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Abstract

Background: In Canada, active tuberculosis (TB) disease rates remain disproportionately higher among the
Indigenous population, especially among the Inuit in the north. We used mathematical modeling to evaluate
how interventions might enhance existing TB control efforts in a region of Nunavut.

Methods: We developed a stochastic, agent-based model of TB transmission that captured the unique household
and community structure. Evaluated interventions included: (i) rapid treatment of active cases; (i) rapid contact tracing;
(iii) expanded screening programs for latent TB infection (LTBI); and (iv) reduced household density. The outcomes of
interest were incident TB infections and total diagnosed active TB disease over a 10- year time period.

Results: Model-projected incidence in the absence of additional interventions was highly variable (range:
33-369 cases) over 10 years. Compared to the ‘no additional intervention’ scenario, reducing the time between onset
of active TB disease and initiation of treatment reduced both the number of new TB infections (47% reduction, relative
risk of TB = 0.53) and diagnoses of active TB disease (19% reduction, relative risk of TB = 0.81). Expanding
general population screening was also projected to reduce the burden of TB, although these findings were
sensitive to assumptions around the relative amount of transmission occurring outside of households. Other
potential interventions examined in the model (school-based screening, rapid contact tracing, and reduced
household density) were found to have limited effectiveness.

Conclusions: In a region of northern Canada experiencing a significant TB burden, more rapid treatment
initiation in active TB cases was the most impactful intervention evaluated. Mathematical modeling can
provide guidance for allocation of limited resources in a way that minimizes disease transmission and

protects population health.
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Background

Tuberculosis (TB) is an ongoing public health issue with
Canadian-born Indigenous peoples disproportionately
affected. Between 1970 and 2010, the proportion of ac-
tive TB cases in Canadian-born Indigenous peoples in-
creased from 14.7 to 21.2% [1]. Indigenous communities
experience higher rates of active TB disease than
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Canadian non-Indigenous populations. Determinants of
TB infection and disease differ between Canadian Indi-
genous peoples and Canadian non-Indigenous popula-
tions [2]. Canadian Indigenous peoples experience
significant differences in terms of comorbidities, trans-
mission factors, and social determinants of health, com-
pared to the non-Indigenous population [2].

In the Canadian territory of Nunavut specifically, there
were 581 TB cases reported to the Nunavut Department
of Health in a 10-year period between 1999 and 2011
[3]. Almost all reported cases between 1999 and 2011
(98.8%) were of Inuit origin [3]. In 2010, the highest
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annual number of cases was reported in Nunavut with
100 active cases (304.7 cases per 100,000 population)
identified [4]. In 2012, the TB incidence rate in Nunavut
(which is home to 49% of the total Inuit population in
Canada) was 234 cases per 100,000 population, almost
50 times the overall Canadian rate (4.8 per 100,000) [4].
In Nunavut, over 90% of identified active TB cases be-
tween 1999 and 2011 received treatment with adherence
rates of 80% or better [3]. Public health awareness cam-
paigns have demonstrated success in increasing TB test-
ing rates within Iqaluit, the capital of Nunavut. However,
this level of testing was not sustained after the comple-
tion of the awareness campaigns [5]. The First Nations
and Inuit Health Branch (FNIHB) of the Government of
Canada set a goal of reducing TB in the Inuit population
of Canada to 3.6 cases per 100,000 population by 2015
[2]. Recent data indicate that this goal has not been met,
suggesting that additional public health strategies in
addition to routine contact tracing and screening are
necessary to address TB in Nunavut [5].

The prevalence of socioeconomic factors that contrib-
ute to infection and disease is a particular challenge to
controlling TB in Nunavut [6, 7]. Overcrowded housing
with poor ventilation is common [8], and may facilitate
the transmission of TB and other airborne respiratory
infections [7]. There have been calls for additional re-
sources for increased access to diagnostic testing, treat-
ment, contact tracing, and more comprehensive
screening programs, as well as more long-term invest-
ments to address housing, poverty, and food security [7].

While TB shares many attributes with other commu-
nicable diseases, it is distinguished by the high frequency
with which latent infection occurs, and by the tendency
of a small percentage of latent infections to reactivate
and progress to active TB disease years or decades after
initial infection [9]. This complicates the control of TB,
as high TB rates in communities are likely be due to a
combination of recent transmission events and reactiva-
tion of infection in latently infected individuals.

