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Abstract

Background: Severe acute respiratory syndrome (SARS) originated in China in 2002, and it spread to 26 provinces
in mainland China and 32 countries across five continents in a matter of months. This outbreak resulted in 774
deaths. However, the spatial features and potential determinants of SARS input-output flows remain unclear.

Methods: We used an adjusted spatial interaction model to examine the spatial effects and potential factors
associated with SARS input-output flows.

Results: The presence of origin-based spatial dependence positively affected SARS input-output flows from the
neighbours of the origin regions. Two components of the input-output flows, migrant and hospitalization flows,
exhibited distinctive features. The origin-based and destination-based spatial dependence positively affected migrant
flows (i.e, due to those seeking jobs) from the neighbours of origin and destination locations. Similarly, the destination-
based spatial dependence also positively affected hospitalization flows (i.e, due to those seeking treatment) from the
neighbours of destination regions. However, the origin-to-destination based spatial dependence negatively affected
hospitalisation flows from the neighbours of origin-to-destination regions. The direct effects accounted for 78 % of the
SARS input-output flows, which was 3.56-fold greater than the indirect effects. Differences in regional income drove
the SARS input-output flows. Therefore, urban income had a positive effect, whereas rural income had a negative
effect. Total interregional flows increased by 3.54 % with a 1 % increase in urban income, and intraregional flows
increased by 8.35 %. In contrast, the total interregional flows decreased by 3.38 % with a 1 % increase in rural income,
and intraregional flows declined by 2.29 %. Railway capacity, per person gross domestic product (PGDP), urban rate
and the law of distance decay also affected the input-output flows.

Conclusions: Our results confirm that the SARS input-output flows presented significant geographic spatial
heterogeneity and spatial effects. Income differences were the major cause of the flows between pairs of regions.
Railway capacity, PGDP, and urban rate also played important roles. These findings provide valuable information
for the Chinese government to control the future spread of nationwide epidemics.
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Background

The increasing movement of people across many regions
has tremendous potential to spread infectious diseases
[1, 2]. Population mobility enables an infectious disease
threat in a single region to become an international di-
lemma [3]. Mobile populations are closely linked to dis-
ease transmission over a wide range. Recent outbreaks
of severe acute respiratory syndrome, influenza A virus
subtype H5N1, influenza A virus subtype H7N9, Middle
East respiratory syndrome, and Ebola haemorrhagic
fever were international public health emergencies that
elicited widespread public reaction [4—6].

The global spread of SARS passed its 10th anniver-
sary in 2013; however, this outbreak left an indelible
mark. The deadly coronavirus erupted in Guangdong in
November 2002, and it spread to 26 provinces of main-
land China and to 32 countries across five continents
in a matter of months and this outbreak resulted in 774
deaths [7]. The short-term economic loss in Singapore,
Vietnam, Taiwan, China, and elsewhere in Asia was esti-
mated at $30 billion [8].

Human migration is responsible for the transmission
of infectious diseases between humans, and long-range
human mobility is a key factor in spatial disease trans-
mission [9-12]. The input and output of SARS cases pri-
marily caused the SARS transmission across the country
[7]. SARS was spread across distant locations in China
because infected individuals carried the virus when they
changed locations, thereby infecting other people in
other areas. Long-range human movements were as
significant for SARS transmission as direct contact over
a close range [13]. The migrant population of mainland
China was 261 million in 2010 [14]. Therefore, the
potential determinants of infectious disease transmission
in this large itinerant population must be investigated.

