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Estimating the spatial risk of tuberculosis
distribution in Gurage zone, southern
Ethiopia: a geostatistical kriging approach
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Abstract

Background: In low-income countries it is difficult to obtain complete data that show spatial heterogeneity in the
risk of tuberculosis within-and-between smaller administrative units. This may contribute to the partial effectiveness
of tuberculosis control programs. The aim of this study was to estimate the spatial risk of tuberculosis distribution in
Gurage Zone, Southern Ethiopia using limited spatial datasets.

Methods: A total of 1601 patient data that were retrieved from unit tuberculosis registers were included in the final
analyses. The population and geo-location data were obtained from the Central Statistical Agency of Ethiopia. Altitude
data were extracted from ASTER Global Digital Elevation Model Version 2. Aggregated datasets from sample of 169(40%),
254(60%) and 338(80%) kebeles were used to estimate the spatial risk of TB distribution in the Gurage Zone by using a
geostatistical kriging approach. The best set of input parameters were decided based on the lowest prediction error
criteria of the cross-validation technique. ArcGIS 10.2 was used for the spatial data analyses.

Results: The best semivariogram models were the Pentaspherical, Rational Quadratic, and K-Bessel for the 40, 60 and 80%
spatial datasets, respectively. The predictive accuracies of the models have improved with the true anisotropy, altitude
and latitude covariates, the change in detrending pattern from local to global, and the increase in size of spatial dataset.
The risk of tuberculosis was estimated to be higher at western, northwest, southwest and southeast parts of the study
area, and crossed between high and low at west-central parts.

Conclusion: This study has underlined that the geostatistical kriging approach can be applied to estimate the spatial risk
of tuberculosis distribution in data limited settings. The estimation results may help local public health authorities
measure burden of the disease at all locations, identify geographical areas that require more attention, and evaluate the
impacts of intervention programs.
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Background
Tuberculosis (TB) continues to place an extraordinary
public health, financial and social burden on those
afflicted by the disease and their families, and on govern-
ment. In 2016, there were an estimated 10.4 million inci-
dent cases and 1.7 million deaths worldwide [1]. The
global distribution of the disease is skewed heavily toward
low-and-middle income countries, which accounted for
about 87% of all estimated incident cases. Ethiopia is a

low-income country in east Africa that remains highly
afflicted by TB and is ranked among the list of 14 coun-
tries with high burden of TB, Human Immunodeficiency
Virus (HIV)-associated TB (TB/HIV) and Drug Resistant
TB (DR-TB) [1].
It is difficult to obtain spatially complete data on TB in

Ethiopia [1, 2]. About 36% of the estimated TB cases were
not notified to the national TB program in 2016. The na-
tional TB prevalence surveys were conducted through sam-
pling a limited number of locations due to logistical and
financial limitations [3, 4]. Moreover, other regional reports
did also not show continuous spatial distribution and bur-
den of the disease within-and-between smaller geographical
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locations [5, 6]. This presents a substantial obstacle to
measure burden of the disease, identify high-risk geograph-
ical locations, evaluate the impacts of intervention pro-
grams and allocate public health resources.
Spatial interpolation is the process of estimating values

for a variable of interest at unmeasured locations using
data from the surrounding locations [7]. All the spatial
interpolation models share a common underlying as-
sumption of the closer values are more related than the
distant ones [8]. These models are divided into two cat-
egories, deterministic and geostatistical models [9]. The
deterministic models estimate between measured values
using mathematical formulas that vary the smoothness
of the estimated surface. The spatial correlation of the
data is not considered in the estimation. Consequently,
deterministic models do not estimate the uncertainty of
predictions. Conversely, geostatistical models consider
the spatial correlation of the dataset. Rather than giving
interpolation weights based on arbitrary formulas, the
semivariogram models are used to found out weights
from the observed data [10]. The weights dictate how
each measured value contributes to the interpolated
value at unmeasured location. Geostatistical models pro-
duce prediction estimates and associated prediction er-
rors at all unmeasured locations. Kriging is the most
robust and widely used geostatistical method of
interpolation in many fields of science [11]. It is known
as the optimal interpolation method because it mini-
mizes the mean square error of predictions and is statis-
tically unbiased (i.e., estimated values and measured
values agree on average) [12]. Recently, there have been
several applications of kriging in the area of public
health for estimating the predicted risk surface of infec-
tious diseases, such as TB [3], malaria [11], cholera [13],
helminths [14] and schistosomiasis [15].
The aim of this study was to estimate the spatial risk

of TB distribution in Gurage Zone, Southern Ethiopia.
Three geostatistical kriging models were fitted with 40,
60 and 80% of spatially aggregated TB dataset
co-impacted by geographical factors. The estimated risk
map may help local authorities as a guide for planning,
budgeting and resource mobilization. The graphical
demonstration may be a good tool for advocacy since
stakeholders can easily identify the spatial structure of
the disease by watching over the map and may be inter-
ested to implement geographically targeted interven-
tions. Furthermore, the study findings may also
contribute for the growing body of geostatistical research
on TB.

