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Background: With the rapid development of China's economy, air pollution has attracted public concern because

of its harmful effects on health.

Methods: The source apportioning of air pollution, the spatial distribution characteristics, and the relationship
between atmospheric contamination, and the risk of exposure were explored. The in situ daily concentrations of
the principal air pollutants (PM,s, PM;o, SO,, NO,, CO and Os) were obtained from 188 main cities with many
continuous air-monitoring stations across China (2014 and 2015).

Results: The results indicate positive correlations between PMs s and SO, (R” =0.395/0.404, P < 0.0001),

CO (R>=0.187/0.365, P < 0.0001), and NO, (R? = 0447/0.533, P < 0.0001), but weak correlations with O3 (P> 0.05) for
both 2014 and 2015. Additionally, a significant relationship between SO,, NO, and CO was discovered using regression
analysis (P < 0.0001), indicating that the origin of air pollutants is likely to be vehicle exhaust, coal consumption, and
biomass open-burning. For the spatial pattern of air pollutants, we found that the highest concentration of SO,, NO,

and CO were mainly distributed in north China (Beijing-Tianjin-Hebei regions), Shandong, Shanxi and Henan provinces,

part of Xinjiang and central Inner Mongolia (2014 and 2015).

Conclusions: The highest concentration and risk of PM, s was observed in the Beijing-Tianjin-Hebei economic belts,
and Shandong, Henan, Shanxi, Hubei and Anhui provinces. Nevertheless, the highest concentration of O3 was
irregularly distributed in most areas of China. A high-risk distribution of PM;,, SO, and NO, was also observed in these
regions, with the high risk of PM;q and NO, observed in the Hebei and Shandong province, and high-risk of PM; in
Urumchi. The high-risk of NO, distributed in Beijing-Yangtze River Delta region-Pearl River Delta region-central.
Although atmospheric contamination slightly improved in 2015 compared to 2014, humanity faces the challenge of
reducing the environmental and public health effects of air pollution by altering the present mode of growth to

achieve sustainable social and economic development.
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Background

Haze is principally formed by an increase in particle size
in the atmospheric medium, which affects atmospheric
absorption, emission, and scattering of light. PM,5: fine
inhalable particles, with diameters that are generally 2.5
micrometers and smaller, and originates from construc-
tion sites, unpaved roads, fields, smokestacks or fires,
including congregated aerosols (e.g. sulfur dioxide, nitro-
gen dioxide, carbon monoxide, and so on), black carbon
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(the incomplete combustion of carbonaceous combusti-
bles) [1], dust, sea salt [2], heavy metals, and polycyclic
aromatic hydrocarbon [3]. Haze incidents are a relatively
new threat to human health [4], air quality [5], global
climate change [6], ecological suitability for human settle-
ment, and regional sustainable development.

Recently, haze has become a principal environmental
issue in China. Consequently, the causes of particulate
pollution have been discussed widely: e.g., secondary
aerosol [5], aerosol optical properties [7], and aerosol
chemical components [8]. And the formation and evolu-
tion mechanism of haze has been similarly explored [9]:
e.g., long-lasting haze occurrences in Nanjing [10], a
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winter regional haze in the North China Plain [11], and
the heavy haze pollution episode over central and eastern
China [12]. In addition, we know that understanding the
origin of fine particulate matter is essential to finding ap-
propriate strategies to combat haze and the harm it
causes. Thus, the source apportioning of fine particulate
during the haze events in Shanghai [13], Harbin [14], and
Fuzhou [15] was implemented, and the characteristics of
atmospheric carbonyls were documented [16] in Beijing.
We have known for some time that haze boosts air
pollution, causing significant harm to human health
[17]. Previous studies have reported extensively on
cardiovascular disease, lung disease, exposure time,
mortality, and the mechanisms of biochemistry for haze.
Short-term exposure was investigated in metropolitan
areas [18], and the effects of dust-haze on mortality were
explored [19]. In fact, the relationship between haze and
respiratory diseases in Brunei Darussalam were analyzed,
and it was found that PM;, and CO levels have a signifi-
cant bearing on the incidence of respiratory diseases
[20]. In China, Sun et al. [4] explored the relationship
between economic development and air pollution, and
they found that the variation explained by both total
SO, emissions and total smoke and dust emissions were
33 and 24% of pertussis (wWhooping cough), respectively.
However, source apportioning of fine particulate re-
quires considerable investment in time and money.
Thus, in this study, we attempt to analyze source appor-
tioning using data mining. Because the risk of exposure
to haze across China has been insufficiently discussed,
the object of the present study is to address the relation-
ship between atmospheric contamination and human
health in China. Specifically, we seek to accomplish the
following: (1) to analyze the spatial-temporal distribution
of atmospheric contamination over China; (2) to explore
the source apportioning of fine particulate in China; and
(3) to analyze the relationship between atmospheric con-
tamination and the risk of human exposure in China.

Methods

Data collection

All air measurements (SO,, NO,, CO, O3, PM;o and
PM, 5) were obtained from 188 main cities with continu-
ous air-monitoring stations (Fig. 1), the stations were set
up accord with the standard “Technical regulation for
selection of ambient air quality monitoring stations (H]J
664—2013)”, and were obtained from the Ministry of
Environmental Protection of the People’s Republic of
China (http://datacenter.mep.gov.cn/). The disease data of
pertussis was collected from China Statistical Yearbook
(www.stats.gov.cn, 2004-2015) and China Statistical
Yearbook of Health and Family Planning (www.moh.
gov.cn, 2004—2015). In addition, the atmospheric contam-
ination was compiled annual means to analyze the spatial-
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temporal distribution of atmospheric contamination over
China, and monthly in every city to analyze the relation-
ships among air pollutions for 2014 and 2015.