Given the unique characteristics of TB, including
potentially long lags between infection and disease
onset and the challenges of conducting sufficiently
powered trials [10], disease transmission models are
frequently used to evaluate the impact of TB control
policy options [11-15]. These models facilitate the
evaluation of different strategies that might impact
TB control, such that we can gain a better idea of
how best to allocate limited resources in a way that
minimizes disease transmission and protects the
health of at-risk populations.

We sought to develop a stochastic, agent-based simu-
lation model to describe TB transmission and evaluate
different intervention strategies that might be used to
control the spread of TB in Canada’s north. The model
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focused on the Kivalliq Region of Nunavut, which
encompasses seven communities and is an area that
continues to experience a high burden of TB [16].

Methods
Model overview
We developed an agent-based simulation model of
Mycobacterium tuberculosis transmission in the Kivalliq
Region of Nunavut, Canada (Fig. 1). The region has a
population of 8952 residents and is home to seven dis-
tinct communities ranging in size from 310 to 2320 indi-
viduals [3]. This model represents individuals (agents)
within a simulated environment, and their interactions,
movements, decision-making, and related health states.
We used an agent-based approach to account for the
small population size and associated stochasticity. This
approach allowed us to model the unique household and
community structure in this region, and to record the
health states and treatment histories of individuals over
time. The model was constructed using the AnyLogic
software package (http://www.anylogic.com/). Model pa-
rameters were region-specific, wherever possible, or de-
rived from the biomedical literature (Table 1).

A brief summary of the model structure and calibra-
tion procedure is provided below, with a more complete
description included in the Additional file 1.

Population and community structure

To reflect the demographic structure of Kivalliq, individ-
uals in the model were assigned an age, sex, household,
and community. The initial age distribution of the popu-
lation was based on 2001 Canadian census estimates for
the Kivalliq Region [17]. Each individual was assigned to
a household, which in turn was located within one of
the seven communities. Average household size was
based on census data [18, 19]. New households were
added every year. Individuals were added to the model
population by birth and left the population by death,
with rates based on Nunavut data (Table 1) [20, 21].
Although we allowed for movement between communi-
ties (described in Additional file 1), we did not model
migration into or out of the region.

Natural history of tuberculosis

After the initial synthetic model population was created
as described above (agents assigned specific, individual
attributes including an age, sex, household size, commu-
nity, and specific individual household members), agents
within the synthetic population were assigned a health
state based on the TB natural history component of the
model (Fig. 2). This aspect of the model represented
each individual’s health state over time. We included the
following stages of the natural history of TB: susceptible,
latent TB infection (LTBI), active disease, and
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resusceptible. Susceptible individuals are TB naive, hav-
ing never been infected by TB before and can become
infected if they come in contact with an individual with
an active TB infection. Individuals who have been re-
cently infected progress to the the latent TB classes (la-
tent fast or latent slow). In this case, a small proportion
of individuals will go on to develop active pulmonary TB
within a period of 5 years (Table 1) with the remainder
staying in the latent slow class where they can stay in-
definitely or they can progress to the active TB state at
some time in the future [22]. The active TB states are
broken down into three distinct compartments: high-
transmissibility, low transmissibility, and extrapulmonary
active TB. Individuals in the high-transmissibility com-
partment are individuals who have smear-positive, pul-
monary TB. These individuals are considered more
infectious than individuals diagnosed with pulmonary
TB but who are smear-negative (Table 1) [22]. We as-
sume that individuals who are diagnosed with extrapul-
monary TB are not infectious to others [22]. Individuals
in either the LTBI states or the active TB states can tran-
sition into the ‘diagnosed and treated’ compartment
based on parameters describing the rate of diagnosis and
treatment of TB cases in Kivalliq, Nunavut (Table 1). In-
dividuals in the model who have been successfully
treated for TB or who spontaneously clear their TB
without receiving treatment (Table 1), transition to the
resusceptible compartment [12, 22]. Individuals in the
resusceptible compartment can become reinfected but

their risk of acquiring a new TB infection is reduced
compared to a TB naive individual (Table 1) [12]. Param-
eters describing all model transitions between states are
presented in Table 1 and are informed by both the exist-
ing biomedical literature and data extracted from the
Nunavut TB registry. To capture age-related differences
in TB infection, progression, and management, we clas-
sified individuals aged <15 years as ‘children; and those
aged >15 as ‘adults’ based on the age cut-offs used in the
Canadian Tuberculosis Standards (7 edition) and the
age groupings available from the Nunavut Department
of Health [1, 22, 23]. We assumed that the majority of
TB transmission occurred between individuals within a
household (representing close contacts) [22]. However,
we also included a community network (encompassing
all agents living within an individual’s community) to
allow us to investigate the contribution of community
and casual contacts to TB transmission.