Identifying how migrant behaviour affects disease
dynamics is critical to improve the control efforts of infec-
tious diseases [15]. Three types of models examine how
human movement affects the spatial spread of epidemics:
the susceptible-infectious-removed, network, and gravity
models. The susceptible-infectious-removed model and its
extensions incorporate a subdivided population into a mi-
gration matrix to describe the movement patterns of indi-
viduals within subpopulations [16—18]. Network models
incorporate geographic and social distances into topo-
logical networks. For example, Xu et al. [19] investigated
spatial proximity in epidemic transmission using scale-
free networks, and Han et al. [20] examined the effects of
human mobility and network topology on the spread of
infectious diseases using a hierarchical geographic net-
work. Gravity models are used to capture the spatial
features of interregional flows and disease transmission
strength with regard to the geographic and economic
aspects of epidemiology [21-23].
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These epidemic spread models are frequently used to
study the factors of infectious disease transmission such
as spatial heterogeneity [24], spatial proximity [25], so-
cial proximity, and socioeconomic and demographic var-
iables [23, 26]. However, spatial dependence and spatial
spillover effects are invariably ignored in the specifica-
tions of these models [27]. Accordingly, important char-
acteristics of infectious disease transmission fail to be
considered, such as the effects of passing through neigh-
bouring regions and the feedback effects on the source
and adjacent areas.

The effect of spatial dependence on disease transmission
is commonly measured using spatial models [28-32] in-
cluding the conditional autoregressive, geographically
weighted regression, hierarchical Bayesian, and Moran’s I
models. These models measure the effect of spatial de-
pendence on disease transmission using the distance be-
tween the origin and the destination. These conventional
spatial models apply only to lattice data (not flow data),
and they cannot be used to calculate the spatial depend-
ence of origin regions, destination regions, or origin to
destination separately.

A typical spatial interaction model (SIM) relies on
three types of factors to explain variations in flows:
origin-specific, destination-specific, and spatial separ-
ation factors [33]. Origin-specific factors reflect the abil-
ity to produce flows at the original location (i.e., push
factors). Destination-specific factors represent the cap-
acity to attract flows at the destination location (i.e., pull
factors). Spatial-separation factors constitute the core of
spatial interaction models and reflect the resistance to
constraints or act to impede the flows between origin
and destination locations. Distance is a typical measure-
ment of the separation between the O-D regions.

The push and pull factors of migration are commonly
applied in migration theories. These factors are the driv-
ing forces that induce people to move from one location
to another. Push factors arise in origin regions and impel
people to move away from that location. Pull factors
occur in destination regions and attract individuals to
that location. People migrate from origin to destination
regions for numerous economic, sociopolitical, and envir-
onmental reasons such as differences in wages, job oppor-
tunities, living conditions, education, and medical care
[34-38]. The spread of SARS is a good example of how
population mobility facilitates the spread of disease [39].

Spatial interaction models (SIMs) typically explain
only variations in interregional flows. However, if intrar-
egional flows are much greater than interregional flows,
then this difference adverse effects the local averages of
dependent variables [40, 41]. Adjusted SIMs (ASIMs) is
developed to avoid this problem [42]. ASIMs use spatial
interaction data to explore the driving forces behind the
spread of infectious diseases. ASIMs consider the effects
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of spatial dependence and spillover during epidemic
transmission in a heterogeneous environment. This fea-
ture addresses the problems with conventional models
of epidemic spreading in a homogeneous context.

The direct effects of a spatial homogeneous model
refer to the change in a factor within a single region that
affects the disease transmission in the region itself. The
indirect effects reflect a change in a factor with a single
region that potentially affects the disease transmission in
all of the other regions [42]. The total effects include
both direct and indirect effects.

The present study modelled SARS transmission with
an ASIM using input-output flow data to determine its
spatial characteristics and potential determinants. We
produced input-output flows for SARS based on the
spatial location changes of infected individuals in inter-
regional transmission, which reflects the ability of the
virus to spread to neighbouring regions [7]. We con-
structed SARS input-output flows primarily from mi-
grant and hospitalisation flows. Therefore, we focused
on these two flow components and the total SARS
input-output flows. Control measures for infectious dis-
ease often have direct effects on the targeted individuals
of one region and indirect effects on the people living in
neighbouring regions [43]. The present study focused on
the socioeconomic factors and the spatial effects of the
SARS input-output flows.

Methods

Data

Formal ethical approval was not required because only
statistical analyses were applied to the population, and
non-human primates were used in the research.

