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outbreaks based on the China infectious
disease automated alert and response
system (CIDARS)
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Abstract

Background: China Centre for Diseases Control and Prevention (CDC) developed the China Infectious Disease
Automated Alert and Response System (CIDARS) in 2005. The CIDARS was used to strengthen infectious disease
surveillance and aid in the early warning of outbreak. The CIDARS has been integrated into the routine outbreak
monitoring efforts of the CDC at all levels in China. Early warning threshold is crucial for outbreak detection in the
CIDARS, but CDCs at all level are currently using thresholds recommended by the China CDC, and these
recommended thresholds have recognized limitations. Our study therefore seeks to explore an operational method
to select the proper early warning threshold according to the epidemic features of local infectious diseases.

Methods: The data used in this study were extracted from the web-based Nationwide Notifiable Infectious Diseases
Reporting Information System (NIDRIS), and data for infectious disease cases were organized by calendar week (1–52)
and year (2009–2015) in Excel format; Px was calculated using a percentile-based moving window (moving window
[5 week*5 year], x), where x represents one of 12 centiles (0.40, 0.45, 0.50….0.95). Outbreak signals for the 12 Px were
calculated using the moving percentile method (MPM) based on data from the CIDARS. When the outbreak signals
generated by the ‘mean + 2SD’ gold standard were in line with a Px generated outbreak signal for each week during
the year of 2014, this Px was then defined as the proper threshold for the infectious disease. Finally, the performance of
new selected thresholds for each infectious disease was evaluated by simulated outbreak signals based on 2015 data.

Results: Six infectious diseases were selected in this study (chickenpox, mumps, hand foot and mouth diseases (HFMD),
scarlet fever, influenza and rubella). Proper thresholds for chickenpox (P75), mumps (P80), influenza (P75), rubella (P45), HFMD
(P75), and scarlet fever (P80) were identified. The selected proper thresholds for these 6 infectious diseases could detect
almost all simulated outbreaks within a shorter time period compared to thresholds recommended by the China CDC.

Conclusions: It is beneficial to select the proper early warning threshold to detect infectious disease aberrations based on
characteristics and epidemic features of local diseases in the CIDARS.
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Background
Public health emergencies, especially infectious disease
outbreaks have enormously affected humankind [1, 2],
and infectious diseases remain the major cause of morbid-
ity and mortality in China [3]. The Chinese Ministry of
Health believes that outbreak early detection and rapid
control actions are important strategies for infectious
disease control and prevention [4]. In order to enhance in-
fectious disease surveillance, the China Centre for Disease
Control and Prevention (China CDC) established a web-
based Nationwide Notifiable Infectious Diseases Reporting
Information System (NIDRIS) in 2004 [5]. According to
the Law on Prevention and Control of Infectious Disease
in China, all cases of notifiable infectious disease are diag-
nosed by clinicians in all levels of healthcare institutions
using the uniform case definition issued by the Chinese
Ministry of Health, and clinicians are obligated to report
all diagnosed infectious disease cases through the NIDRIS
in real time. The NIDRIS is under monthly positive quality
control and inspection by local CDC staffs, the unreported
rate is far below 3‰ in Shanghai and 8 ‰ in China. The
successful establishment of the NIDRIS has provided a
cornerstone for the implementation of automated and
timely detection of infectious disease aberrations [6]. In
2005, the China CDC developed the China Infectious Dis-
ease Automated-alert and Response System (CIDARS),
and the CIDARS was successfully implemented and has
become operational nationwide since 2008 [7]. Now the
CIDARS has been integrated into the routine outbreak
monitoring efforts of the CDCs at all levels (including the
national level, provincial level, municipal level, and county
or district level) in China [8].
The CIDARS was developed based on the NIDRIS which