Contact tracing and latent tuberculosis infection
screening

We assumed that susceptible individuals, as well as indi-
viduals with LTBI or undiagnosed active disease who
had no prior history of treatment for LTBI or active dis-
ease, could undergo screening. Those diagnosed with
LTBI and aged between 6 months and 65 years could
receive treatment, with a proportion of these individuals
completing treatment [5, 24]. Those diagnosed with
active disease received appropriate treatment. All
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Parameter Details Value Source
Tuberculosis Natural History Parameters
Probability of transmission (per contact) 0.1 Abu-Raddad [12]
Number of respiratory contacts (per year) 40-1000  Estimated by model calibration
Proportion of transmission occurring in community Varied 0.01-0.15  Assumption
Proportion of new infections entering latent fast state Abu-Raddad [12]
(active disease in <5 years)
Adult 0.15
Child 0.05
Progression to active disease (per year) Fast progressor 15 Abu-Raddad [12]
Progression to active disease (lifetime probability, Slow progressor 0.05 Abu-Raddad [12]
rate dependent on age at infection)
Proportion of active cases with extrapulmonary disease Kivallig surveillance data
Adult 0.1
Child 0.042
Proportion of active cases with high transmissibility Kivalliq surveillance data
pulmonary disease
Adult 03
Child 0.043
Proportion of active cases with low transmissibility Kivallig surveillance data
pulmonary disease
Adult 0.59
Child 0915
Infectivity (relative to high transmissibility TB) Abu-Raddad [12]
Low transmissibility TB 0.25
Extrapulmonary TB 0
Spontaneous recovery rate (per year) 0.1 Abu-Raddad [12]
Relative susceptibility to re-infection Resusceptible individuals 06 Vynnycky [33]
Probability of TB-attributable mortality with active disease 0.0094 Kivalliq surveillance data
Population and Community Characteristics
Number of communities 7 Census [18]
Initial number of households 1890 Census [19]
Average household size 4 Census [18]
Number of new households added (per year) 30 Census [18]
Proportion of population <15 years of age 0.35 Census [18]
Initial number of individuals diagnosed and on treatment 2 Kivallig surveillance data
Initial number of individuals in different states Estimated by model calibration
(remaining are susceptible)
Undiagnosed LTBI 10-2000
Undiagnosed active TB disease 1-50
Resusceptible (following treatment 50-3000
or spontaneous recovery)
Birth rate (per year) Females aged 15-44 0.1 Nunavut Bureau of Statistics [21]

Mortality rate

Age-specific, estimated from Nunavut

life tables

Statistics Canada [20]
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Screening and Treatment Parameters

Time to diagnosis for active TB disease Tian [27]

High 0.5

Low 0.64

Extrapulmonary 0.64
Time in treatment (years) Active TB disease 06 Kivallig surveillance data
Probability lost to follow-up while on treatment for Kivallig surveillance data
active TB disease

Adult 0.06

Child 0.04
Passive population screening for LTBI (per year) 0.004 TAIMA TB report [34]
Average time to LTBI treatment initiation for cases identified 1 Assumption
by population screening (months)
Average time to completion of contact tracing (months) 2 Tian [13]
Time on treatment for LTBI (years) 0.75 Canadian TB Standards [24]
Probability LTBI treatment is completed 0.7 Alvarez [5]

parameters describing baseline contact tracing and
screening assumptions are found in Table 1.

We assumed that contact tracing was only done for
household contacts of diagnosed index cases. Identified
household contacts with LTBI (meeting age and treat-
ment history criteria) were offered treatment, with a
proportion completing treatment based on Nunavut
treatment completion data (Table 1).

