have reported high rates of re-engagement
in care by patients who were previously labeled as LTF
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Complete Case IPW MICE MICE with deletion
OR (95% Cl) OR (95% Cl) OR (95% CI) OR (95% Cl)
N=735° N=7997 N =910 N=799
Female 0.83 (061, 1.13) 0.79 (0.57, 1.10) 0.83 (062, 1.12) 0.81 (0.60, 1.10)
Age (for 10-yr difference) 1.17 (1.00, 1.37) 1.26 (1.06, 1.51) 1.20 (1.03, 1.39) 1.20 (1.03, 1.40)
Residence 1.13 (0.81, 1.56) 1.28 (0.90, 1.82) 1.18 (0.87, 1.60) 1.17 (0.85, 1.61)

Severe poverty

CD4 (for 100-cell difference)

Baseline Weight (for 10-kg difference)
WHO stage

Baseline Tuberculosis

1.78 (1.2, 2.44)
0.86 (0.74, 1.00)
0.67 (0.58, 0.79)
2.19 (1.60, 3.00)
1.97 (1.20, 3.22)

1.59 (1.14, 2.24)
0.86 (0.75, 0.99)
0.69 (0.56, 0.83)
2.19 (1.56, 3.06)
1.92 (1.13, 3.25)

1.74 (1.27, 2.37)
0.85 (0.73, 0.98)
0.65 (0.56, 0.76)
2.18 (1.62, 2.95)
1.98 (1.23, 3.18)

1.71 (1.25, 2.34)
0.84 (0.72, 0.98)
0.66 (0.57, 0.77)
2.19 (1.61, 2.98)
1.95 (1.21, 3.15)

*Models were constructed with only one covariate

PFor the CD4 only model N = 671; Baseline weight model N =671
2For the CD4 only model N =710

p-value < 0.05

(3,4, 7,8, 11, 45]. A study in South Africa found that up
to 50% of patients who disengaged from care will
re-engage within 3 years including care received at a
hospital or emergency department visit [7]. Contempor-
ary studies that were able to determine the true status of
LTF patients—which is a small number—most had
transferred care to clinics closer to their home or newer
clinics that provide different services; or alternatively,
were alive and not engaged in care [3, 4, 7, 11, 45].
Forster et al. found a strong correlation between clinics
with high LTF rates also had high rates of missing data
for patient characteristics [1]. Ideally, a formal tracking
system that “follows” patients when they receive care at
other institutions would be an optimal way to track
silent transfers; however this is still in development in
most countries [3, 4, 7, 10, 48]. With these findings that
most LTF patients are actually alive, our method of
imputing LTF status and missing covariates, at the same
time, is a cost effective method to estimate true mortal-
ity and to study risk factors for HIV.

Each of the described methods in this article has differ-
ent assumptions for LTF, as well as limitations and

strengths (Table 4). For complete case analysis, the loss of
statistical power by automatically excluding observations
that have missing information is a concern for many re-
searchers [15, 29]. This automatic exclusion leaves room
for bias depending on the types and patterns of missing-
ness [28, 29]. Many HIV studies have found that the
underlying assumption that LTF is unrelated to mortality
is an incorrect assumption and thus survival estimates
and associations of death to be biased and incorrectly esti-
mated [17, 21, 25, 49]. Clinicians report that those who
were LTF back in the early 2000’s were later found to be
dead compared to more contemporary cohorts whose LTF
participants are more likely to be alive [13, 22, 25, 50, 51].
With regards to IPW from tracing data, there are
many limitations associated with this methodology. IPW
from tracing techniques assume that the traced partici-
pants are a representative sample of all LTF. With this
assumption in mind, a random sample of LTF partici-
pants is selected for tracing [13, 20, 21, 52-55]. In this
cohort, tracing was attempted on all participants who
were LTF and was performed with telephone and
in-person follow up. Additionally, in this cohort, tracing

Table 3 Comparing Predictors of Death using Inverse Probability Weighting and Imputation in adjusted models

Complete Case IPW MICE MICE with deletion
OR (95% Cl) OR (95% Cl) OR (95% Cl) OR (95% Cl)
N =660 N =698 N=910 N=799

Female

Age (per 10 yrs)

Residence

Severe poverty

CD4 (per 100 cells)
Baseline Weight (per 10 kg)
WHO stage

Baseline Tuberculosis

0.74 (0.51, 1.08)
1.34 (1.11, 1.60)
1.08 (0.74, 1.56)
1.63 (1.12, 2.36)
0.95 (0.82, 1.09)
0.70 (0.58, 0.85)
1.50 (1.04, 2.17)
1.83 (1.05, 3.20)

0.69 (0.46, 1.03)
1.44 (1.18, 1.76)
1.38 (0.93, 2.05)
1.64 (1.10, 2.44)
0.92 (0.81,1.05)
0.69 (0.54, 0.87)
1.62 (1.10, 2.40)
1.78 (0.97, 3.26)