includes 30 infectious diseases. The 30 infectious diseases
were classified into two types according to their severity,
morbidity and public health importance [8, 9].Type I in-
cludes 9 infectious diseases with higher severity but lower
incidence (plague, cholera, SARS, human avian influenza,
poliomyelitis, anthrax, diphtheria, filariasis and unexplained
pneumonia). The fixed threshold detection method (FDM)
is applied to detect aberration of type I and the threshold of
FDM is a fixed value and usually set as one [10–14]. Type
II includes 21 infectious diseases with high incidence but
lower severity (Hepatitis A, Hepatitis B, Hepatitis C, mea-
sles, epidemic haemorrhagic fever, epidemic encephalitis B,
dengue fever, bacillary and amoebic dysentery, typhoid and
paratyphoid, epidemic cerebrospinal meningitis, scarlet
fever, leptospirosis, malaria, influenza, epidemic mumps,
rubella, acute hemorrhagic conjunctivitis, epidemic and
endemic typhus, chickenpox, hand foot mouth disease, in-
fectious diarrhoea). The temporal detection method (TDM)
[10–12] is applied to more common infectious diseases of
Type II [10–12]. Moving percentile method (MPM) [9], the
most common TDM, is used to detect aberration of disease

occurrence by comparing the reported cases in the current
observation period to that of the corresponding historical
period at the county level [7]. Once the CIDARS detect a
disease aberration by FDM or TDM, the CIDARS would
send early alert signals to specific mobile phones by SMS to
ensure the accurate and timely dissemination of surveil-
lance information [8]. When local CDC staff receive signals
indicating potential outbreaks, they are required to verify
the occurrence of these outbreaks via phone interviews or
onsite investigations and provide feedback in the CIDARS
within 12 h.
In the CIDARS, early alert signals are generated when the

number of reported cases exceeds the thresholds [15, 16].
Thus, the selection of a threshold for each infectious
disease is crucial for the performance of the CIDARS. In
China, CDCs at all level are currently using the thresholds
recommended by China CDC, and these recommended
thresholds have recognized limitations. Jie Kuang [9]
mentioned in his study that the CIDARS generates many
false-positive signals, and large differences exist between
the outbreak signal counts and the final identified out-
breaks, these issues prompted us that national recom-
mended thresholds might be not ideal for all level of CDCs
in China. To improve the performance of the CIDARS at
outbreak detection, the China CDC has suggested that
CDCs at all levels should carry out studies to select proper
thresholds according to the epidemic characteristics of local
infectious diseases [1, 17, 18]. However, evidence on how to
select the proper threshold to detect infectious disease
aberrations based on the CIDARS is limited.
In this study, 6 infectious diseases of Type II were se-

lected because of their high morbidity (accounting for
40% of total infectious diseases) and higher frequency of
early alarming signals in the CIDARS (accounting for 75%
of total early alarming signals) in Shanghai. Our study
sought to explore an operational method to select the
proper early warning threshold according to the epidemic
characteristics of local infectious diseases based on the
CIDARS. Findings of this study may therefore help public
health practitioners understand the principle ideas behind
automated surveillance and provide methodological refer-
ences for future research and implementation.

Methods
Data sources
In this study, we select 6 Type II infectious diseases in the
Songjiang district of Shanghai. These 6 infectious diseases
include hand foot and mouth diseases (HFMD), mumps,
influenza, scarlet fever, chickenpox, and rubella. Data for
cases of selected infectious diseases during the period from
2009 to 2015 are extracted from NIDRIS and organized by
calendar week (1–52) and by year (2009–2015) in Excel
format. Data from 2009 to 2014 are used to establish the
model and select the proper early-alert thresholds. Data
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from 2015 are used as testing data to evaluate the perform-
ance of the previously selected early-alert thresholds. Mean-
while, early alerting signals of 6 selected infectious diseases
from 2009 to 2014 are extracted from the CIDARS to illus-
trate the system outputs which was based on the national
recommended thresholds.

Study design
This study has two stages which is depicted in Fig. 1, the
stage one is proper threshold selection, and the stage
two is threshold performance evaluation.
In stage one, 12 centiles (Px) are calculated by MPM

based on case data of the 6 selected infectious diseases
during the period from 2009 to 2014. Meanwhile, the
outbreak gold standard (mean + 2SD) in the CIDARS
that recommended by China CDC is also calculated
based on the same case data from 2009 to 2014. Then
early alerting signals generated by each of 12 centiles are
compared with those signals generated by the
“mean + 2SD” as gold standard in terms of sensitivity,
specificity and consistency rate respectively to identify
the proper thresholds for each infectious diseases.
In stage two, the selected proper thresholds for

each infectious diseases are set in the CIDARS, the
performance of new selected thresholds are evaluated
by inserting simulated outbreak signals into the data
from 2015.