Method of health risk assessment

This study used the risk assessment method of the U.S.
Environmental Protection Agency (EPA) [21], which
focused on the health risk assessment through inhalation
pathway for three kinds of people (adult males, adult
females, and children), thus, avoided the effects of popu-
lation density. The assessment study focuses on the risk
of exposure to air pollutants (PM;,, SO, and NO,) in
China; R; was the individual health risk for exposure pol-
lution, calculated as Eq. 1 [22]:

R; = ADD,,, x 107°/ (Rfd; x 70) (1)

ADD,,, was the average daily dose, calculated as
Eq. 2 [23]:

ADD,,; = (CA x IRx ED)/(BW x AT)  (2)

where CA was the concentration (mg m™) of air
pollutants, the average values of inhalation rate (IR), ED
(exposure duration in days) and AT (averaging exposure
time in days) were showed in Table 1 [22], and the aver-
age weight (BW) was obtained from national physical
fitness test communiqués (http://www.gov.cn/test). The
Rfd;; (reference dose) values for PM;o, SO, and NO,
referred to the U.S EPA (https://www3.epa.gov/).

Based on the IDW (inverse distance weighted)
interpolation method to model the spatial distribution of
health risk in China, then, calculated the Rfd;; values and
reclassified by the national air quality standard to get the
expose risk level of air pollutants.

Tools of analysis

In the present study, the ArcGIS 10.2 (ESRI, Inc., Red-
lands, CA, USA) was used to draw spatial graphs, and
SigmaPlot for Windows 10.0 (Systat Software, Inc.,
Chicago, IL, USA) was used to conduct correlation and
regression analysis. Correlations between different vari-
ables were determined using two-tailed Pearson’s Correl-
ation at 0.05 levels.

Results

The size of main air pollutants

As shown in Fig. 2, the frequency distribution of air pol-
lutant (PM, 5, SO,, CO, NO,, and O3) concentrations in
2014 and 2015 was observed. The values of the PM, s,
SO,, CO, NO, and O3 range from 18.58 pg m~> to
130.46 pug m™>, from 2.17 pg m™> to 117.82 pug m >, from
047 pg m™> to 242 mg m>, from 1256 pg m™> to
66.09 pug m~>, from 48.78 pg m > to 198.61 ug m™>, with
median values of 61.44 pg m >, 30.11 pg m >, 1.12 ug m ">,
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Fig. 1 Study areas and the continuous air monitoring stations (CAMS) in China

36.05 pg m™>, 103.97 ug m >, respectively. The high
occurrence frequency of the PM, 5, SO,, CO, NO,, and O3
was around 40-75 pg m™>, around 1540 pg m™>, around
0.75-1.3 mg m >, around 25-50 pg m~>, and around
75-130 pg m > (upper panel). In 2015, there was not only
a similar shift in the trend of air pollutants (PM, 5, SO,,
CO, NO,, and O3) observed but also the median concen-
tration of air pollutants reduced and centered generally in
52.84 pg m~>, 23.52 pg m>, 1.02 mg m~>, 34.18 pg m >,

102.67 pg m™>, respectively. As an example, the values of
the PM,5 SO, CO, NO, and O3 range from 17.05 to
106.32 pug m™>, from 2.89 to 82.05 pug m™>, from 0.44 to
2.36 mg m >, from 12.84 to 61.24 pug m>, from 58.56 to
136.38 pg m™>. In addition, the high occurrence frequency
of the PM, 5, SO,, CO, NO, and O3 narrowed and became
more centralized at the range of 25-55 g m™, around 10—
30 pug m?, around 0.75-1.25 mg m >, around 25-50 pg m™>,
and around 90-125 pug m~ (below panel), respectively.

Table 1 Parameters for health risk assessment through inhalation pathway

Crowds IR(m?/d) BW(kg) ED(d) AT(d) CA-PM;o(mg m™) CA-SO5(mg m™) CA-NO,(mg m™)

Adult male 15.2 60 30x 365 30x365 0.15 (National third standard) 0.06 (National second standard) 0.04 (National first standard)
Adult female 113 57 30%x365 30x365

Children 8.7 44 18 X365 18x365
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Fig. 2 The frequency distribution of the principal air pollutants. The upper and blow panels represent the documents were collected in 2014 and 2015

_

Relationships among principal air pollutants over China (Fig. 3c), respectively. However, there was a weak correl-
from 2014 to 2015 ation trend between PM, 5 and the concentration of Oj
We postulated that the entire concentration of PM,5 (P> 0.05) (Fig. 3d). Compared to other air pollutants,
depends on air pollutants (SO,, CO, NO, and O3), and, NO, had the greatest influence on PM,s. Thus, the
per regression analysis, there are close positive correla-  contribution rate of SO, and NO, is as high as 44.7%
tions between PM, 5 and SO,, CO, NO, in 2014. In Fig. 3  for PM,s.

the appropriate functions of SO,, CO and NO, with As illustrated in Fig. 4, the concentration of PM, 5 had
PM,s are Y=0.579X-1485 (R>=0.395 P<0.0001) been increasing with the rise of SO,, CO, NO,, and there
(Fig. 3a), Y=0.008X+0.678 (R*=0.187, P<0.0001) are significant relationships between them. High cor-
(Fig. 3b), and Y'=0.357X + 14.32 (R*=0.447, P<0.0001) relation coefficients were noted between SO, (R? = 0.404,
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Fig. 3 The PM, 5 was explained by the principal air pollutants over China (2014), and graph a, b, ¢, and d represent SO, CO, NO,, Os, respectively
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P <0.0001, Fig. 4a), CO (R*=0.365, P<0.0001, Fig. 4b),
NO, (R*=0.533, P<0.0001, Fig. 4c) and PM,5 which
illustrates that the PM, 5 are significantly associated with
SO,, and NO,, with CO following, but there were no ob-
servable relationships between PM, 5 and O3 (Fig. 4d).

