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Abstract

Background: South Africa has a large domestically funded HIV programme with highly saturated coverage levels
for most prevention and treatment interventions. To further optimise its allocative efficiency, we designed a novel
optimisation method and examined whether the optimal package of interventions changes when interaction and
non-linear scale-up effects are incorporated into cost-effectiveness analysis.

Methods: The conventional league table method in cost-effectiveness analysis relies on the assumption of
independence between interventions. We added methodology that allowed the simultaneous consideration of a
large number of HIV interventions and their potentially diminishing marginal returns to scale. We analysed the
incremental cost effectiveness ratio (ICER) of 16 HIV interventions based on a well-calibrated epidemiological model
that accounted for interaction and non-linear scale-up effects, a custom cost model, and an optimisation routine
that iteratively added the most cost-effective intervention onto a rolling baseline before evaluating all remaining
options. We compared our results with those based on a league table.

Results: The rank order of interventions did not differ substantially between the two methods- in each, increasing
condom availability and male medical circumcision were found to be most cost-effective, followed by anti-retroviral
therapy at current guidelines. However, interventions were less cost-effective throughout when evaluated under the
optimisation method, indicating substantial diminishing marginal returns, with ICERs being on average 437% higher
under our optimisation routine.

Conclusions: Conventional league tables may exaggerate the cost-effectiveness of interventions when
programmes are implemented at scale. Accounting for interaction and non-linear scale-up effects provides more
realistic estimates in highly saturated real-world settings.
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Background

Currently, over 35 million people are living with HIV
globally. In 2013, there were 2.1 million new infections
and 1.5 million AIDS-related deaths worldwide [1].
While UNAIDS maintains the aspirational aim of elim-
inating HIV by 2030 [2], this requires sustained
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commitment from international and domestic stake-
holders. In the context of a shrinking funding landscape,
where “flat lining [of budgets] is the new budget in-
crease” [3], governments and donors alike are placing
strong emphasis on pursuing allocative efficiency in HIV
programming—selecting the mix of HIV programmes
and interventions that produces a defined level of output
at the lowest possible cost [4].

Some analysts have risen to the challenge of informing
policy priorities by comparing the cost-effectiveness of
single interventions, often using mathematical models. A
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recent combined analysis of 12 mathematical models ex-
amined the cost and cost-effectiveness of expanded
treatment coverage and/or eligibility criteria for anti-
retroviral therapy (ART) [5]. The Béarnighausen, Bloom
and Humair model compared medical male circumcision
(MMC) against the provision of ART at current guide-
lines vs universal testing and treatment and applied it to
several countries in sub-Saharan Africa [6]. Focusing on
South Africa, Long et al. evaluated the cost-effectiveness
of a range of interventions (ART, MMC, pre-exposure
prophylaxis (PrEP), microbicides) both singularly and in
combination [7]. Anderson et al. evaluated the impact at
a subnational level of a similar package of interventions
on the Kenyan HIV epidemic, targeting specific geo-
graphic locations that had high concentrations of female
sex workers and men who have sex with men [8].

Going one step further, several models moved beyond
comparing individual interventions and comprehensively
assessed the cost and impact of entire national HIV pro-
grammes. Three models in particular—the AIDS Epi-
demic Model [9], GOALS [10], and Optima [11]—have
been extensively applied to HIV/AIDS epidemics in a
number of countries, projecting the cost and effective-
ness of all interventions included in a country’s HIV
programme under different scenarios. However, in a re-
cent ‘fit-for-purpose’ assessment, the HIV Modelling
Consortium noted that all three models assumed that in-
terventions act independently, and that “interactions be-
tween programmes or technical and production
efficiencies [could not] be adequately explored” [12].