We extracted the SARS input-output flow from 5,327
SARS cases during the outbreak between November
2002 and May 2003 in mainland China. The China
Centre for Disease Control provided the data relating to
these cases. Each case record in the dataset included the
patients’ registered residence, work location or current
residence, onset location, reporting units, onset time,
and hospitalisation time.

The flow data are a series of limited spatial interac-
tions [44] associated with a pair of origin-destination
(O-D) locations representing points or regions in space
[45]. These data were used to identify the interactions of
individuals’ movements from one location to another
within a particular region [41].

We produced the SARS input-output flow data for the
SARS transmission. We identified individuals from re-
cords based on their registered place of residence (hukou
system) and work location, disease onset location, and
location of medical treatment. Figure 1 shows the net-
work of SARS input and output flow in mainland China
for 2002-03.
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The SARS flow data are composed of intra- and inter-
provincial flows in the ASIM, each with a pair of origin-
to-destination locations. The SARS input-output flow
data were formed using an #-by-#n matrix, which repre-
sents the SARS flows from # regions to each n destin-
ation (see Additional file 1: Table S2). We divided the
SARS input-output flow data into two subpopulations,
migrant flow and hospitalisation flow, to determine the
social and economic correlates [17] of the interregional
spread of SARS. We defined migrant flow as being com-
posed of the individuals who were seeking job opportun-
ities resulting from the difference between the registered
residence and work locations. We defined hospitalisation
flow as being composed of the individuals who were
seeking medical care, which occurred when a difference
existed between the disease onset and medical treatment
locations. The migrant and hospitalisation flows con-
sisted of intra- and interprovincial flows.

The generation process of the SARS flow data was
presented in a previous study [7]. Briefly, we describe
the process of input-output flow extraction. First, two
pairs of data records containing spatial location informa-
tion (e.g., between the registered residence and work lo-
cation as well as between the onset and medical
treatment location) were compared. The record was
considered invalid and removed when one of the pairs
was missing. Second, geocoding was used to restrict the
spatial location information to a provincial or municipal
scale. For example, the administrative code of the Haidian
District is 110108; however, the higher-level provincial
code 110000 was used for location identification. Finally,
we identified 1,976 cases in the SARS input-output flows,
including 1,491 cases of migration and hospitalisation
flows. Figures 2 and 3 show the network of migrant and
hospitalisation flows, respectively.

Certain potential factors affect infectious disease trans-
mission in itinerant populations, and this study selected
those factors based on the results of previous reports
[23, 26, 46-48]. SARS input-output flows during the
study period were composed of a mixed population of
migrant and hospitalisation flows. Three types of factors
affected the magnitude of the flows: push factors of ori-
gin; pull factors of destination; and deterrence factors
between the origin and destination regions [33, 49].
These factors directly affected the SARS input-output
flows, but they could not be quantified. Therefore, we
collected a set of corresponding closely related proxies for
use for input-output flow modelling. Figure 4 depicts the
relationship between the SARS input-output flow and its
proxy variables. The urbanization rate, per-person gross
domestic product (PGDP), population density, and
disposable income were used as proxies for the push or
pull factors. We used geographic distance as the proxy for
the deterrence factor. Additional file 1: Table S1
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Fig. 1 Map of the SARS input-output flows in 2002-03 across mainland China

summarises and interprets these potential factors. We
measured all of the proxies at the provincial or muni-
cipal levels. The following section describes the
variables.

Urbanization rate signifies the level of urbanization,
which indicates the level of economic development, in-
frastructure, existence of public services, and other re-
lated factors. A higher level of urbanization in one
region generally indicates a comparative wealth of
potential job opportunities and better healthcare, both of
which appeal to potential migrants.

PGDP indicates economic development in a country.
PGDP is based on the rationale that all residents benefit
from their country’s increased economic production.

Higher population densities are often associated with
destinations for migrants. For example, several prov-
inces with large populations (e.g., Sichuan, Henan,
Shandong, and Anhui) are the most significant source
regions for itinerant populations in China. Beijing,

Guangdong, and Shanghai are the most important des-
tination municipalities.

Traffic capacity is an accessibility indicator of the
transportation network. Road, rail, and air are the three
primary means of long- or medium-distance travel in
mainland China [50]. Therefore, this study used road,
rail, and flight capacity as indicators of total traffic
capacity.