Based on regression analysis, we found close relation-
ships among SO,, CO and NO, in 2014 and 2015. The
appropriate functions were ¥ = 0.011X + 0.805 (R = 0.289,
P <0.0001) (Fig. 5a), Y=0.320X + 25.28 (R? = 0.306,
P <0.0001) (Fig. 5¢), and Y'=10.41X +23.84 (R®=0.139,
P <0.0001) (Fig. 5e) in 2014. Similar positive correlations
were also observed in 2015 with R?=0.386 (P < 0.0001,
Fig. 5b), R = 0.230 (P < 0.0001, Fig. 5d), and R®=0.271
(P <0.0001, Fig. 5f), respectively.

Spatial patterns of air pollutants in China from 2014 to
2015

According to the spatial distribution of air pollutants in
China in 2014 (Fig. 6), we discovered that the concentra-
tion of CO ranges from 0.08 mg m™> to 2.42 mg m >, with
the maximum distribution around Hebei and Shanxi prov-
ince, and the minimum distribution in the southeast,
northwest, and northeast (Fig. 6a). In contrast, the
concentration range of NO, was between 2 pg m™ and
64 pg m~>, with the maximum distribution occurring in
Beijing, Tianjin, Hebei, Shandong, Henan province, and
northeastern Xinjiang (Fig. 6b). However, O3 concentra-
tions ranged from 3 pg m ™ to 198 pg m™>, with the max-
imum distribution in eastern China, southern China, and

Hubei province; and the minimum distribution regions in-
cluding Shanxi, Sichuan and Chongging (Fig. 6¢). The con-
centration of SO, ranges from 1 pg m™> to 113 pg m™>,
with the maximum distribution in northern China and in
Shandong province (Fig. 6).

According to Fig. 7a, the concentration of CO ranges
from 0.01 mg m~ to 2.35 mg m~> in Shanxi, Shandong,
Hebei, Henan, Beijing and Tianjin had the maximum
values; we also found that the minimum was chiefly
located in Heilongjiang, Gansu and Tibet, and the
southeast of China (the coastal urban belt). The con-
centration ranges of NO, was between 0.6 pg m™ and
60 pg m~>, with maximum values distributed primarily in
northeastern China (the Beijing-Tianjin-Hebei-Shanxi-
Henan-Shandong region, Fig. 7b). In addition, we found
that the concentration of Oz ranges from 1 pg m™>
to133ug m > in Fig. 7c. The higher concentration values
were observed in most areas of China, including eastern
China, northern and central China (except Hunan
province), and the regions of Gansu, Qinghai, Tibet
(around Lhasa) and the Pearl River Delta region. The con-
centration of NO, ranged from 0.3 ug m™ and 80 pg m™>,
with maximum values primarily distributed in Shanxi,
Shandong and Hebei provinces (Fig. 7d).

The PM,5 concentration ranges from 3 pg m™ to
103 pug m™? in 2014 (Fig. 8a), with the maximum values
distributed mainly around Hebei province (Beijing-Tianjin
and a part of Shandong-Henan-Hubei. The concentration
of PM,5 ranges from 1 pug m™ to 106 pug m> in 2015

3
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(Fig. 8b), with maximum distribution in Hebei, Shandong,
Henan and Hubei provinces, and the region of Central
Bohai, while minimum values were observed in areas that
include Tibet, Yunnan, Hainan, Fujian, the Pearl River
Delta region and the northwest of Gansu province.

Risk assessment of population exposure to air pollutants
in China from 2014 to 2015

For adult males, according to Fig. 9a, the high-risk values
of PM;o main distributed in central of Xinjiang province,
in Hebei province, the southwest of Shandong and eastern
of Shanxi, and a part of Beijing and Tianjin. The high-risk
values of SO, occurring mainly in the central of Shandong
province, the border of Hebei and Shanxi, a small part of
Inner Mongolia (Erdos) and Liaoning provinces (Shenyang)
(Fig. 9b). Surprisingly, the high-risk values of NO, were