Model calibration
We used model calibration to estimate the number of
individuals with latent, undiagnosed, or previously

treated TB upon model initiation, as well as the annual
number of respiratory contacts sufficient to transmit in-
fection. To account for the fact that the risk of transmis-
sion is concentrated among close contacts (household
contacts in our model), we assumed that the majority of
respiratory contacts occurring between cases and their
contacts occurred in the household. In our base case, we
assumed that 5% of respiratory contacts sufficient for
transmitting TB occurred within the community (with
the remaining 95% of transmission-sufficient contacts
occurring with household members). We also repeated
the calibration process assuming that 1% or 15% of
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Fig. 2 Model overview. Only individuals with high or low transmissibility disease are infectious. All health states also have age-specific mortality,
and the births are added to the susceptible state (not shown). The transition probabilities for certain health states differ depending on whether
an individual is a child (<15 years of age) or adults, as described in the text and Table 1
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respiratory contacts occurred within the community. A
total of 10 best-fit parameter sets were obtained for each
value of community transmission.

Interventions to reduce tuberculosis burden

We considered different interventions to reduce the bur-
den of TB in Kivalliq (Table 2). For each intervention,
changes made for that specific intervention were layered
on top of the existing TB control activities that were
assumed in our base case. For instance, there was a base
case level of population LTBI screening in all interven-
tions, which was increased in our population screening
intervention. We included interventions that reduced
TB transmission by active cases (interventions a and b),
as well as those that prevented progression to active
disease in LTBI cases (interventions ¢, d, and e):

(a) Rapid treatment of active cases: This approach relies
on the timely diagnosis of individuals with active TB,
with rapid initiation of treatment, such that
individuals are no longer infectious to others.

(b)Increased housing to reduce overcrowding: Another
way of reducing TB transmission is by decreasing
the effective number of case contacts. Since the
majority of TB transmission is expected to occur
in households, we evaluated increasing housing
availability, thereby reducing the average household
size and the number of individuals potentially
exposed to an infectious individual in the household
setting.

Table 2 Model interventions

Intervention Details

- Time from active disease onset to
treatment: 0.5 years for pulmonary
high, 0.64 years for pulmonary low
and extrapulmonary

- Contact tracing time: 60 days

- Population screening: 0.004/year

+ New households: 30/year

Base case

- Time from active disease onset to
treatment initiation reduced by half
(0.25 years for pulmonary high, 0.32
years for all other)

Rapid treatment of active cases

Rapid contact tracing (CT) « Time to testing and treatment
initiation for household contacts
of diagnosed index cases reduced

by half (30 days)

« Rate of general population
screening (with appropriate
treatment) increased to
0.01/years

Expanded population screening

School screening « Screen all children aged 5, 11,

and 14 annually

« Increase number of new
households by 60/year

Increased housing to reduce
overcrowding
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(c)Rapid contact tracing: Contact-tracing focuses on
contacts of recently identified active cases, as these
individuals are considered at high risk of infection.
As screening and treatment of household contacts
is already carried out as part of TB control activities,
we evaluated the impact of reducing the time to
carry out such investigations.

(d)Population screening: We evaluated the impact of
increasing the rate of general population screening.
Individuals were randomly selected from the pool
of individuals in the population with no prior history
of treated active or latent TB infection.

(€) School screening: Targeted screening of school-aged
children has been recommended [24]. We evaluated
the impact of annual screening of children aged 5,
11, and 14 which is currently recommended in
Nunavut [7].

Model outcomes

Intervention impact was evaluated by comparing the
number of incident infections, LTBI diagnoses, and diag-
nosed active TB cases in the presence of the intervention
to the base case. To account for variability in TB
dynamics between model runs, comparisons of interven-
tion impact were made within experiments; that is, for a
given experiment with a best-fit parameter set estimated
from the model calibration process, we compared out-
comes in the presence of the different interventions to
the base case. Results are presented as the median and
interquartile range for the 10 experiments. We evaluated
a 10-year time horizon, as this was considered relevant
for public health decision-making. As an additional ana-
lysis, we considered a 25-year time horizon, given the
slow progression of TB and the possible subsequent
delay in observing changes in disease dynamics.

Supplementary analyses

We considered alternate approaches to evaluating inter-
vention impact and to performing model calibration. A
description of these approaches and results of these
analyses are presented in the Additional file 1.