Disposable income indicates an individual’s income
level. Regional differences produce a growing income
gap between the urban and rural areas of mainland
China, and higher expected income is a primary cause of
migration. This study used the level of disposable in-
come in selected urban and rural areas to determine the
effect of income on migration flows.

Geographic distance influences the transportation and
psychological costs for migrants. Greater distances in-
volve higher transportation costs, and they weaken social
network relationships and the spread of information
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Fig. 2 Map of migrant flow in 2002-03 in mainland China

J

about destination employment. This study expressed
geographic distance as the Euclidean distance between
cities.

We obtained socioeconomic data (e.g., urbanization
rate, PGDP, population density, and disposable income)
from the China Statistical Yearbook for 2004. We de-
rived data relating to road and railway capacity from the
Yearbook of China Transportation and Communications
for 2004.

ASIM procedure

SIMs for interregional flows were used to explain the
O-D flows between pairs of regions [40]. These
models considered the spatial dependence between O-D
flows, which more accurately reflects the real world than
conventional methods [51]. SIMs are used in many fields
of study, including those concerning migration, commod-
ities, information, knowledge, technology, and tourist
flows [52—55]. In the field of regional science, the gravity

model is also called a spatial interaction model [56], and a
log transformation form of the standard gravity model
[57] can be expressed as in Eq. 1:

y=aly +Xaf; + Xof, +yg + ¢ (1)

where y is an N-by-1 vector arranged by origin-centric
ordering, which is the log transformation of the value of
the SARS flows. N (N = #?) denotes the number of ob-
servations in each O-D pair region. 7 is the number of
provinces in mainland China. In this study, » =27 and
N =729. aly is the intercept term. X, represents the ori-
gin characteristics. X; represents the destination charac-
teristics. These variables capture the interregional
variations in the SARS input-output flows. 3, and /3, are
the coefficient estimates associated with the origin and
destination province characteristics, respectively. g signi-
fies the log of the geographic distance between any two
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provinces in the O-D pairs. The scalar parameter y re-
flects the effects of distance g.

The adjusted spatial interaction model (ASIM) is a
new spatial interaction modelling method that uses dis-
tance as an explanatory variable and spatial weight ma-
trixes to represent spatial dependence [33]. The ASIM is
proposed to determine the potential factors of SARS
transmission across space. The equation for the ASIM
was expressed as follows:

(In-p,Wo) (In—paWa)y
=y +ca; + Xafy + Xof, + Xif; +yg +e  (2)

where X; represents the intraregional characteristics and
captures intraregional variations in the flows. Iy is an n-
by-n unit matrix. ca; denotes the interprovincial flow
intercept, which constitutes a separate model. 3; de-
scribes the coefficient estimates associated with the
intraregional characteristics. All of the other parameters
in the Eq. (2) are the same as Eq. (1).

Spatial weight matrices provide a convenient way to
capture dependency relationships between regions, and
we used these matrices to describe the spatial connectivity
of the SARS input-output flow. W is an #n-by-#n nonnega-
tive sparse matrix in the ASIM that describes the spatial
connectivity between n regions. W, is an N-by-N row-
standardised spatial weight matrix around each flow origin
of all of the destinations using the Kronecker product
(W,=W®I,). W, captures origin-based dependence,
which enhances or diminishes similar flows to neighbour-
ing destinations of the origin. W, also uses the Kronecker
product to produce an N-by-N spatial weight matrix. W,
captures destination-based dependence (W,;=1,Q W),
which enhances or diminishes similar flows to neighbour-
ing destinations. W,, reflects the SARS flow from the
neighbours of the origin regions to the destination neigh-
bours. W,, captures the origin-to-destination dependence
Ww=W,-W,_(I,@W) - (WQL,)=W® W). p,, pay and
pw represent spatial dependence parameters associated
with the origin-based, destination-based and origin-to-
destination-based dependence characteristics, respectively.