Model building
In the CIDARS, the moving percentile method (MPM)
[9] is used in TDM to detect aberrations and determine
the proper threshold of Px (Px is a measure indicating
the value below xth percentage of observations in a
group of observations fall). Aberrations in disease occur-
rence are detected by comparing the number of cases re-
ported during the current observation period to the
number reported during a corresponding historical
period at the county level. The number of cases in the
current observation period is the sum of the reported
cases in the recent week. To maintain the stability of the
data, the previous five years are used as the historical
period [8], the corresponding historical period includes,
for each of the previous five years, the same current
week, the two preceding weeks and the two following
weeks, this results in 25 weeks of historical data
[5 week*5 year]. The percentile of the 25 blocks of his-
torical data is set as the indicator for potential aberration
detection. The current observation period and corre-
sponding historical data block period are dynamically
moved forward week by week.
We present the data for chickenpox cases reported in

the Songjiang District from the NIDRIS to demonstrate
the process of model building and predicted value calcu-
lation. As described in Table 1, data for chickenpox from
2009 to 2014 were sorted by calendar weeks and by; the
predicted value (Px) was calculated using a percentile-

Fig. 1 Flowchart of data processing and performance evaluation based on CIDARS
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based moving window ([5 week*5 year], x), where x was
defined as one of 12 centiles (0.40, 0.45, 0.50, 0.55, 0.60,
0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95). For instance, in
Table 1, the value of P40 for week 3 in 2014 was in the
40th percentile of the 25 blocks of historical data (week
[1–5], year [2009–2013]), and the predicted value of P40
for week 3 was 35. The value of P90 for week 5 in 2014
was in the 90th percentile of the 25 blocks of historical
data (week [3–7], year [2009–2013]), and the predicted
value of P90 for week 5 was 43. Then, we compared the
number of cases reported during each week in 2014 with
the predicted values generated for the corresponding
weeks and determined whether an outbreak signal oc-
curred for each of the 12 centiles; if the reported case
number exceeded the predicted value of Px during the cor-
responding week, an outbreak signal was generated. For
instance (see Table 1), in 2014, 26 cases were reported in
week 8, which exceeded the predicted values of P40 (22)
and P45 (22); therefore, the CIDARS would generate an
outbreak signal (an outbreak signal of Px = 1) if the
threshold was set as P40 or P45. However, the number of
cases reported in week 8 was smaller than the predicted
values of P90 (34) and P95 (34); thus, the CIDARS would
not generate outbreak signals (an outbreak signal of Px = 0)
if the threshold was set as P90 or P95 (see Table 1).
As depicted in Table 1, for the same infectious disease

(chickenpox), we identified the outbreak signals generated by
the ‘mean + 2SD’ gold standard method. The ‘mean + 2SD’
was the sum of the average value and 2 times of the standard
deviation of 260 weekly reported case numbers from 2009 to
2013, such that the ‘mean + 2SD’ for chickenpox is 61.34.

Then, we compared the number of cases reported during
each week in 2014 with the ‘mean + 2SD’ gold standard to
determine whether an outbreak signal occurred. For in-
stance, in 2014, 65 cases were reported during week 49,
which exceeded 61.34, such that the CIDARS would gener-
ate anoutbreak signal (anoutbreak signal of ‘mean+2SD’=1).
See Table 1 for additional details.

Proper early-warning thresholds selection
The proper early warning threshold for each infectious
disease is ascertained by comparing the outbreak signals
generated by Px with signals generated by the ‘mean + 2SD’
gold standard during the corresponding week. According
to the screening theory, a Px value is defined as the proper
threshold if the given Px generated outbreak signals are
mostly in line with the signals generated by the
‘mean + 2SD’method (see Tables 2 and 3). Se (Sensitivity),
Sp (Specificity), YI (Youden’s Index) and CR (Consistency
Rate) are used as evaluation indexes.
Se is defined as the percentage of all positive outbreak

signals (1) generated by outbreak gold standard
“mean + 2SD” that is also identified by a Px, it measures the
proportion of positives that are correctly identified. Sp is
defined as the percentage of all negative outbreak signals
(0) generated the outbreak gold standard “mean + 2SD”
that is also justified as negative by a Px, it measures the pro-
portion of negatives that are correctly identified. YI is a way
of summarizing the performance of a diagnostic test, its
value ranges from −1 to 1, and has a zero value when a
diagnostic test gives the same proportion of positive results
for groups with and without the disease. CR is the ratio of