mainly distributed in northeast China (Fig. 9c), regions of
Hebei-Shandong-Henan-Beijing-Tianjin, a part of Inner
Mongolia, the provincial capital cities of Guangzhou,
Chengdu, Lanzhou, Xian, Shenyang, Changchun and
Harbin, and the central of Jiangsu province. For adult
females and children, a similar distribution pattern of the
high-risk values for PM;o/SO,/NO, was observed. The
high-risk values for PM;, distributed primarily in the
central of Inner Mongolia, the south of Hebei province
(Fig. 9d and g). The high-risk values for SO, distributed in
the central of Shandong province, the border of Shanxi
and Hebei province, and a part of Erdos (Fig. 9e and h). As
shown in Fig. 9f and i, the high-risk values of distributed
primarily in Beijing-Tianjin-Hebei-Shandong regions, a
part of Xinjiang province, and the cities of Chengdu,
Shanghai, Wuhan, Wenzhou and Harbin.
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In 2015, for adult males, the high-risk values
PM;owere mainly distributed around the border
Hebei-Shandong-Henan province, thus, the cities
Baoding, Hengshui, Xingtai, Handan, Shijiazhuang
Hebei; Liaocheng, Dezhou and Heze in Shandong; and
Zhengzhou in Henan (Fig. 10a). As shown in Fig. 10b,
the high-risk values of SO, occurring in the central of
Shanxi (Taiyuan and Linfen) and Shandong province,
and a small part of Inner Mongolia (Erdos). The high-
risk values of NO, mainly distributed in the central and
northeastern of China (Fig. 10c), regions of Beijing—
Tianjin—Hebei-Shandong-Henan, the central of Jiangsu
province, and the cities of Urumchi, Lanzhou, Yanan,
Chengdu, Shenyang, Changchun and Harbin, and the main
city area of Chongqing. As for adult females and children,
the regions of high-risk values for PM;¢/SO,/NO, were
alike. As for PMjy, the high-risk values distribution

primarily in the main city area of Baoding, Hengshui, and
Handan (Fig. 10d and g). The high-risk values for SO,
occurring in the central of Shandong, the main city area of
Taiyuan and Shizuishan (Fig. 10e and h). As shown in
Fig. 10f and i, the high-risk values of NO, were chiefly
distributed in Beijing-Tianjin-Hebei regions, the central of
Shandong and the north of Henan province; and the
province capital cities of Urumchi, Lanzhou, Chengdu,
Wuhan and Harbin.

Relationships between air pollution and human health

The concentrations of air pollutions were the average
values during 2014—2015, the mean rate of total pertus-
sis was calculated from 30 provinces from 2004 to 2014.
General linear models analysis illustrated that the mean
rate of total pertussis was significantly associated with
the average concentrations of PM,s5, PM;, and CO
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(Fig. 11a, b, and d), and the variation explained by them
were 61% (P < 0.06) for the rate of total pertussis. Mean-
while, the rate of total pertussis was related to SO, and
NO, to some extent (Fig. 11c and e). However, there
was no significant relationship between O3 and total per-
tussis (Fig. 11f).

Discussion

Relationships among air pollutants

For this study, the most extensive data for analyzing the
concentration and relationship of air pollutants and
time-series datasets in China were used, with the aim of
understanding pollution and to mitigate the heavy haze
on the Chinese mainland. The Min, Median and Max
concentration of air pollutants in 2014 and 2015 were
presented, after finding that the occurrence frequency
narrowed and became more centralized from 2014 to

2015 (Fig. 2). Our study also identified that the main
components were NO, and SO, in PM, 5 (R?=0.395,
R?=0.447) in 2014 (Fig. 3) and (R? = 0.404, R* = 0.533) in
2015 (Fig. 4) based on regression analysis. The same
phenomenon was found in Beijing [9], central and eastern
China [12, 24, 25]. Previous research has observed that
the concentration of SO, and NO, is lowest in the au-
tumn and highest in the winter [26]. The concentration of
PM,; is closely correlated with SO, and NO, in Xian
[23]. A joint effect of NO, and PM was found [27]. Wang
not only analyzed the relationships of NO,, SO, and
PM, 5 but also found that with the increase of sulfate and
nitrate, their particle hygroscopicity enhances and drives
the formation and evolution of haze pollution [12]. This
means that SO, and NO, play an important role in the
enhancement of PM, 5 [28], and reminds us to explore the
relationships between SO,, NO, and CO.
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Fig. 8 Spatial patterns of air pollutant in China (graph a, b represent PM, s in 2014 and 2015, respectively)

As shown in Fig. 5, the most significant correlation co-
efficient was NO, and SO, (R’ = 0.306), followed by CO
and SO, (R%=0.289); NO, and CO (R? = 0.139) were the
least pronounced in 2014. Nevertheless, a different sig-
nificant association order was observed in 2015. Thus,
the correlation coefficient of CO and SO, (R?=0.386)
was greater than NO, and CO (R?=0.271) in 2015. This
result suggests a strong relationship between CO and
SO,, and NO, and CO; one study reported that the crit-
ical factor for formation droplet-mode particles was the
availability of the water-vapor contents and precursor
gases (SO, and NO,) [29]; in other words, under iron
and manganese catalysis, the heterogeneous oxidation of
SO, and NO, change into the secondary sulfates (SO>
and NOj3") in the droplet mode [30, 31], namely, the
complex interaction of SO4*7, NO; , congregated
aerosols (e.g. sulfur dioxide, nitrogen dioxide, carbon
monoxide, and so on), black carbon (the incomplete
combustion of carbonaceous combustibles) determined
the formation of haze and its particulate size [1, 29, 32].
NH; however, should not be neglected, which may re-
sult in the particulate sulfate and nitrate increase [28].