In 2014, we were tasked by the South African govern-
ment with providing the analytical framework for the
country’s HIV Investment Case, which aimed to calculate
the most cost-effective mix of interventions against HIV
and inform relevant domestic and donor budgets. During
that process, which has been described in detail elsewhere
[13], we encountered challenges that necessitated the de-
velopment of a custom optimisation routine that diverged
from existing cost-effectiveness analytical techniques.
After more than a decade of scale-up, the South African
HIV response comprises a wide range of interventions,
implemented at high levels of coverage [14]. These inter-
ventions often have interaction effects that challenge the
assumption of independence between interventions which
underpins conventional methods for cost-effectiveness
analysis [15]- for example, scaling up any prevention inter-
vention will likely reduce the need for treatment in later
years, while scaling up treatment will reduce population
HIV viral load and, by thus reducing HIV incidence, will
reduce the need for prevention interventions The high
baseline coverage levels of interventions also mean that
the South African HIV programme is already quite satu-
rated and interventions are likely to suffer from diminish-
ing marginal returns (in other words, producing less
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additional impact for additional increases in coverage),
thus producing non-linear scale-up effects that amplify
the problem of interdependence of interventions.

South Africa is in the unique position of having a pre-
existing, well-calibrated HIV transmission model that
already takes into account those non-linear effects as
well as interaction effects between interventions, the
Thembisa model [16], which we extended with a custom
cost model and optimisation routine. In our optimisa-
tion routine, we assessed the cost-effectiveness of inter-
ventions by iteratively adding the most cost-effective
intervention onto a rolling baseline to which all previ-
ously selected interventions had already been added. In-
stead of defining a pre-specified linear relationship
between cost, coverage, and outcome, we reran the epi-
demiological model at each stage. This allowed us to
preserve the non-linear effects that occurred as interven-
tions were scaled up and capture them in the subsequent
cost-effectiveness analyses.

This paper describes the optimisation routine we devel-
oped for the South African HIV Investment Case and com-
pares its results with those generated using conventional
cost-effectiveness analysis methods to examine the incre-
mental benefit of accounting for interaction effects be-
tween interventions and non-linear effects across scale up.

Methods

Interventions modelled for the Investment Case

Selection of intervention and coverage optionsAfter apro-
cess of evidence review and intervention selection which
has been described elsewhere [17], we included 16 different
HIV interventions with a demonstrated epidemiological
impact in the Investment Case, and examined the impact
of scaling each intervention up or down to up to 6 cover-
age levels: Baseline (BL) -2, -1, +1, +2, +3, and Feasible
Maximum (FM), resulting in 101 distinct intervention-
coverage options (Table 1). The Feasible Maximum repre-
sented an upper bound on the coverage level that could be
reached by 2018/19 and was set at 70% for novel interven-
tions and 95% for most existing interventions (Table 1).
Notable exceptions to this rule are MMC and HIV coun-
selling and testing (HCT) of the general population. The
former was constrained by the model’s assumptions on de-
mand for MMC, while the latter was defined based on gov-
ernment data. Scaling down of novel interventions with a
baseline coverage of 0 was not considered; ie., these do
not have BL-2 and BL -1 options. Details regarding the
unit costs, data sources used and assumptions made in
parameterising each intervention-coverage option are pro-
vided in Additional file 1.

Cost and epidemiological modelling
We projected the epidemiological and cost impact of
each intervention-coverage option over 20 years. We
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Table 1 List of interventions and coverage levels included in the optimisation routine

Intervention Description Coverage level
-2 -1 BL +1 +2 +3 FM (2018/19)
Antiretroviral therapy (ART) Increase ART coverage while maintaining current eligibility v v - v v Vv v 9%
under current guidelines criteria (CD4 < 500 and PMTCT B+ (triple ART initiation for
life in all pregnant women))
Universal treatment Changing guidelines to allow for universal treatment v v v Vv vV V V 95%
(regardless of CD4 count) in addition to increasing
ART coverage
Adult medical male Only unmarried men are assumed to get circumcised v v - v v Vv v 550000 circumcisions
circumcision (MMC) as a result of programmes that promote MMC as an HIV (model maximum)
prevention strategy
Early infant male circumcision  Circumcision of male infants in their first year of life v v - v v vV V7%
(EIMO)?
Condom availability This refers to distributing sufficient condoms to ensure that a v v - vV vV VvV vV 95%
specified proportion of sex acts (~24%) will be protected
PrEP for female sex workers Providing PrkP to sex workers only - - - VvV S T0%
PreP for young women Providing PrEP to young women aged 15-24 only - - - VvV 7%
Prevention of mother to child v v - vV vV VvV vV 95%
transmission (PMTCT)
Infant testing at birth ART uptake in pregnant women - - - VvV S 7%
Infant testing at 6 weeks v v - vV vV VvV vV 95%