Methods
Study area
This study was conducted in the Gurage Zone in south-
ern Ethiopia, which is located between 7°76′ and 8°45’ N

latitude and 37°46′ and 38°71′ E longitude (Fig. 1). The
zone has 13 districts and two town administrations (at
Butajira and Wolkitie). It covers an area of about
5932 km2. There are 403 rural and 20 urban kebeles (the
smallest administrative units with a population of 5000
on average) in the zone. There were a total of 1,542,131
populations in 2016, about 84% of which live in the rural
areas [16].
There are a total of 6 hospitals, 70 health centers, 414

health posts and 92 clinics in the zone that provide TB
prevention and control services [16]. The clinics and the
health posts provide community education, identify and
refer presumptive TB cases to health facilities for further
investigation, give Bacillus Calmette-Guérin vaccination,
contact locating and screening, trace and link lost to fol-
low up cases, and support treatment adherence through
female health extension workers. The health centers
carry out all activities as health posts and clinics, and
additionally provide intensified case finding, sputum mi-
croscopy services, provide isoniazid preventive therapy
for eligible persons, diagnose and manage adverse drug
reactions and other complications, carry out TB/HIV
collaborative activities, refer smear negative presumptive
TB, extra-pulmonary TB and DR-TB patients to higher
level facilities, provide support to health post staff, keep
patient records and manage medicines stocks, plan and
implement TB infection control. Health centers add-
itionally provide Directly Observed Treatment-Short
courses (DOTS) services for patients with DR-TB re-
ferred by treatment initiation centers. The hospitals
carry out activities as health centers, and additionally
provide referral services and admission care for seriously
ill TB patients. Selected hospitals provide diagnosis and
treatment for DR-TB patients, including inpatient care.
The GeneXpert machines are installed at hospital la-
boratories. Private health facilities are also engaged in
TB diagnosis, treatment and/or referral of presumptive
TB and DR-TB cases depending on their capacity [17].

Data sources
The list of health facilities providing DOTS services
were obtained from the Health Department database
of Gurage Zone. All TB patients who were residents
of the zone and registered at the health facilities dur-
ing January to December, 2016 were included in the
study. The patient data were retrieved from the unit
TB registers from June to September, 2017. The pa-
tients’ addresses were checked for duplication and
linked to their true geo-locations. The data on
geo-location and population of each kebele in the
zone were accessed from the Central Statistical
Agency of Ethiopia (CSA). Altitude of each kebele
was extracted from ASTER Global Digital Elevation
Model V2 [18].
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TB diagnosis and case definition
The diagnostic criteria of the national TB diagnosis
guideline of Ethiopia were used to diagnose the TB
cases [19].
Smear-positive pulmonary TB (PTB+): is diagnosed

when at least 2 initial sputum smear examinations are
positive for Acid Fast Bacilli (AFB) or 1 smear-positive
result for AFB and culture-positive result for M. tuber-
culosis or 1 smear-positive result for AFB and radio-
graphic abnormalities indicative of active TB, in addition
to a clinician’s judgment. The regional laboratory carries
out external quality assurance on all slides, and provides

a feedback to the health facility providing DOTS
services.
Smear-negative pulmonary TB (PTB-): is diagnosed

when there are symptoms evocative of TB, at least 3
smear-negative initial results for AFB, lack of response
to antibiotics, smear-negative and radiological abnormal-
ities indicative of pulmonary TB, and judgment of a
clinician.
Extra-pulmonary TB (ETB): is diagnosed when a spe-

cimen from an extra-pulmonary site is culture positive
or histo-pathological abnormality from a biopsy, and
strong clinical evidence indicative of active ETB.

Fig. 1 Map of the study area (Gurage Zone). Source: Tadesse et al., 2018 [17]
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However, because of insufficient laboratories for
histo-pathological or culture examinations, most of the
health facilities diagnose ETB based on a clinician’s
judgment.
Newly diagnosed case of TB: is a patient who has

never taken anti-TB drugs or taken for less than a
month.
Retreatment TB case: is a patient who has previous

treatment failure, or relapse or default.