Results

Model calibration

The best-fit model realizations captured the variability in
diagnosed pulmonary TB cases in Kivalliq over the 14-
year time period (Fig. 3). Although our base case
assumed 5% of contacts occurred within the community,
we present the results of calibration for all three levels
of community transmission for the sake of comparison.
The proportion of incident cases in community contacts
ranged from less than 1% to greater than 50%, depend-
ing on the assumed intensity of respiratory contacts
occurring within the community (Fig. 4). For the 5%
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community contacts scenario, we estimated that the
contact tracing process would identify a median of 22%
of household contacts with LTBI and 1.3% of contacts
with active TB infection. We observed similar estimates
with lower or higher amounts of community transmis-
sion (Fig. 5).

Base case scenario
For each of the best-fit model realizations, we used the
model to examine the projected dynamics of TB in
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Fig. 4 Proportion of incident infections projected to occur within
the community over the 14-year calibration period. Model outputs
assume different levels of TB transmission within the community.
The remainder of infections occur among household contacts of
active TB cases. Boxes represent the median values of 10 runs, while
lines span the minimum and maximum values of 10 experiments
with best-fit parameters

Kivalliq over a 10-year period, in the absence of any add-
itional interventions (Fig. 6). The ten best-fit parameter
sets resulted in a high degree of variability between
model runs (due to stochasticity and a small population
size), with cumulative TB incidence estimates ranging
from 33-369 cases over the ten year time period. Com-
pared to the base case, decreasing the time to treatment
initiation for active cases was projected to reduce the
number of incident TB infections in the population and
have an impact on reducing diagnosed active TB (Fig. 7).
This finding was consistent across the ten best-fit
parameter set experiments. In addition, expanded
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Fig. 5 Infection status of household members of active cases,
identified by contact tracing. Household contacts of diagnosed
cases of active TB disease had a probability of being identified and
screened via the contact follow-up process, as described in the
Methods. Household members may be identified as having a latent
TB infection (blue boxes), or active TB disease (red boxes). Remaining
screened contacts are uninfected. Results are shown for different
levels of TB transmission within the community. The midpoint, lower,
and upper bounds of the boxes represent the median, 25" percentile,
and 75 percentile, respectively. Bars span 1.5 times the

interquartile range
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\

population screening was projected to reduce the num-
ber of incident TB infections in the population and have
an impact on reducing diagnosed active TB (Fig. 7).
Increased housing at the level implemented in the model
trended toward reducing TB incidence, but there was
variability between model runs.

As expected, compared to the base case, the two inter-
ventions that expanded LTBI screening (either at the popu-
lation level or targeted to school aged children) resulted in
more LTBI cases being detected (Fig. 8). However, greater
LTBI detection and treatment did not necessarily translate
into reduced TB burden: for the school-screening program,
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o
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Fig. 7 Projected impact of different interventions on incident TB
infections and diagnoses of active TB disease. The midpoint of boxes
represents the median percent change in the outcome of interest,
relative to the base case, with the upper and lower bounds representing
the 25" and 75" percentiles of percent change, respectively and the
bars indicating 1.5 times the interquartile range. Results are based on
cumulative outcomes over a 10-year time horizon, assuming 5% of
transmission-sufficient respiratory contacts occur in the community.
Intervention details are provided in Table 2

200
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Fig. 8 Projected impact of different interventions on diagnosed
latent TB infections. Results represent cumulative excess cases,
relative to the base case scenario, over a 10-year period, assuming
that 5% of respiratory contacts sufficient to transmit TB occur with
casual community contacts, with the remaining contacts occurring
with household members. The midpoint, lower, and upper bounds
of the boxes represent the median, 25™ percentile, and 75" percentile
of changes in cases, respectively. Bars span 1.5 times the interquartile
range. Intervention details are provided in Table 2

we did not observe a corresponding impact on incident or
active TB diagnoses in the population. Reducing the time to
identify, test, and where appropriate, treat contacts of
infectious cases was not projected to have an impact
on TB incidence or diagnoses.