HIV counselling and testing
(HCT) of general population

18,153,000 tests (personal
communication, NDoH)

HCT of sex workers - - - VSV 5%

HCT of adolescents Dedicated HIV testing drives targeted at sex workers - - - vV VS 5%

Social and behaviour change Dedicated HIV testing drives targeted at adolescents - v - vV S 9%

(SBCO) mass media campaign 10

SBCC mass media campaign 2 Message of reducing multiple sexual partners and v v - vV vV vV V 95%
increasing testing in adolescents

SBCC mass media campaign 3 Message of increasing condom usage and self-efficacy v v - vV vV VvV vV 95%

@Although a novel intervention, the model assumed a non-zero baseline for EIMC [31]. We therefore retained the B-1 and B-2 coverage level scenarios in

our analysis

bSince a number of organisations responsible for SBCC campaigns were involved in a government tender submission process at the time of analysis, we

anonymised the campaigns in order to not unduly influence the tender process

estimated the epidemiological impact in terms of life
years saved relative to the West level 26 life table with-
out applying any discounting [18]. Based on the model’s
population estimates and data on the unit cost of each
intervention, we projected the total cost of the entire
HIV programme. Costs are evaluated from the provider
perspective, presented undiscounted in constant 2014
US dollars (1USD =11.05 ZAR). The details regarding
how each specific intervention was costed and modelled
in Thembisa have been described elsewhere [17].

These results were then used as inputs for a cost-
effectiveness analysis using two different methods: firstly,
the conventional league table method, and secondly
using our optimisation routine that iteratively added the
most cost-effective intervention onto a rolling baseline
before evaluating all remaining options. We compared
the results generated between the two methods to exam-
ine the incremental impact of our optimisation routine.

Conventional league table method

We first analysed the cost-effectiveness of the interven-
tions included in the Investment Case using the conven-
tional league table method that is well established in
existing literature [19-22]. Assuming independence be-
tween interventions, conventional league tables rank in-
terventions in order of cost-effectiveness, allowing policy
makers to decide which of the interventions on the list
to implement, depending either on a budget constraint
or a predetermined willingness-to-pay threshold. We
constructed these league tables as follows.

First, we grouped different coverage levels of each
intervention into separate categories. Second, we sorted
the intervention-coverage level option by incremental
cost in ascending order within each category. Third, we
excluded options that were strongly dominated by an-
other option in the same category—an option was
strongly dominated if it was both less effective and more
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costly than an available alternative. Fourth, we calculated
the incremental cost-effectiveness-ratio (ICER) of each
successive option using the immediate intervention
above it in the list as the baseline, and removed inter-
ventions that were weakly dominated.! Fifth, we selected
the intervention with the highest ICER that was still
below the designated willingness to pay threshold. For
the current analysis, in order to keep the list of interven-
tions comparable across the two methods, we did not
apply a budget constraint, which meant that the option
with the highest ICER, typically the highest coverage
level option (the feasible maximum), was chosen. Lastly,
we combined the selected intervention in each of the
mutually exclusive categories into a single league table,
and ranked them in ascending order of cost-
effectiveness ratio (CER) over baseline.

The fact that these CERs are calculated by comparing
the impact of the intervention on baseline implicitly as-
sumes that an intervention’s effectiveness is independent of
what other interventions have already been implemented.

Optimisation routine

Given that the South African HIV programme already
consists of a wide range of interventions, we hypothe-
sised that interaction effects between interventions were
important and would challenge the assumption of inde-
pendence between interventions that underlines the con-
ventional league table method. Given that many
interventions are also already implemented at high levels
of coverage [14], we hypothesised that further increasing
coverage in this saturated environment would have
diminishing marginal returns, ie, increasingly less impact
for every increment in coverage. This means that ICERs
generated from conventional cost-effectiveness analyses
are likely to overstate the impact of interventions—the
same life year cannot be saved twice through two differ-
ent interventions—and lead to overly optimistic policy
decisions.