Table 1 Predicted values and outbreak signals for each percentile value (Px) for chickenpox during 2014 based on the moving
percentile method and outbreak signals based on the ‘mean + 2SD’ gold standard in the CIDARS, Songjiang District of Shanghai, China

Px = percentile (moving window [5 week*5 year], x), x = 0.40, 0.45, 0.50,…, 0.85, 0.90, 0.95 (see colored cells, P40)
Outbreak signal of Px, 1 = potential outbreak, 0 = not potential outbreak
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identical signals generated by a Px and using the
“mean + 2SD” outbreak gold standard for the total 52
signals, its value ranges from 0 to 1, and larger CR values
demonstrate better consistency between the Px and the
“mean + 2SD”.
For instance, P75 is most in line with signals generated by

the ‘mean + 2SD’ gold standard for chickenpox, demon-
strating a Se of 100%, a Sp of 90.20%, a YI of 90.20% and a
CR of 0.90; therefore, P75 is defined as the proper threshold
for chickenpox. For additional details, see Table 3.

Proper early-warning thresholds validation
The selected proper early warning thresholds are validated
by inserting simulated outbreak signals into the real base-
line data in 2015. We select one real outbreak event for
each infectious disease in the Songjiang district of Shanghai.
All 6 real outbreaks are confirmed through field epidemio-
logical investigation by local CDC staff members. The daily
case distribution is calculated from the onset of the out-
break (Fig. 2),which is defined as onset date of the first case.
Then, for calculation convenience, we just assume that out-
break curve for each infectious disease scales in a linear
fashion across the entire outbreak. We multiples the corre-
sponding baseline case numbers for all days of an outbreak

by 0.5, 1.0, 2.0 and 3.0 to simulate 4 outbreak magnitudes.
For example, an outbreak magnitude of 0.5 is the product
of the baseline case numbers and 0.5.
For each infectious disease, we insert the simulated

outbreak on the first day of each month. If the month
has a public health emergency (infectious disease out-
breaks or epidemics), then we skip the artificial inser-
tion. This gives us 6 types of outbreak signals; each
infectious disease has 4 outbreak magnitude test datasets
for a total of 24 test datasets. In theory, 288 outbreak
signals could be inserted to evaluate the selected proper
thresholds. We finally insert 288 outbreak signals.
The early warning performance of the selected proper

thresholds for each infectious diseases is based on 3 indi-
cators, sensitivity (the proportion of outbreaks the thresh-
old detected), timeliness (the duration between the first
true alarm and the onset of the outbreak), and the false
alarm number (alarm signal indicating false outbreak).

Data analysis
Data analysis is performed using Excel 2013 and SPSS
software (version 16.0 for windows). Excel is used to sort
the data, and simulate the outbreak detection. SPSS is used
to calculate the evaluation indexes (Se, Sp, YI, CR, etc.) and
to identify the proper threshold of Px for each infectious
disease and to compare the performance of the proper
thresholds with the national recommended thresholds.

Results
General description
In this study, 6 infectious diseases were selected for study
in the Songjiang District of Shanghai. The 6 infectious
diseases included HFMD, mumps, influenza, scarlet fever,
chickenpox and rubella. According to China CDC’s
recommendation for thresholds in the CIDARS, P80 was
used for each of 6 selected infectious disease. Early warning
signals generated in the CIDARS was described in Fig. 3.
The number of early warning signals for mumps decreased
obviously during 2009 and 2014, and for HFMD, the
number of early warning signal increased slightly each year
during 2009 and 2014. However, no obvious increasing or
decreasing trends were identified or scarlet fever, rubella,
influenza or chickenpox in the number of early warning
signals during 2009 and 2014.