The spatial patterns of air pollutants

Apart from the regression analysis of air pollutants,
spatial patterns of yearly average simulation values
clearly present different air pollutants concentration
distributions in different regions in 2014 and 2015
(Figs. 6 and 7). A few studies found that the Beijing—
Tianjin—Hebei-Shandong-Shanxi-Henan regions had the
highest concentration of air pollutants [24, 25], including
the local characteristics of high populations, city traffic,
exhaust emissions, and rapid urban expansion [23, 33].
In this study, the same spatial patterns of air pollutants

were observed (Figs. 6, 7 and 8). Furthermore, we found
the concentration of SO,, NO, and CO in Inner
Mongolia cannot be negligible (Fig. 6a, b and d); mean-
while, the Tibet Plateau and coastal areas from Tianjin
to Guangxi were affected by Oz (Fig. 6¢) in 2014. In
addition, similar spatial patterns of the maximum values
were observed in China. However, from 2014 to 2015,
the spatial variation of Oz concentration displayed a
rapid increasing trend in China, especially on the Tibet
Plateau (Fig. 7c), which may be influenced by its origin
and long-distance transport. The PM,5 is distributed
mainly in the region of Beijing-Tianjin-Shandong-
Henan-Hubei in 2014 and 2015. Fortunately, its distribu-
tion narrowed and became more centralized in2015, and
showed that the extent and area of PM,s; were lower
than in 2014.

Emissions of PM,5 (97%), SO, (90%), NO, (70%) and
CO (32%) were mainly due to the combustion of coal [34].
A number of previous studies have explored the origin
and transportation [32, 35] of air pollutants [36, 37],
including the congregated aerosols (e.g. sulfur dioxide,
nitrogen dioxide, carbon monoxide, and so on), black
carbon (the incomplete combustion of carbonaceous
combustibles) [17], dust, sea salt [2], heavy metal, and
polycyclic aromatic hydrocarbon [3], which resulted from
vehicle exhaust [36], coal consumption, secondary pro-
duction, stagnant meteorological conditions [13, 38—40],
biomass open burning [41, 42], and petrol stations [43].
Therefore, replacing coal and fossil fuels with cleaner fuels
were the fundamental methods of controlling the concen-
tration of air pollutants [39]. Certainly, we need to encour-
age new technologies and energy sources for automobiles,
still a major contributor to air pollution [44]. But uncer-
tainties exist from various sources, particularly the air
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Fig. 9 Risk assessment of population exposure to air pollutants in China (2014), and the graph a, b, c/d, e, f/g, h, i represent PM,o, SO,, and NO,

pollutants in Xinjiang Uygur Autonomous Region, which
might cause sand-dust storms. Therefore, ecological con-
servation projects should be developed and implemented;
for instance, building key forest shelterbelts to shield
against sandstorms in Xinjiang.

Health risk assessment and human health

R; for adult males, adult females, and children, obtained
for different pollutants (PM;y, SO, and NO,) in 2014
and 2015. It was observed that the high-risk of PM;owas

mainly distributed in the cities of Baoding, Hengshui,
Xingtai, Handan, Shijiazhuang, Liaocheng, Dezhou, Heze
and Zhengzhou (Figs. 9a, d, g and 10a, d, g), and Urum-
chi (Fig. 9a, d and g). The high-risk values of SO, were
chiefly distributed in the cities of Taiyuan and Linfen, a
small part of Erdos, and the central of Shandong prov-
ince (Figs. 9b, e, h and 10b, e, h). The high-risk values of
NO, were mainly occurring around in coastal areas from
Beijing-Yangtze River Delta region-Pearl River Delta
region-central, especially the cities of Urumchi, Lanzhou,
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Chengdu, Wuhan and Harbin (Figs. 9¢, f, i, and 10c, {, i).
In comparison, the coverage area of the highest risk level
was smaller in 2015 (Figs. 9 and 10).

A large portion of China’s population has been sig-
nificantly exposed to high-risk areas. Feng et al. [45]
evaluated the ILI risk significantly associated with the
concentrations of PM in Beijing during the flu season. In
Guangzhou, the dust haze clearly increased mortality
[19], and the PM, 5 contains toxic micro-particles that
might increase the risk of respiratory disease [46].

Mortality rates increased due to the high PM pollution
in Shenzhen, especially for the elderly and male popula-
tions [47]. The cardiovascular, nervous system, respira-
tory and blood vessels of the brain are damaged by
exposure to high concentrations of PM, 5 [48]. Indeed,
hemorrhagic stroke was closely associated with PM pol-
lution [49]. Lung and cardiovascular disease are related
to PM and NO, [50], and NO, was identified as the
principal pollutant for respiratory diseases [18]. Local
residents in Shanghai were exposed to high health risks due
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to NO, [26]. Vulnerable people particularly (asthmatics,
children, and the elderly), but all people generally, should
not be exposed to high concentrations of SO, for any
length of time [51]. Meanwhile, high concentrations of O3
will irritate the eyes, nose, and throat, although long-term
effects, if any, need further research [50]. One researcher
has revealed that individuals exposed to biomass burning-
impacted aerosols over the long term increased carcino-
genic risk [6]. For these reasons and more, it is a matter of
considerable urgency that policies be developed and im-
plemented to mitigate the heavy haze in China.

Limitations of the current study

In this study, although 188 main cities across China used
to get the spatial distribution patterns of air pollutions,
uncertainties exist for limited data, especially in the
sparsely distributed area of Xinjiang, Tibet, and Qinghai.
Though significant relationships among main air pollu-
tions were observed, inorganic substance and organic
matter also correlated with each other in haze. In
addition, PM, s has other sources of crustal materials,
such as from Asian dust storms. We analyzed the rela-
tionships among gaseous pollutant emissions. Mean-
while, the average parameter values for crowds in Eq. 2
referred from articles rather than actual measurements,
led to the above conclusions about health risk in China.
In addition, the data of pertussis was collected from the
China Statistical Yearbook on Environment, although
exposure to pollutions related to the increases in
morbidity, accurate and concrete data for long-term
effects is urgently needed. Thus, detailed data need

collect to define air pollutions and risk assessment of
human health in future.