We therefore added a custom costing and optimisation
component to Thembisa in order to preserve the non-
linear scale-up effects inherent in the transmission
model and produce more realistic cost-effectiveness re-
sults. First, we projected the cost and effect of the HIV
programme at baseline. We then calculated the incre-
mental cost and effect (in terms of life years saved) over
baseline of each intervention-coverage level option.
Next, we conducted a pairwise comparison between all
interventions and filtered out all strongly dominated
interventions.

We then ranked the remaining options by their ICER
over baseline. The option with the lowest ICER was the
most cost-effective. However, we also ranked between
competing cost-saving options, which conventional cost-
effectiveness analysis does not allow for since cost-
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saving options have negative ICERs that are not inter-
pretable. In order to rank these cost-saving interven-
tions, we ranked them both by life years saved (in
descending order), and incremental cost (in ascending
order). We then summed these two ranks and chose the
intervention that had the lowest combined rank, repre-
senting the most effective and cost-saving intervention
in aggregate. After choosing the most cost-effective
intervention, we removed all lower coverage level
options of the chosen intervention from the remaining
pool.

In order to take into account the possibility of dimin-
ishing marginal returns as a result of an increasingly sat-
urated programme, we then modified the baseline to
include the intervention-coverage level option that was
found to be most cost-effective and re-evaluated the
cost-effectiveness of the remaining options using the
same algorithm relative to this new baseline. We re-
peated this process iteratively until all intervention-
coverage level options were exhausted (either because
they had been selected and added to the baseline, or be-
cause they had been excluded from the analysis based
on the algorithm). The order in which intervention-
coverage level options were added to the baseline repre-
sents the relative cost-effectiveness of each intervention,
and allows us to construct a ranking comparable with
those from conventional league table analyses.

Figure 1 illustrates this process.

Results

Figure 2 summarises the ICERs and rank of each inter-
vention’s feasible maximum coverage level option in a
league table for each of the two cost-effectiveness ana-
lysis methods, in descending order of cost-effectiveness.

Conventional league table method

Using the conventional league table method, scaling up
condom availability and medical male circumcision were
the most cost-effective options. The model in fact sug-
gests that they were cost-saving overall, since both inter-
ventions prevent significant numbers of new infections
which translate into savings in treatment costs and net
overall savings. These were followed by social and
behaviour change campaign (SBCC) 1 (a mass media
campaign with a message of encouraging testing and dis-
couraging multiple partners) and scaling up ART under
current guidelines and prevention of mother to child
transmission (PMTCT). Towards the bottom of the list,
interventions with relatively poor cost-effectiveness over
20 years included HIV testing for adolescents, PrEP for
young women, and early infant male circumcision.” See
Additional file 1 for the life years saved, total and incre-
mental cost of each intervention using the league table
method.
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Start optimisation routine

v

Project the costs and effects for (rolling) P ing?\(/’ei?ilgr?tggto
baseline D

baseline

1 .

Project the costs and effects for each
intervention on top of the rolling baseline

'

Filter out strongly dominated interventions
(less effective, more costly)

v

Rank by ICER and pick most cost effective
intervention*

'

Remove all lower coverage level options of
the chosen intervention

Final optimisation reached when all
interventions have been exhausted

*When comparing multiple interventions that are cost saving, rank by incremental
effectiveness and incremental cost separately. Pick intervention with the lowest
combined rank (most cost saving and effective overall)

Fig. 1 Optimisation algorithm and decision rules
A\

Optimisation routine

The order of interventions in the league table using our
optimisation routine was similar to the conventional
league table method (Fig. 2), with some key exceptions.
SBCC campaign 1, HCT for sex workers, and PrEP for sex
workers were amongst the interventions that experienced
the greatest percentage increase in the magnitude of their
ICER, and were subsequently ranked significantly lower
on the league table. Once the highly effective and cost-
effective prevention interventions of condom distribution
and male medical circumcision were implemented, and
ART was scaled up to its feasible maximum coverage level
(therefore producing a significant prevention benefit on
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its own [23]), the marginal impact of further prevention
interventions was diminished.> This suggests that conven-
tional methods of economic evaluation are likely to over-
estimate the cost-effectiveness of interventions lower
down a league table due to an inadequate consideration of
diminishing marginal returns.