Data quality control
Supervisors and data collectors were trained on the field
methods, data extraction and record keeping. The data
completeness and consistency was checked page-by-page
by health facilities, kebele, and district against unit TB
registers.

Data management and processing
Data were entered, validated, cleaned, and coded using
MS Excel (MicroSoft, Redmond, WA, USA). The pa-
tients’ data were linked to their true address using CSA
codes, and aggregated at kebele level. The aggregated
dataset from a total of 423(100%) kebeles were used to
examine the actual spatial risk of TB distribution. Then,
the aggregated TB datasets co-impacted by geographic
factors from sample of 169(40%), 254(60%) and
338(80%) kebeles were used to estimate the spatial risk
of TB distribution and associated standard error by
using a geostatistical kriging approach (Additional file 1).
A simple random sampling technique was used to select
the spatial sample kebeles. Geographically weighted cen-
tral locations were represented by the kebele centroids
as coordinates. A table containing the number of TB
cases, the population, the coordinates and the prevalence
rates (the number of TB cases divided by the population
of a given year and multiplied by 100,000) were pre-
pared, and were joined to ArcGIS 10.2.

Spatial smoothing
Spatial Empirical Bayes Smoothing (SEBS) method was
employed in Geographic Data analysis tool (GeoDa) in
order to overcome small areas variance instability, which
is due to variations in population size as well as few
cases of TB in some areas [20]. The population for each
kebele was used as a base variable and number of TB
cases was used as an event. A queen weights matrix that
defines the neighboring kebeles as those with either a
shared border or vertex was used for spatial weights
[20]. The SEBS method was not applied for the datasets
that were used for spatial prediction since the geostatis-
tical kriging would result smoothed estimates by using a
weighted linear combination of the known measured
values.

Ordinary kriging
Varieties of kriging have been developed, such as ordin-
ary, universal, simple and indicator. Ordinary kriging
was preferred to other types of kriging because it pre-
dicts an estimate for unsampled kebele by assuming a
constant mean in the local neighborhood of each estima-
tion kebele, which is a characteristic of focal diseases like
TB. Besides, it is a good geostatistical method to model
data that exhibit spatial trend [21]. It uses a semivario-
gram model to measure spatial autocorrelation between
pairs of prevalence rates as follows [10]:

γ hð Þ ¼ 1
2n

Xn

i¼1
Z xð Þ−Z xþ hð Þð Þ2 ð1Þ

where n is the total number of pairs of sample kebeles,
Z(x) and Z(x + h) are the prevalence rates at any two
kebeles x and x + h separated by distance h. Calculations
of γ(h) are repeated for 2 h, 3 h, 4 h, ..., kh. The models
of spatial autocorrelation commonly exhibit similar char-
acteristics, which are called the sill, range, and nugget.
The sill is the maximum variability between pairs of
prevalence rates. The separation distance at which the
sill is reached is termed the range and represents the
maximum distance beyond which prevalence rates are
spatially independent. The nugget effect refers to the
situation in which the difference between prevalence
rates taken at sampling kebeles that are close together is
not zero. It represents spatial sources of variation at dis-
tances smaller than the sampling interval (i.e. spatial var-
iations of prevalence rates at village level, which is a
spatial subset of kebele) or measurement error (e.g. pas-
sive case detection).
As described in detail previously [12], an unknown

prevalence rate Ẑu at kebele u is estimated as a
weighted-linear combination of n known samples as
follows:

Ẑu ¼
Xn

i¼1
WiZi ð2Þ

whereXn

i¼1
Wi ¼ 1

The optimal weights which produce the minimum es-
timation error in eq. (2) can be determined by using the
following simultaneous equations:

Wiγ h1;1
� � þ⋯ þWnγ h1;n

� � þ λ ¼ γ h1;u
� �

⋮ ⋱ ⋮ ⋱ ⋮ ⋮
W1γ hn;1

� � þ⋯ þWnγ hn;n
� � þ λ ¼ γ hn:uð Þ

W1 þ⋯ þWn ¼ γ hn:uð Þ
ð3Þ

where γ(hi, j) is a semivariogram model which is a func-
tion of distance hi, j between prevalence rates i and j,
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and λ is the Lagrange Multiplier to minimize the kriging
error. The correlation between prevalence rates i and j is
expected to decrease as their separation distance hi, j in-
creases. The optimal weights in eq. (2) are calculated as
follows:

W1

⋮
Wn

λ

2
664

3
775 ¼

γ h1;1
� �

⋯ γ h1;n
� �

1
⋮ ⋱ ⋮ ⋮

γ hn;1
� �

⋯ γ hn;n
� �

1
1 ⋯ 1 0

2
664

3
775
−1

γ h1;u
� �
⋮

γ hn;u
� �
1

2
664

3
775
ð4Þ

Therefore, ordinary kriging produces an unbiased esti-
mate with minimum variance.