Conclusions

Air pollution is harmful to the environment and to pub-
lic health. This study focused on the source apportioning
and the spatial-temporal characteristics of air pollutants
and analyzed the relationship between atmospheric con-
tamination and human exposure risk in China from
2014 to 2015. The main conclusions are as follows:

(1)Regression analysis illustrates that there are close
positive correlations between PM, 5 and SO,, CO
and NO,, but weak correlations with O3 in 2014 and
2015. Additionally, the relationships between SO,,
NO, and CO were significant, suggesting that
vehicle exhaust, coal consumption secondary
production, stagnant meteorological conditions, and
biomass open-burning are the main factors driving
the formation and evolution of air pollution.

(2)In general, air pollutants in China have stabilized,
showing a slight decline from 2014 to 2015.
Accompanying the highest concentrations are
high-risk areas distributed in provinces of Hebei,
Shanxi, and Henan, and along the coast from
Beijing-Yangtze River Delta to the Pearl River Delta
region. The high-risk of NO, occurred in the
Beijing—T1ianjin—Hebei economic belts.

Measuring air pollutants, tracking contaminant paths
and assessing pollutants in different areas with volatile



Sun and Zhou BMC Public Health (2017) 17:212

weather conditions are complex challenges and need fur-
ther research. The objective of this study is to help pro-

vide healthy, sustainable development not only for the
people of China but for developing and developed
nations alike. In particular, this study aims to initiate a

constructive forum on the Beijing-Tianjin-Hebei collab-
orative development.

Acknowledgements
We would like to thank Penglin Zhao for research assistance.

Funding
This research was funded by the Science and Technology Service Network
Initiative (No. KFJ-SW-STS-175-01).

Availability of data and materials

The datasets generated during and/or analysed during the current study
are available in the Ministry of Environmental Protection repository,
http://datacenter.mep.gov.cn/.

Authors’ contributions

JS contributed to the study design, JS and TCZ were involved in drafting the
manuscript, approving the final draft, and agree to be accountable for the
work. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details

'Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101,
China. “Chengdu University of Technology, Chengdu 610000, China.

Received: 26 August 2016 Accepted: 13 February 2017
Published online: 20 February 2017

References

1.

Zhi GR, Chen YJ, Xue ZG, Meng F, Cai J, Sheng GY, Fu JM. Comparison of
elemental and black carbon measurements during normal and heavy haze
periods: Implications for research. Environ Monit Assess. 2014;186:6097-106.
Wang YX, Zhang QQ, Jiang JK, Zhou W, Wang BY, He KB, Duan FK, Zhang
Q, Philip Sajeev, Xie YY. Enhanced sulfate formation during china's severe
winter haze episode in January 2013 missing from current models. J
Geophys Res-Atmos. 2014;119(10):425-40.

Yoon YH, Horst SM, Hicks RK, Li R, de Gouw JA, Tolbert MA. The role of
benzene photolysis in titan haze formation. Icarus. 2014;233:233-41.

Sun J, Wang J, Wei Y, Li Y, Liu M. The Haze Nightmare Following the
Economic Boom in China: Dilemma and Tradeoffs. Int J Environ Res Public
Health. 2016;13(4):402.

Huang RJ, Zhang YL, Bozzetti C, Ho KF, Cao JJ, Han YM, Daellenbach KR,
Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA,
Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G,
Schnelle-Kreis J, Zimmermann R, An ZS, Szidat S, Baltensperger U,

El Haddad |, Prévot AS. High secondary aerosol contribution to particulate
pollution during haze events in China. Nature. 2014;,514:218-22.

Betha R, Behera SN, Balasubramanian R. 2013 southeast asian smoke haze:
Fractionation of particulate-bound elements and associated health risk.
Environ Sci Technol. 2014;48:4327-35.

Che H, Xia X, Zhu J, Li Z, Dubovik O, Holben B, Goloub P, Chen H, Estelles V,
Cuevas-Agullé E, Blarel L, Wang H, Zhao H, Zhang X, Wang Y, Sun J, Tao R,
Zhang X, Shi G. Column aerosol optical properties and aerosol radiative
forcing during a serious haze-fog month over north china plain in 2013

20.

22.

23.

24.

25.

26.

27.

28.

29.

Page 13 of 14

based on ground-based sunphotometer measurements. Atmos Chem Phys.
2014;14:2125-38.

Tian SL, Pan YP, Liu ZR, Wen TX, Wang YS. Size-resolved aerosol chemical
analysis of extreme haze pollution events during early 2013 in urban
Beijing, China. J Hazard Mater. 2014;,279:452-60.

Liu XG, LiJ,QuY,Han T, Hou L, Gu J, Chen C, Yang Y, Liu X, Yang T,
Zhang Y, Tian H, Hu M. Formation and evolution mechanism of regional
haze: A case study in the megacity Beijing, China. Atmos Chem Phys.
2013;13:4501-14.