Focusing on the difference in magnitudes of the
ICERs of each intervention between the two
methods, we found that all interventions were less
cost-effective (i.e. more costly and/or less effective)
when evaluated against a stacked baseline of inter-
ventions with high coverage levels. Restricting our
analysis to interventions with positive ICERs, the
ICERs calculated using the optimisation routine were
on average 437% higher than their counterparts
under the conventional league table method. This
shows substantial diminishing marginal returns to in-
vestment since interaction effects between interven-
tions become more significant as the HIV response
becomes increasingly saturated.

Table 2 presents the ranking and ICERs of all the
intervention-coverage options included in the opti-
misation routine, allowing us to trace the order in
which interventions were successively added to the
baseline package of interventions. This is informative
because the order in which different coverage levels
of a given intervention are picked by the optimisa-
tion routine is suggestive of the strength of the
recommendation.

While the model selected the maximum coverage level
ahead of all other coverage levels in the cases of condom
availability and medical male circumcision, the model
recommended scaling up SBCC campaign 1 more incre-
mentally. Scaling up SBCC campaign 1 to Baseline +1
was the most cost-effective (non-cost-saving) interven-
tion, but the model only suggested further scale-up to

Conventional league table

ICER ($/LYS) Rank

Condom availability

Male medical circu

Fig. 2 Comparison of ICERs and ranks between methods

[N =W :-30 Condom availability Cost saving N/A
[NV -3 Viale medical circumci Cost saving N/A

SBCC 1 (H adolescents, reductic 46 109 14%
96 142 7%

132 248 20%

186 249 34%

pLo1:Q SBCC 1 (HCT in adolescents, reduction in MSP) 749 1525%

HCT for sex workers LI} SBCC 2 (condoms) *1200 112%
SBCC 2 (condoms) I3l General population HCT 1,236 -3%
SBCC 3 (condoms, HCT, MMC) (YA SBCC 3 (condoms, HCT, MMC) 1,816 161%
PrEP for sex workers XIS HCT for sex workers 2,643 621%
General population HCT 1,273 |NERRESLEE ] 2,937 118%
Infant testing at birth hMcY TR PrEP for sex workers 9,947 974%
HCT for adolescents PR HCT for adolescents 19,540 1003%
PrEP for young women EN(\EQ PrEP for young women Max 26,375 612%
8,712,984 89,642,731 929%

*Replaced by the ICER for SBCC 2 B +2. The ICER from SBCC 2 B+2 to Max is uninterpretable since it is cost saving due to non-linear effects

% change in
ICER between
methods

Optimisation routine

ICER ($/LYS)
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Table 2 ICER league table using iterative optimisation routine

Intervention Total cost over 20 years  Life years saved over  Incremental cost over rolling  ICER (Cost/LYS)  Final rank
(2014 USD) rolling baseline baseline (2014 USD)

Baseline 52,533,337,028 - - - -

Condom availability Max 51,022,627,998 3,899,254 —1,510,709,029 Cost-saving 1

MMC Max 51,014,858,122 951,825 —7,769,876 Cost-saving 2

SBCCT B+1 51,026,339,070 320,591 11,480,948 36 Superseded

ART (current guidelines) Max 51,243,805,676 2,004,044 217,466,606 109 3

PMTCT Max 51,314,427,752 497,889 70,622,076 142 4

Infant testing at 6 weeks B+ 3 51,343,303,114 116,406 28,875,362 248 Superseded

Infant testing at 6 weeks Max 51,352,292,109 36,216 8,988,995 248 5

Universal ART Max 52,658,690,554 5,241,734 1,306,398,445 249 6

General population HCT B-2 52,002,826,154 —-1,313,947 —655,864,400 499 Superseded