Ordinary cokriging
Ordinary cokriging is an extension of ordinary kriging
method that uses both the spatial autocorrelation for
prevalence rate (i.e. the main variable of interest) and
the spatial cross-correlations between prevalence rate
and geographic variables (i.e. altitude, latitude and longi-
tude) to make estimations of the prevalence rates at
unsampled kebeles. The development of the ordinary
cokriging system is identical to the development of or-
dinary kriging system. The mathematical formulation of
ordinary cokriging has been described in detail by Yalcin
[22].
In this study both ordinary kriging and ordinary cokri-

ging models were tested for the three categories of data-
sets, and ordinary cokriging models were selected as the
best-fitted ones.

Model selection
In this study the effects of the different types of semivar-
iogram models (i.e., stable, spherical, circular, tetrasphe-
rical, pentaspherical, Gaussian, exponential, rational
quadratic, K-Bessel, hole effect and J-Bessel), detrending
(i.e., neighborhood, global and local), anisotropy (i.e.,
false and true) and geographic covariates (i.e., longitude,
latitude and altitude) on the predictive performance of
kriging were checked by using a cross-validation tech-
nique. The technique leaves and adds each sample
points in the dataset turn by turn to provide pairs of
predicted and measured values that can be compared to
evaluate the model’s performance. A total of 528 geosta-
tistical kriging models were generated for each category
of spatial dataset (i.e., 40, 60 and 80%) (Additional file 2).
The final models for each category of the spatial dataset
were decided based on the lowest total error, obtained
by sorting values of Root-Mean-Square Error (RMSE),
absolute value of Mean-Standardized Error (MSE),
Root-Mean-Square-Standardized Error (RMSSE) and ab-
solute value of the difference of Average-Standard Error
(ASE) from RMSE in ascending order, and then ranking

and summing up the ranks. All these errors are
expressed by eqs. (5)-(8) below [23]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Z� xið Þ−Z xið Þ½ �2

r
ð5Þ

MSE ¼ 1
n

Xn

i¼1

Z� xið Þ−Z xið Þ
σ2 xið Þ

� �
ð6Þ

RMSSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

Z� xið Þ−Z xið Þ
σ2 xið Þ

� �2s
ð7Þ

ASE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
σ2 xið Þ

r
ð8Þ

where σ2(xi) is the kriging variance for location xi, and
Z∗(xi) and Z(xi) are the predicted and the sampled values
at the location xi, respectively.

Sensitivity analyses
The Semivariogram Sensitivity tool, which is found
under the Geostatistical Analyst toolbox of ArcGIS 10.2,
was used to perform sensitivity analyses on the predicted
values and associated Standard Errors (SE) by varying
the nugget and range within a percentage of the original
values. The outputs of the analyses were a table indicat-
ing which parameter values were used and what the
resulting predicted and standard error values were.
Small fluctuations in the output with small changes in
the input parameter values indicate more confident pre-
dictions which can be used to make decisions.

Risk measurement
The prevalence rate was used as a proxy variable to esti-
mate the risk of TB in the study area. The estimated risk
surface was categorized as a low risk area where the
prevalence rate was below and equal to 100 cases per
100,000 population, and a high risk area where the
prevalence rate was above 100 cases per 100,000 popula-
tion [20].

Results
Patient characteristics
A total of 1626 TB cases were diagnosed during January
to December, 2016. Only 1.6% of them were excluded
from the final analyses because of incomplete addresses
or being outside of the study area. Out of 1601 cases in-
cluded in this study 57.5% were males and 42.5% were
women, yielding a male to female ratio of 1.3:1. The
mean age with a standard deviation was 36 ± 17 years
for all cases, 34 ± 16 years for males and 38 ± 17 years
for females. The majority, 89.6%, of the cases were newly
diagnosed, while 10.4% were retreatment cases. Of the
cases 41.2% were PTB+, 31.9% PTB- and 26.9% ETB.
Residentially, 86.6% were from rural areas.
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The actual spatial risk of TB distribution
The risk distribution of TB varied from 59 to 173 cases
per 100,000 population across districts of the Gurage
Zone (Fig. 2). Moreover, the smoothed rates of TB varied
from zero to 634 cases per 100,000 population across
kebeles of the zone. High risk of TB was observed at
northwest, western, southwest and southeast parts. The
risk distribution crossed between high and low at
west-central parts (Fig. 3).