Kang HQ, Zhu B, Su JF, Wang HL, Zhang QC, Wang F. Analysis of a
long-lasting haze episode in Nanjing, China. Atmos Res. 2013;120:78-87.
Zhao XJ, Zhao PS, Xu J, Meng W, Pu WW, Dong F, He D, Shi QF. Analysis of
a winter regional haze event and its formation mechanism in the North
China plain. Atmos Chem Phys. 2013;13:5685-96.

Wang VS, Yao L, Wang LL, Liu ZR, Ji DS, Tang GQ, ZHANG JK, SUN Y, HU B,
XIN JY. Mechanism for the formation of the January 2013 heavy haze
pollution episode over central and Eastern China. Sci China Earth Sci.
2014;57:14-25.

Wang YJ, Li L, Chen CH, Huang C, Huang HY, Feng JL, Wang SX, Wang HL,
Zhang GF, Zhou M, Cheng P, Wu MH, Sheng GY, Fu JM, Hu YT, Russell AG,
Wumaer A. Source apportionment of fine particulate matter during autumn
haze episodes in Shanghai, China. J Geophys Res-Atmos. 2014;119:1903-14.
Huang LK, Yuan CS, Wang GZ, Wang K. Chemical characteristics and source
apportionment of pm10 during a brown haze episode in Harbin, China.
Particuology. 2011;9:32-8.

Zhang FW, Xu LL, Chen JS, Chen XQ, Niu ZC, Lei T, Li CM, Zhao JP.
Chemical characteristics of pm2.5 during haze episodes in the urban of
Fuzhou, China. Particuology. 2013;11:264-72.

Duan JC, Guo SJ, Tan JH, Wang SL, Chai FH. Characteristics of atmospheric
carbonyls during haze days in Beijing, China. Atmos Res. 2012;114:17-27.
Zhang RH, Li Q, Zhang RN. Meteorological conditions for the persistent
severe fog and haze event over Eastern China in January 2013. Sci China
Earth Sci. 2014,57:26-35.

Zhang ZL, Wang J, Chen LH, Chen XY, Sun GY, Zhong NS, et al. Impact of
haze and air pollution-related hazards on hospital admissions in
Guangzhou, China. Environ Sci Pollut R. 2014;21:4236-44.

Liu T, Zhang YH, Xu YJ, Lin HL, Xu XJ, Luo Y, Xiao JP, Zeng WL, Zhang WF,
Chu C, Keogh K, Rutherford S, Qian ZM, Du YD, Hu MJ, Ma WJ. The effects
of dust-haze on mortality are modified by seasons and individual
characteristics in Guangzhou, China. Environ Pollut. 2014;187:116-23.
Yadav AK, Kumar K, Kasim AMBHA, Singh MP, Parida SK, Sharan M. Visibility
and incidence of respiratory diseases during the 1998 haze episode in
Brunei Darussalam. Pure Appl Geophys. 2003;160:265-77.

US. Environmental Protection Agency (EPA). Epa releases probabilistic risk
assessment guidance for superfund. Hazardous Waste Cons. 2002;20.817-
B21.

Dong J, Zhang P, L N, Tian ZH. Health risk assessment of main air pollutants
in yulin city. Ground water. 2014;36:209-210.

Li YA, Miao QG, Song JF, Quan YN, Li WS. Single image haze removal based
on haze physical characteristics and adaptive sky region detection.
Neurocomputing. 2016;182:221-34.

Wang H, Tan SC, Wang Y, Jiang C, Shi GY, Zhang MX, Che HZ. A
multisource observation study of the severe prolonged regional haze
episode over Eastern China in January 2013. Atmos Environ. 2014;89:807-15.
Wang XF, Chen JM, Sun JF, Li WJ, Yang LX, Wen L, Yang LX, Wen LA, Wang WX,
Wang XM, Collett Jr JL, Shi'Y, Zhang QZ, Hu JT, Yao L, Zhu YH, Sui X, Sun XM,
Mellouki A. Severe haze episodes and seriously polluted fog water in Jinan,
China. Sci Total Environ. 2014;493:133-7.

Zhao WC, Cheng JP, Li DL, Duan YS, Wei HP, Ji RX, Wang WH. Urban
ambient air quality investigation and health risk assessment during haze
and non-haze periods in Shanghai, China. Atmos Pollut Res. 2013;4:275-81.
Kirrane E, Svendsgaard D, Ross M, Buckley B, Davis A, Johns D, et al. A
comparison of risk estimates for the effect of short-term exposure to
pm, no, and co on cardiovascular hospitalizations and emergency
department visits: Effect size modeling of study findings. Atmosphere-
Basel. 2011;2:688-701.

Ye XN, Ma Z, Zhang JC, Du HH, Chen JM, Chen H, et al. Important role of
ammonia on haze formation in shanghai. Environ Res Lett. 2011,6:024019.
Kang E, Han J, Lee M, Lee G, Kim JC. Chemical characteristics of size-resolved
aerosols from asian dust and haze episode in Seoul Metropolitan City.

Atmos Res. 2013;127:34-46.


http://datacenter.mep.gov.cn/

Sun and Zhou BMC Public Health (2017) 17:212

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Frossard AA, Shaw PM, Russell LM, Kroll JH, Canagaratna MR, Worsnop DR,
Quinn PK, Bates TS. Springtime arctic haze contributions of submicron
organic particles from european and asian combustion sources. J Geophys
Res-Atmos. 2011;116:D05205.

Wang XF, Wang WX, Yang LX, Gao XM, Nie W, Yu YC, Xu PJ, Zhou Y,
Wang Z. The secondary formation of inorganic aerosols in the droplet
mode through heterogeneous agueous reactions under haze conditions.
Atmos Environ. 2012,63:68-76.