General population HCT B-1 52,338,752,835 738,355 335,926,681 455 Superseded

SBCC1 B+2 52,406,222,629 111,661 67,469,794 604 Superseded

General population HCT B+ 1 53,032,457,662 1,012,981 626,235,033 618 Superseded

SBCC1 B+3 53,098,136,663 90,853 65,679,001 723 Superseded

SBCCT Max 53,165,119,118 89,429 66,982,455 749 7

General population HCT B + 2 53,462,915,656 349,206 297,796,538 853 Superseded

General population HCT B + 3 53,755,702,602 285,671 292,786,946 1025 Superseded

SBCC2B+2 53,778,290,385 18,820 22,587,782 1200 Superseded

SBCC2 Max 53,777,167,130 37,516 —1,123,255 Cost-saving 8

General population HCT Max 54,066,875,384 234,391 289,708,254 1236 9

SBCC3 B-3 53,986,493,432 -50,161 —80,381,952 1602 Superseded

SBCC3 Max 54,236,500,801 137,678 250,007,369 1816 10

HCT for sex workers Max 54,277,669,534 15,576 41,168,734 2643 1

Infant testing at birth B + 2 54,547,672,527 91,981 270,002,992 2935 Superseded

Infant testing at birth B+ 3 54,686,528,178 47,297 138,855,651 2936 Superseded

Infant testing at birth Max 54,817,666,909 44,648 131,138,732 2937 12

PreP for sex workers Max 55,022,116,749 20,554 204,449,839 9947 13

Testing adolescents B + 1 55,538,796,938 31,920 516,680,189 16,187 Superseded

Testing adolescents B +2 56,378,936,369 48428 840,139,431 17,348 Superseded

Testing adolescents B + 3 57,309,365,304 48915 930,428,935 19,021 Superseded

Testing adolescents Max 57,956,976,545 33,142 647,611,241 19,540 14

PrEP for young women Max 68,668,523,964 406,120 10,711,547,418 26,375 15

Early infant male circumcision B+ 1 68,755,214,097 2 86,690,134 43,345,067 Superseded

Early infant male circumcision Max ~ 69,024,142,290 3 268,928,193 89,642,731 16

maximum coverage once PMTCT, ART at current
guidelines, and infant testing at 6 weeks had already
been scaled up. A similar phenomenon was observed
in the case of general population HCT, whose
scaled-up coverage levels were interspersed between
different coverage levels of SBCC campaigns 1 and
2. This suggests that there are non-linearities in the
incremental effectiveness as interventions are scaled
up, which implies the existence of an optimum

coverage level in terms of cost-effectiveness, after
which further scale-up would lead to diminishing
marginal returns.

To illustrate this further, Fig. 3 plots the incremen-
tal cost and life years saved over baseline of equally
spaced coverage levels of four selected interventions.
For each of the four interventions, effectiveness
exhibits diminishing marginal returns, providing
evidence for non-linear scale-up effects.
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Life years saved over baseline

Millions

Baseline
+1

Baseline.~Bag Baseline Feasible

+3

Baseline

+2

Maximum

Life years saved (2015-34)
Incremental cost (2015-34)

Coverage level

Millions (USD)

Fig. 3 Life years saved and incremental cost over baseline for select intervention-coverage combinations

Incremental cost over baseline
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Condom availability
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Discussion

Comparing our novel optimisation routine against con-
ventional cost-effectiveness analysis methods using inter-
ventions included in the South African Investment Case
as a case study, we found substantial gains in analytical
precision from our methodology.

Firstly, our custom optimisation routine provided more
realistic ICERs that accounted for interaction effects,
resulting in diminishing marginal returns to scale. The
magnitude of the differences in the ICERs between the
two methods was non-trivial (437%), with the optimisation
method especially penalising prevention interventions
once other highly effective and cost-effective prevention
interventions had already been taken to scale (condom
distribution and male medical circumcision). This is par-
ticularly important in a relatively saturated environment
like South Africa, especially since funding is likely to be
limited in the future. Our consideration of interaction ef-
fects extends the broader literature on generalised cost-
effectiveness analysis [15, 24], while the concrete examples
of non-linearity in the relationship between coverage and
outcomes found in our analysis contribute to the ongoing
discussion over non-linear functions in the modelling the
impact of diseases and interventions [25, 26].

Secondly, our approach of adding a custom opti-
misation routine onto a pre-existing, country-specific
epidemiological model contrasted with the established
approach of using integrated HIV epidemiological and
costing models. We approached the same task of
pursuing allocative efficiency by starting from a
well-calibrated, context-specific epidemiological model
and adding costing and cost-effectiveness evaluation
to it subsequently. Our approach illustrated the bene-
fit of drawing on the available detail of a well-
parameterised epidemiological model, instead of a
cost-effectiveness model designed to simplify the

epidemiology for costing purposes. This meant we
were able to avoid common practices such as linearis-
ing non-linear mechanisms.