Proper early-alert threshold selection
The proper thresholds (Px) for each infectious disease were
selected based on local epidemic characteristics, and their
corresponding evaluation indexes were listed in Table 4.
The proper thresholds for rubella (P45), chickenpox (P75),
influenza (P75) and HFMD (P75) were lower than threshold
(P80) recommended by the China CDC. For mumps and
scarlet fever, the proper selected threshold P80 was identical
to the China CDC’s recommendation.

Table 2 Proper threshold selection method and evaluation
indexes for the performance of Px

Outbreak signals
of Px

Outbreak Gold Standard ‘mean + 2SD’ Total

1 0

1 A B R1

0 C D R2

Total C1 C2 N

Sensitivity, Se = A/C1; Specificity, Sp = D/C2; Youden’s Index, YI = Se + Sp-1;
Consistency Rate, CR = (A + D)/N

Table 3 The proper threshold Px selection for each infectious
disease (e.g., chickenpox) based on the CIDARS, Songjiang
District of Shanghai, China

Px Values based on the ‘mean + 2SD’ Evaluation indexes

A B C D Se (%) Sp (%) YI (%) CR(%)

P40 1 22 0 29 100.00 56.86 56.86 57.69

P45 1 20 0 31 100.00 60.78 60.78 61.54

P50 1 16 0 35 100.00 68.63 68.63 69.23

P55 1 13 0 38 100.00 74.51 74.51 75.00

P60 1 11 0 40 100.00 78.43 78.43 78.85

P65 1 6 0 45 100.00 88.24 88.24 88.46

P70 1 6 0 45 100.00 88.24 88.24 88.46

P75 1 5 0 46 100.00 90.20 90.20 90.38

P80 0 4 1 47 0.00 92.16 −7.84 90.38

P85 0 4 1 47 0.00 92.16 −7.84 90.38

P90 0 3 1 48 0.00 94.12 −5.88 92.31

P95 0 2 1 49 0.00 96.08 −3.92 94.23
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Proper early-alert threshold performance verification
As described in Fig. 4, for these 6 infectious diseases,
almost all simulated outbreaks were detected both by
selected proper thresholds (P75 for chickenpox, influenza
and HFMD, P80 for mumps and scarlet fever, P45 for
rubella) and the national recommended thresholds (P80
for all 6 infectious disease) except for chickenpox and
HFMDS. For chickenpox at 0.5 magnitude and HFMD at
1 and 2 magnitudes, the sensitivity of the selected proper
threshold was higher than the national recommended
threshold. In terms of timeliness, the selected proper
thresholds required shorter time periods to detect the out-
breaks compared with national recommended thresh-
olds, to take chickenpox as an example, the detection
days were 2 days, 1 day, 0.5 day and 0.5 day earlier
for magnitude 0.5, 1, 2 and 3 respectively. Meanwhile,
the larger the outbreak magnitude, the shorter the
time needed to detect outbreaks. However, the se-
lected proper thresholds were prone to generate more
false alarms in comparison with the national recom-
mended thresholds. (Fig. 4).

Discussion
Jie Kuang [9] previously reported that the moving per-
centile method (MPM) was a useful algorithm for out-
break detection. The CIDARS therefore adopted the
MPM to detect infectious disease aberrations and deter-
mine the proper threshold of Px for common infectious
diseases. In this study, based on the characteristics of
local infectious diseases, we selected the proper Px
threshold for 6 infectious diseases that were major pub-
lic health problems in the Songjiang district. The per-
formance of thresholds demonstrated that, the selected
proper thresholds could detect almost all simulated out-
breaks within a shorter time period than the thresholds
recommended by the China CDC. This study indicates
that it is crucial to select the proper threshold to detect
infectious disease aberrations based on the characteris-
tics of local diseases in the CIDARS, which can improve
the performance of outbreak detection.
One major challenge in outbreak detection evaluation

is obtaining a sufficient number of outbreak data with
which to measure sensitivity and timeliness of a given

Fig. 2 The daily case distribution for 6 outbreaks in the Songjiang District of Shanghai, China