The best-fitted models
The best geostatistical kriging models were decided to
be: 1) Pentaspherical semivariogram, local detrending,
true anisotropy and altitude and latitude covariates for
modeling with 40% of spatial dataset, 2) Rational Quad-
ratic semivariogram, local detrending, true anisotropy
and altitude and latitude covariates for modeling with

60% of spatial dataset, and 3) K-Bessel semivariogram,
global detrending, true anisotropy and altitude and lati-
tude covariates for modeling with 80% of spatial dataset.
The detrending pattern of the models changed from
local to global as the size of spatial dataset increased.
Moreover, the models predictive accuracies also im-
proved as the size of spatial dataset increased, which was
indicated by 0 MSE, 1 RMSSE, and ASE approached
RMSE (i.e., the variability in prediction is correctly
assessed) (Table 1).

Sensitivity analyses outputs
The parameter values for nugget and range from the in-
put geostatistical model sources were 8123.85 and
72,891.45 for the model with 40% spatial dataset,
7178.77 and 78,808.04 for the model with 60% spatial
dataset, and 7210.46 and 78,767.27 for the model with

Fig. 2 TB prevalence rates by districts in Gurage Zone

Fig. 3 The SEBS rates of TB in Gurage Zone. Source: Authors own data
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80% spatial dataset, respectively. Five random nugget
and range values that were found within 10% of the in-
put models’ nugget and range values were calculated for
each dataset and used as input parameters. There were
only small fluctuations in the prediction outputs for the
corresponding input parameters, indicating more accur-
ate predictive performance of the models (Table 2).

The estimated spatial risk of TB distribution
The ordinary cokriging models with 40, 60 and 80% of
the spatial datasets estimated high risk of TB at north-
west, western, southwest and southeast parts of the
Gurage Zone. The risk distribution crossed between high
and low at west-central parts. Moreover, the models esti-
mated high uncertainties of prediction at border areas of
the zone, the magnitude of which decreased as the
spatial dataset increased (Fig. 4).

Comparison between estimated and actual spatial risk of
TB distribution
The three estimation models identified areas for high
risk of TB at locations that were closely similar to the
actual high-risk areas, with reasonable predictive accur-
acies. These locations included northwest, western,
southwest and southeast parts of the Gurage Zone. The
risk distribution crossed between high and low at
west-central parts (see Figs 3 and 4 above).

Discussion
This study has underscored that the geostatistical kriging
approach can be applied to estimate the spatial risk of TB
distribution in settings where spatially limited data are
available. The estimation models indicated that there was
spatial heterogeneity in the risk of TB distribution in the
Gurage Zone, indicating the disease did not affect all of the
communities in the area with the same severity. The risk
was higher in northwest, western, southwest and southeast
parts of the zone. However, the risk distribution interlocked
between high and low at west-central parts. Evidences have
revealed that differences in underlying socioeconomic, cli-
matic and geographic conditions, and uneven allocation of
public health resources could contribute for the spatial het-
erogeneity in the risk of TB distribution [3, 24, 25].

Moreover, the cross-border population movements from
the neighboring border areas could also facilitate the high
transmission of TB, especially at border areas of the zone
[26–30]. Therefore, the estimated risk map of TB may help
local public health authorities prioritize locations that re-
quired immediate interventions.
This study revealed that cokriging with altitude and

latitude were the best geostatistical models, which sug-
gested that including these covariables improved the
predictive accuracies of the models. This reflects that
geographical factors can affect the risk distribution of
TB in the Gurage Zone. Previous studies have
highlighted that the geographical factors had explicit im-
pacts on the risk distribution of TB [3, 24, 25, 31, 32].