Our optimisation routine is subject to several key limi-
tations. Firstly, there is limited scope for uncertainty
analysis in our optimisation model. The rank order of
interventions could vary significantly as uncertainty
bounds around the ICERs are likely to overlap. While
adopting methods such as stochastic league tables [27,
28] may provide an upper and lower bound to the cost-
effectiveness estimates, doing so requires computing all
possible intervention combinations, which limits the
benefits of a simplifying algorithm in the first place.

Secondly, our optimisation routine is limited to using
cost per life years saved as the optimand (though it can
also accommodate cost per HIV infections averted). This
does not allow for optimisation based on specific epi-
demiological targets such as minimising incidence or
mortality. Furthermore, our routine does not allow for
optimisation based on multiple criteria, such as effi-
ciency and equity [29]. Further research may be targeted
towards conducting optimisation using a set of different
criteria, individually weighted to reflect policy priorities,
and collecting data to inform these relative weights.
Thirdly, our optimisation routine is restricted by the
coarseness of our pre-specified discrete coverage levels.
Despite improving on the conventional league table
method, our routine may still be detecting a local
optimum, rather than the global maximum that we seek.

Fourthly, our algorithm cannot be considered as “opti-
misation” in the strictest sense of the word. Although we
believe it to be a reasonable approximation, iteratively
adding the most cost-effective option onto the baseline
does not necessarily guarantee the globally optimal bun-
dle of interventions, since it could theoretically be bene-
ficial to remove certain options later on in the routine in
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favour of others. This is a classic case of the knapsack
problem [30] which can only be overcome using a more
complex optimisation routine that requires the model
structure to be fully mathematically defined and differenti-
able, as in the case of Optima [11]. This, however, might
come at the cost of sacrificing non-linearities and as such
represents an analytical trade-off. Fifthly, the optimisation
routine remains both computationally and time intensive.
The conventional league table method may provide ad-
equately accurate rankings between interventions in many
analytical situations—when the scale and range of inter-
ventions in the HIV programme are limited, and the inde-
pendence assumption is reasonably satisfied. Depending
on the specific policy question at hand, the potential gains
provided by the optimisation routine may not justify the
additional computational requirements, especially in the
absence of an existing detailed epidemiological model.
Lastly, our optimisation routine’s ability to generate more
realistic ICER comes at a cost of the external validity of our
results, since the cost-effectiveness estimates of each inter-
vention in the league table is conditional on having imple-
mented all of the interventions above. Since policy makers
often pick and choose interventions for reasons other than
maximising cost-effectiveness, any deviations from the roll-
ing baseline will render the cost-effectiveness estimates in-
accurate and might provide a false sense of precision.

Conclusions

Conventional league table methods for cost-effectiveness
analyses may exaggerate the cost-effectiveness of interven-
tions when programmes are implemented at scale, such as
in the context of the South African HIV programme. This
is because the assumption of independence between inter-
ventions is challenged, and intervention scale-up often
leads to diminishing marginal returns to an investment. We
developed an optimisation routine that iteratively added the
most-cost-effective intervention onto a rolling baseline to
obtain more realistic ICERs and rank orders for interven-
tions in highly saturated real-world settings. The results of
our optimisation routine provided decision makers within
the South African Department of Health and Treasury with
reliable data on the relative cost effectiveness of a vast range
of HIV interventions in such a setting, guiding decisions on
targets and budgets for the next years and helping to in-
crease the allocative efficiency of the countrys HIV
expenditure.

Endnotes

'A is weakly dominated by B if in a rank order of A, B
and C by incremental cost, B has an ICER that is higher
than both A and C.

*Similar to previous analyses we found that interven-
tions targeted at infants were less cost-effective over a
modelling period of 20 years, since the majority of
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prevention benefits in this population are realised only
after the end of the modelling period.

*While general population HCT may look like an excep-
tion, we believe that it only moved up the league table in
relative terms (the other prevention interventions went
down the league table), and because its unit cost was lower
than HCT for other sub-populations, which made its cost-
effectiveness more robust to changes in effectiveness.
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