0.62 (0.44, 0.87)
1.37 (1.17, 1.61)
1.18 (0.85, 1.65)
1.80 (1.28, 2.52)
0.91 (0.80, 1.05)
0.66 (0.55, 0.78)
1.76 (1.25, 2.47)
1.61 (097, 2.67)

0.63 (0.45, 0.88)
1.37 (1.16, 1.61)
1.18 (0.84, 1.64)
1.76 (1.25, 2.47)
0.92 (0.80, 1.06)
0.67 (0.56, 0.80)
1.77 (1.28, 2.47)
1.61 (097, 2.68)

p-value <0.05
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Table 4 Assumptions, Limitations, Strengths and Biases between different methods of analysis

Method Assumptions Limitations

Strengths Bias

Complete Case Analysis  Participants with missing data
are a random sample of those

intended to be observed [15, 29]

Survival Analysis LTF is unrelated to mortality

Loss of statistical power [56]
Prone to bias [29]

Most studies found
assumption to be incorrect

Automatically
implemented by software
Common method

Might be biased if
participants with
missing data are
different to those with
complete data [15]

Most common method
Easy to perform

Survival is usually

overestimated

Inverse Those unsuccessfully traced have
Probability Weights from the same mortality as those
Tracing successfully traced
“outcomes are missing at
random after accounting for
available covariates” [22]
expensive

Tracing was done at the end Common method in HIV
of the 10 year follow up
period on everyone
Case-wise deletion if
covariates are missing
Tracing can be difficult and

Biased estimate of
studies effect size [56]
Conceptually easy to understand Residual selection bias
Best employed for monotone [22]

missing data [29]

Only as successful as your

tracing success

Loss of statistical power [56]

Multiple Imputation
with Chained Equations

Missing are only randomly
different from patients with same model
set of covariates

error [29]

Relies on a good prediction

Susceptible to human

If data are not MCAR
results might be
biased away from the
null [29]

Use all observations

Robust standard error

Least biased estimates of effect
size [56]

Gains in precision of estimation
of effects [15]

was done at the end of the 10 year follow-up period, and
those who were more recently lost were more likely to
be found compared to those lost at the beginning of the
follow-up period. Another limitation, inherent in most
IPW analyses, is the non-inclusion of several observa-
tions because of automatic case-wise deletion by the
analysis software due to missing data. With this in mind,
estimates might be biased and a loss of statistical power
might occur when utilizing this method [22, 56].

Unlike IPW, MICE is able to use all the observations
in a dataset by imputing the missing values, resulting in
robust results. However, it too has assumptions and is
prone to limitations. One major assumption is that the
risk of death among patients who are LTF is constant
over time. This may not be the case as mortality is
known to be highest in early periods after ART initiation
and decreases over time [33, 34, 45, 57]. Additionally,
MICE relies on a good prediction model and requires
data to be missing at random (MAR) [29, 31]. Although
MAR is difficult to ascertain, recent publications have
explored the application of MICE in non-MAR situa-
tions and found that a small amount of bias might be
present in the results. However, compared to the other
methods, the small amount of bias that might be present
is offset by the gains of using all observations present in
the dataset and the robust standard errors calculated by
the procedure [29, 30, 58]. Several studies have incorpo-
rated MICE as a method to estimate associations due to
attrition or lost to follow up in longitudinal studies [59,
60]. Regardless of the method used, one must diligently

explore patterns of missingness before performing any
analyses [10, 25, 28-31]. We believe that, despite some
limitations with MICE, the benefits of using all available
data and the subsequent calculation of robust standard
errors outweigh the limitations. Therefore, the approach
of imputing both the outcome and covariates seems
better than more traditional methods.

Although we describe a statical approach to approxi-
mating survival rates, implementation research is needed
to determine the effectiveness and scalability of interven-
tions to keep patients engaged in care and to return
them into care [3, 44, 45, 48]. HIV programs should
consider including sensitivity analyses or other methods
for estimating the vital status among those categorized
as lost, as traditional methods, such as CC, IPW, Kaplan
Meier and Cox proportional hazards models,do not
consider that patients who are lost re-engage in care.
The multiple imputation method that we describe in this
paper provides an estimate that is closer to the actual
outcome rates. Further research is needed to test this
method in other countries and HIV programs to see if it
provides outcome estimates close to actual rates.

Conclusions

In the last ten years, there has been an increase in the
number of journal articles citing multiple imputation as a
method used for filling in missing values or as a secondary
analysis [53, 61, 62]. MICE might be a cost efficient
mathematical alternative that can be employed in resource
limited settings such as Haiti to impute outcome status



Jannat-Khah et al. BMC Public Health (2018) 18:1269

estimates for program evaluation to estimate survival.
However, data should be evaluated for patterns of miss-
ingness. Currently, MICE is underutilized in public health
research—especially of HIV-infected cohorts. Because the
benefits of MICE outweigh the potential for erroneous
use, we encourage the use of MICE among our HIV
research colleagues.

Additional file

Additional file 1: Data analysis using R is a supplementary file that
describes how to download the free statistical software package R and R
studio. It also includes the names of the R packages used for this analysis
and various websites that one could consult for help using R. (DOCX 12 kb)
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