Sensitivity of results to model assumptions about
transmission outside of households and time horizon
Our findings were sensitive to assumptions around the
relative fraction of TB transmission occurring in com-
munities versus households (Fig. 9). When the contribu-
tion of community transmission was relatively low (1%
of contacts sufficient to transmit TB occurred outside of
the household), expected TB incidence was low (17-66
cases in the base case over a 10-year period). None of
the proposed interventions were expected to have a dra-
matic impact on TB burden in Kivallig, although the
trend of lower incident infections and diagnosed active
TB disease cases remained with the rapid treatment sce-
nario (Fig. 9a). With higher transmission occurring out-
side of the household (15% of respiratory contacts
sufficient to transmit TB occurring in the community),
expected TB incidence in the base case ranged from 44
to 562 over the 10-year period. Rapid treatment was
projected to decrease TB incidence, and to a lesser
extent, diagnoses of active TB disease (Fig. 9b).
Expanded population screening showed a trend toward
lower TB incidence and diagnoses, but there was a fair
amount of variability in these findings.

Given the slow progression of TB and the possible
subsequent delay in observing impact of interventions
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are provided in Table 2

on changes in disease dynamics, we repeated our ana-
lyses using a 25-year time horizon (Fig. 10). Rapid
initiation of treatment for active TB cases remained
the most attractive intervention option when consid-
ering the 25-year time horizon for all scenarios (1%,
5%, and 15% community transmission). With a longer
time horizon, population screening, school screening
programs, and increased housing were projected to
have an overall minimal effect on reducing TB burden
in the population. Under the assumption of a greater
number of transmission events occurring among com-
munity contacts (15%) (Fig. 10), the rapid contact tra-
cing intervention began to appear more attractive as
an intervention, with all simulation runs resulting in
a reduction in both incident and diagnosed active TB.

Discussion

We have developed an agent-based model of TB trans-
mission in the Kivalliq Region of Nunavut. Using this
model, we evaluated the potential for different
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Fig. 10 Projected impact of different interventions on TB incidence
and diagnoses over a 25-year period. Results are shown for 1% (top),
5% (middle), and 15% (bottom) of respiratory contacts occurring within
the community. The midpoint of boxes represents the median percent
change in the outcome of interest, relative to the base case, with the
upper and lower bounds representing the 25" and 75 percentiles

of percent change, respectively and the bars indicating 1.5 times the

interquartile range. Intervention details are provided in Table 2
- J

intervention strategies to control the spread of TB in
this region. Although our results were sensitive to as-
sumptions around the relative contribution of commu-
nity transmission to TB spread, we generally found that
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reducing the time between onset of active disease and
initiation of treatment was an effective means of redu-
cing disease burden. In the short-term, expanding gen-
eral population screening was also projected to reduce
the burden of TB. Other potential interventions were ex-
pected to be of limited effectiveness.

Population screening and treatment of LTBI prevents
the potential progression to active disease, with the
downstream consequence of preventing ongoing TB
transmission. Screening may also detect active TB cases
[5]. Given that most infected individuals will not pro-
gress to active TB disease [24], many individuals need
to be screened and treated to prevent a case of active
disease [25] and compliance with the lengthy treatment
regimen can be a challenge [24]. Despite these chal-
lenges, we found that population screening in Kivalliq
was projected to reduce the burden of TB, although the
effect was less pronounced when we considered a 25-
year time horizon.

Implementing screening programs in school-aged chil-
dren was not projected to impact TB burden. As
pediatric cases are less likely to have highly transmissible
TB [26], it may be that finding and treating LTBI in this
population is ineffective as a means of preventing disease
transmission. Other targeted screening programs, focus-
ing on population-groups considered to be at higher risk
for TB infection or progression to active disease, or indi-
viduals who are at increased risk of transmitting TB to
vulnerable individuals, might be expected to be of higher
yield, but would require additional model complexity
and data to evaluate.