Wang et al. BMC Public Health  (2017) 17:570 Page 6 of 10



period [19, 20]. For this reason, injecting simulated out-
breaks into real surveillance data is a feasible approach
[8–10]. In this study, we employed real infectious disease
outbreaks that previously occurred in our district as the
simulated outbreaks; this approach helped diminish the
risk that the simulated data might completely unlike real
outbreaks and helped alleviate concerns that outbreaks
in the real surveillance data may interfere with the
performance evaluation.
Many determinants affect the performance of outbreak

detection in automated surveillance, and understanding
how these factors affect the detection performance can
assist in the improvement of outbreak detection in the
CIDARS. Previous studies [20, 21] have reported that

system factors (representativeness, outbreak detection algo-
rithms and algorithm specifics), outbreak characteristics
(outbreak size, shape of the outbreak signal and time of
outbreak) are determinants that can affect outbreak
detection. In this study, the outbreak magnitude was
considered when injecting simulated outbreak signals to
study the performance of selected proper thresholds. Study
results demonstrated that larger outbreak magnitude could
be detected more quickly and with higher sensitivity. This
epidemic feature of infectious diseases should thus be
considered for similar studies.
Previously, Xiao-Li Wang et al. [22, 23] reported that

the morbidity and mortality associated with infectious
diseases and the CDCs’ emergency response ability

Fig. 3 Number of early warning signals for 6 infectious diseases during 2009 and 2014 in the Songjiang District of Shanghai, China

Table 4 Proper thresholds identified for the 6 infectious diseases in the Songjiang District of Shanghai, China

Infectious diseases Proper Early-alert
Thresholds

Se (%) Sp (%) YI (%) CR Thresholds recommended
by the China CDC

Chickenpox P75 100.00 90.20 90.20 0.90 P80

Mumps P80 100.00 96.15 96.15 0.96 P80

Influenza P75 100.00 64.00 64.00 0.65 P80

Rubella P45 50.00 60.87 11.87 0.60 P80

HFMD P75 100.00 33.33 33.33 0.71 P80

Scarlet fever P80 100.00 55.00 55.00 0.65 P80
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should be taken into consideration during the proper
threshold selection process based on data from the
CIDARS. Based on the results of our study, we suggest
that proper threshold selection should take the epidemic
feature as well as the local infectious disease characteris-
tics into consideration. A lower threshold may be
preferable if the evaluated infectious disease, such as in-
fluenza, is associated with a tremendous threat and has
reliable treatment and control measures, as a lower
threshold could improve sensitivity and identify more
potential outbreaks. However, it may be wiser to select a
relatively higher threshold when the infectious disease

has mild effects but the cost of investigation and control
is high because this could reduce the generation of false
warning signals and improve the efficiency of infectious
disease control and prevention.
There are some limitations to this study. First, we only

selected 6 infectious diseases with higher associated
morbidity and more early-alert signals to evaluate in this
study. However, infectious diseases with lower associated
morbidity may differ from these key infectious diseases.
Second, as only using 1 year test datasets, we were only
able to insert a limited number of simulated outbreaks.
This may in turn have affected the stability of our

Fig. 4 The performance of selected proper thresholds for 6 infectious diseases and thresholds recommended by the China CDC
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evaluation to some extent. Third, we only employed the
outbreak magnitude to evaluate the influence of out-
break detection performance, however, the other epi-
demic features include the incubation period and
baseline counts may also affect the performance of out-
break detection. The incorporation of some improve-
ments should be considered in further studies. Fourth,
the unmeasured factors that affect outbreaks are chan-
ging over time, and the use of a historical threshold to
test current and future values may fail to address the ef-
fect of confounding factors. For this reason, bidirectional
sampling of training data would allow a middle year to
be tested with control for confounders. Furthermore, in-
vestigating more infectious diseases with different epi-
demic characteristics may improve the generalizability of
our study findings. Pre-diagnosis data, such as data from
hospitals, media reports, school absenteeism and drug-
stores that may identify cases could be considered for in-
tegration with current notifiable infectious disease
surveillance data, thereby potentially improving the sen-
sitivity and timeliness of the current CIDARS.

Conclusions
It is crucial to select the proper early-warning thresholds
for the detection of infectious disease aberrations based
on the characteristics and epidemic feature of local in-
fectious diseases in the CIDARS, which could improve
the performance of outbreak detection.
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