Table 1 Comparison of cross-validation statistics for TB spatial
datasets in Gurage Zone, Southern Ethiopia, 2017

Cross-
validation
statistics

Ordinary cokriging models

With 40% dataset With 60% dataset With 80% dataset

MSE 0 0 0

RMSSE 1 1 1

RMSE 89 88 87

ASE 93 87 87

Table 2 The semivariogram sensitivity analyses results for TB
spatial datasets in Gurage Zone, Southern Ethiopia, 2017

Model Random
Parameter

Prediction SE Nugget Range

Modeling with
40% dataset

Nugget 79.00 22.95 7898.75 72,891.45

Nugget 78.99 23.34 8170.68 72,891.45

Nugget 79.01 22.66 7702.39 72,891.45

Nugget 79.01 22.35 7467.51 72,891.45

Nugget 79.02 22.47 7572.18 72,891.45

Range 78.99 23.18 8062.43 76,769.04

Range 78.65 23.19 8068.52 79,894.51

Range 78.66 23.17 8050.92 72,346.21

Range 78.66 23.17 8051.90 72,671.44

Range 78.65 23.19 8068.39 79,821.99

Modeling with
60% dataset

Nugget 67.35 21.45 6995.20 78,808.04

Nugget 67.63 20.94 7360.37 78,808.04

Nugget 67.57 21.05 7284.92 78,808.04

Nugget 67.66 20.90 7425.62 78,808.04

Nugget 67.68 21.24 7669.06 78,808.04

Range 67.44 21.16 7018.50 80,198.91

Range 83.57 21.03 6920.55 73,192.36

Range 67.55 21.00 7076.75 85,175.07

Range 77.54 20.82 6979.91 77,256.03

Range 67.55 21.00 7076.00 85,106.29

Modeling with
80% dataset

Nugget 77.35 20.49 7017.76 78,767.27

Nugget 77.46 20.86 7356.95 78,767.27

Nugget 77.51 21.51 7865.18 78,767.27

Nugget 77.20 20.02 6603.89 78,767.27

Nugget 77.45 20.84 7332.31 78,767.27

Range 77.82 20.60 7212.61 80,939.15

Range 77.82 20.60 7212.40 80,888.19

Range 74.71 19.43 7172.59 72,233.82

Range 74.71 19.44 7179.62 73,658.34

Range 77.82 20.61 7221.91 83,206.47
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Fig. 4 The prediction risk maps of TB and associated standard error maps in Gurage Zone. Source: Authors own data
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Thus, impacts of geographical factors on TB prevention
and control should be evaluated, and interventions
should be formulated based on geographical features.
In the present study the prediction standard error values

were relatively higher in the western, northwest, southwest
and southeast parts than in the others. This could be due to
the fact that the spatial distribution of TB risk was higher in
the western, northwest, southwest and southeast parts of
the study area and kriging method underestimated the
higher values [3]. The other reason could be that the major-
ity of the spatial sample points were sparser in areas with
higher prediction standard error [3]. The lack of data point
beyond the borders of the study area could also explain the
higher prediction standard error [12]. Therefore, it would be
better to take sample data points with better spatial distribu-
tion beyond or on the boundaries of these locations in order
to obtain more accurate and stable kriging surface estimates.
This study has also practical implications to TB preven-

tion and control programs in low-income countries, where
obtaining spatially complete TB data is difficult. The recent
advancements in geostatistical modeling techniques and in-
creasing availability of public health data from the national
prevalence surveys, demographic and health system surveys
and health facilities will be the good opportunities for epi-
demiologists working in such settings to predict the spatial
risk of TB distribution and associated prediction uncer-
tainty at non-surveyed locations [3, 8, 11]. The resulting
prediction risk map may allow them measure burden of the
disease at all locations, identify high-risk geographical areas
for targeted interventions, and evaluate the impacts of
intervention programs. This will be useful for optimal
utilization of the scarce public health resource.
This study has some limitations. The estimated risk of

TB might be underestimated in some areas because the
study did not include those patients who would remain
undiagnosed for the disease, and those diagnosed and
treated at health facilities outside the study area. The
modifiable areal unit problem might arise due to the
spatial unit of data aggregation. However, the spatial unit
of analysis used in this study was the finest resolution
available, kebele, which was also the spatial unit used for
healthcare planning in the study area. The denominator
population numbers could be affected by uneven popu-
lation growth across the study area since the numbers
were projected from the 2007 census [33].

Conclusion
This study has underlined that the geostatistical kriging
approach can be applied to estimate the spatial risk of
tuberculosis distribution in data limited settings. The es-
timation results may help local public health authorities
measure burden of the disease at all locations, identify
geographical areas that require more attention, and
evaluate the impacts of intervention programs.
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