We found that reducing the time to conduct contact
tracing had minimal impact on disease dynamics. This
finding is consistent with work by Tian et al. [27], who
used a system dynamic model describing TB in
Saskatchewan to demonstrate that more rapid contract
tracing did not significantly impact TB incidence. A pre-
vious modeling study [11] found that follow-up of
household contacts could reduce TB burden, but com-
pared contact tracing to disease trends in the absence of
any contact tracing, as opposed to investigating the role
of reducing the time to perform contact tracing and ini-
tiate treatment as in the present study. Our findings sug-
gest that the current time frame for contact tracing is
adequate for detecting exposed individuals of index cases
prior to their development of active infection. It is
important to note that this model assumes that contact
tracing is only applied to household members of active
cases. It is possible that a model that included a more
complex tracking of community contacts would observe
a different impact of reducing contact tracing time,
although, as mentioned above, the results of another
mathematical modeling study suggest that expanded
breadth of contact tracing has diminishing returns [27].
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Household overcrowding is a recognized issue in
northern communities [8]. Given the importance of
household transmission for TB spread, we hypothesized
that reducing the average number of individuals living in
a household through the addition of households in com-
munities would reduce TB transmission. However, we
did not observe a significant impact on TB incidence
when we implemented this intervention, although we
did observe a trend toward lower TB incidence in our
moderate community transmission scenario. It is pos-
sible that by allowing individuals to move between
households (via the creation of new households), the ef-
fective number of contacts of an infectious individual ac-
tually increases. For instance, an active case might share
a household with four others; if that person is then relo-
cated to a new household with four other individuals, he
has the opportunity to infect eight individuals over the
course of his infection. Since contact tracing is only ap-
plied to an active case’s household members at the time
of diagnosis, we may be underestimating the potential
for increased housing to impact TB spread. It is also
possible that the impact of housing on reducing over-
crowding (and downstream, transmission events) takes
a longer time to manifest than that considered in this
analysis. Finally, it may be that the actual number of
new housing units required to significantly impact
overcrowding is greater than that considered in this
scenario. It should be noted that adding housing re-
duces average household size (and therefore the num-
ber of contacts) only. We did not model the
possibility that new housing units with improved ven-
tilation might reduce the probability of transmission
per contact.

We assumed that household contacts of active cases
were at greater risk of TB infection than community and
casual contacts. As the degree to which community trans-
mission contributes to TB transmission in Kivalliq is un-
known, we conducted scenario analyses for differing
amounts of transmission occurring in the community. The
overall projected TB burden scaled with the assumed
amount of community transmission, with lower levels of
TB transmission expected to occur when transmission pri-
marily occurs within the household. Based on past experi-
ence, it appears that the higher community transmission
scenarios are more likely to reflect population mixing in
Kivalliq. Given the importance of assumptions around the
contribution of community transmission to TB dynamics,
the use of molecular epidemiological techniques to better
define transmission networks [28—30] might facilitate the
selection of optimal disease control strategies. For example,
the identification of large single-strain clusters that include
both household contacts and community members would
argue in favour of more community transmission, whereas
the identification of sporadic strain types in the
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community, and with clusters restricted to household
groups, would suggest less community-based transmission.

The failure to observe robust effects for any of the in-
terventions in the low community transmission scenario
may reflect the small absolute number of TB cases pro-
jected to occur. The median number of diagnosed cases
was 20 (in the base case and in the absence of additional
interventions), making it challenging to detect small or
moderate differences in health outcomes upon introduc-
tion of additional interventions.

As with any model-based analysis, ours has limitations.
This model includes a large number of parameters relat-
ing to the natural history of TB and treatment, many of
which are subject to uncertainty [31], and also includes
many simplifying assumptions. Wherever possible, we
have used parameters specific for Kivalliq, Nunavut, or
Canada. We have assumed that the proportion of re-
spiratory contacts sufficient to transmit TB in the com-
munity (outside of household contacts) ranged from 1 to
15%. Improved data on contact patterns between indi-
viduals would better inform our model parameterization:
in particular, diary data recording specific contact pat-
terns [32], or a detailed contact-tracing registry. Al-
though we were able to generate model realizations that
fit the available surveillance data well, the variability in
the possible trajectory of TB burden over the subsequent
10 years highlights the degree of uncertainty in our
model projections. We made comparisons within model
realizations to account for the differences in model pro-
jections and focused on relative differences to account
for this uncertainty in model projections. We have also
addressed this issue in supplementary analyses presented
in the Additional file 1.

Conclusions

To summarize, we have developed an agent-based model
describing TB transmission in a small northern popula-
tion. We have identified possible areas of TB control
where increased efforts are expected to have an impact,
as well as areas where focusing efforts are not expected
to have as great of a payoff, in terms of reduced TB bur-
den in the community. This model provides a platform
that can be refined as we gather additional surveillance
and programmatic data and can be modified to repre-
sent different communities in Canada’s north. In
addition to providing qualitative estimates of the relative
impact of different interventions and combinations of
interventions, it can be used as a tool to identify know-
ledge gaps [31].

Additional file

[ Additional file 1: Model technical appendix. (DOCX 497 kb) ]
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