Zhang XL, Huang YB, Zhu WY, Rao RZ. Aerosol characteristics during
summer haze episodes from different source regions over the coast city of
North China plain. J Quant Spectrosc Ra. 2013;122:180-93.

Lin G, Fu JY, Jiang D, Hu WS, Dong DL, Huang YH, Zhao MD. Spatio-temporal
variation of pm2.5 concentrations and their relationship with geographic and
socioeconomic factors in China. Int J Env Res Pub He. 2014;11:173-86.

Xie YY, Zhao B, Zhang L, Luo R. Spatiotemporal variations of pm2.5 and
pm10 concentrations between 31 chinese cities and their relationships with
502, no2, co and o-3. Particuology. 2015,20:141-9.

Jung J, Kim YJ. Tracking sources of severe haze episodes and their
physicochemical and hygroscopic properties under asian continental
outflow: Long-range transport pollution, postharvest biomass burning, and
asian dust. J Geophys Res-Atmos. 2011;116:D02206.

Liu JW, Li J, Zhang YL, Liu D, Ding P, Shen CD, Shen KJ, He QF, Ding X,
Wang XM, Chen DH, Szidat S, Zhang G. Source apportionment using
radiocarbon and organic tracers for pm2.5 carbonaceous aerosols in
guangzhou, south china: Contrasting local- and regional-scale haze events.
Environ Sci Technol. 2014;48:12002-11.

Tang LL, Yu HX, Ding AJ, Zhang YJ, Qin W, Wang Z, Chen WT, Hua Y,
Yang XX. Regional contribution to PM1 pollution during winter haze in
Yangtze River Delta, China. Sci Total Environ. 2016;541:161-6.

Sun YL, Jiang Q, Wang ZF, Fu PQ, Li J, Yang T, Yin Y. Investigation of the
sources and evolution processes of severe haze pollution in Beijing in
January 2013. J Geophys Res-Atmos. 2014;119:4380-98.

Wang K, Liu YN. Can beijing fight with haze? Lessons can be learned from
London and Los angeles. Nat Hazards. 2014;72:1265-74.

Wang LT, Wei Z, Yang J, Zhang Y, Zhang FF, Su J, Meng CC, Zhang Q. The
2013 severe haze over southern hebei, china: Model evaluation, source
apportionment, and policy implications. Atmos Chem Phys. 2014;14:3151-73.
Cheng Z, Wang S, Fu X, Watson JG, Jiang J, Fu Q, Chen C, Xu B, Yu J,
Chow JC, Hao J. Impact of biomass burning on haze pollution in the

yangtze river delta, China: A case study in summer 2011. Atmos Chem Phys.

2014;14:4573-85.

Phoothiwut S, Junyapoon S. Size distribution of atmospheric particulates
and particulate-bound polycyclic aromatic hydrocarbons and characteristics
of pahs during haze period in Lampang province, Northern Thailand.

Air Qual Atmos Hlth. 2013;6:397-405.

Demirel G, Ozden O, Dogeroglu T, Gaga EQ. Personal exposure of primary
school children to btex, no2 and ozone in Eskisehir, Turkey: Relationship
with indoor/outdoor concentrations and risk assessment. Sci Total Environ.
2014,473:537-48.

Fang YP. Economic welfare impacts from renewable energy consumption:
The China experience. Renew Sust Energ Rev. 2011;15:5120-8.

Feng C, Li J, Sun W, Zhang Y, Wang Q. Impact of ambient fine particulate
matter (PM2.5) exposure on the risk of influenza-like-iliness: a time-series
analysis in Beijing, China. Environ Health. 2016;15:17.

Pan QC, Yu YS, Tang ZH, Xi M, Zang GQ. Haze, a hotbed of respiratory-
associated infectious diseases, and a new challenge for disease control and
prevention in China. Am J Infect Control. 2014;42:688-688.

Zhang FY, Liu XJ, Zhou L, Yu Y, Wang L, Lu JM, Wang WY. Spatiotemporal
patterns of particulate matter (pm) and associations between pm and
mortality in Shenzhen, China. BMC Public Health. 2016;16.

Li MN, Zhang LL. Haze in China: Current and future challenges. Environ
Pollut. 2014;189:85-6.

Lin HL, Tao J, Du YD, Liu T, Qian ZM, Tian LW, et al. Differentiating the
effects of characteristics of pm pollution on mortality from ischemic and
hemorrhagic strokes. Int J Hyg Envir Heal. 2016,219:204-11.

Liu SK, Cai S, Chen Y, Xiao B, Chen P, Xiang XD. The effect of pollutional
haze on pulmonary function. J Thorac Dis. 2016;8:E41-56.

Klose CD. Health risk analysis of volcanic so2 hazard on vulcano island
(Italy). Nat Hazards. 2007;43:303-17.

Page 14 of 14

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data collection
	Method of health risk assessment
	Tools of analysis

	Results
	The size of main air pollutants
	Relationships among principal air pollutants over China from 2014 to 2015
	Spatial patterns of air pollutants in China from 2014 to 2015
	Risk assessment of population exposure to air pollutants in China from 2014 to 2015
	Relationships between air pollution and human health

	Discussion
	Relationships among air pollutants
	The spatial patterns of air pollutants
	Health risk assessment and human health
	Limitations of the current study

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