The parameters in Eq. (2) can be solved using the
maximum likelihood approach, which provides consistent
and unbiased results [54]. The form of the log-likelihood
function for the spatial flow model specifications appears
in the following equation:

LnL(deDo?pw)
N
=C+ lnllw—ded—PaWa—prwl—gln(S(pdvpmpw)),

(3)

where S(ps po, pw) represents the sum of the squared
errors expressed as the scalar dependence parameters
alone, and C denotes a constant [40].
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These regression coefficients were determined using
MATLAB programs developed by our group.

Results

Our ASIM results (Table 1) indicated a spatial depend-
ence in the SARS input-output flows. We found that the
direct effects played a 3.56-fold greater role than the in-
direct effects. The differences in regional income, urban
rate, PGDP, and railway capacity played particularly im-
portant roles with regard to the SARS input-output
flows. We also confirmed that the law of distance decay
exerted an effect. The details of our findings are pro-
vided below.

Spatial dependence and spillover effects

The origin-based spatial dependence generally posi-
tively affected the SARS input-output flows from the
neighbouring regions of origin locations (p, = 0.201). The
two components of input-output flows, migrant and
hospitalization flows, presented different features based
on the strength of the spatial dependence at different loca-
tions. The origin-based and destination-based spatial
dependence positively affected migrant flows from the
neighbouring origin locations (p, = 0.181) and neighbouring
destination locations (p;=0.134). The destination-based
spatial dependence positively affected hospitalisation flows
from neighbouring destination regions (p,;=0.171), but
a negative effect was observed between regions that
neighboured the origin and the destination (p,, = —-0.149).
These results indicate that more hospitalisation flows
were produced from origin-to-destination regions and
fewer flows arose from the neighbours of origin-to-
destination regions.

The direct effects accounted for 78 % of the SARS
input-output flows, and the indirect effects (i.e.,
spatial spillover effects) comprised the remaining 22 %
(Additional file 1: Table S4). The direct effects played a
3.56-fold greater role than the indirect effects in the SARS
input-output flows.

Spatial differences in income levels

The differences in regional income played a role in the
SARS input-output flows. Urban income exerted a posi-
tive effect, and rural income exerted a negative effect.
Interregional flows increased 2.34 %, with a 1 % increase
in the urban income of the origin regions, and the total
intraregional flows increased 8.36 %. In contrast, the
total interregional flows decreased 2.47 % with a 1 %
increase in the rural income of the origin.

Income differences also played a role with regard to
the migrant and hospitalisation flows. A change in the
rural income of the destination regions exerted a greater
obvious variation in the migrant flow than the hospital-
isation flow. In contrast, a change in the urban income
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Table 1 Total effects of SARS input-output flows estimated using an adjusted spatial econometric interaction model

SARS input-output flow Hospitalized flow Migrant flow

Coefficient p-value Coefficient p-value Coefficient p-value
Spatial dependence
Po 0.201 0.000 0.054 0218 0.181 0.000
Od 0.034 0461 0.171 0.000 0.134 0.002
Ow 0.005 0.947 -0.149 0.032 0.092 0.188
Total effects
const -9.176 0.000 —3.984 0.033 —6.844 0.002
ai —27.053 0.001 —-20.852 0.001 —23.875 0.002
o_ Urban rate -0.172 0.703 0492 0.134 0.116 0.775
o_PGDP 1.121 0.005 0.364 0.201 0.526 0.125
o_Density -0.108 0.169 —-0.091 0.118 -0.006 0.935
o_Road cap 0.079 0336 0.074 0.232 0.022 0.760
o_Railway cap 0.235 0.034 0.030 0.702 0.084 0.385
o_Flight cap —0.104 0.176 0.030 0.594 -0.078 0.258
o_Urban income 2.343 0.002 1.114 0.049 0.740 0.262
o_Rural income —2474 0.001 -1.162 0.039 —1.204 0.074
d_ Urban rate 0.816 0.047 0.215 0471 0.988 0.009
d_PGDP 0238 0.321 0.176 0.315 0.083 0.696
d_Density 0.003 0.959 -0.010 0.825 -0.067 0.230
d_Road cap 0.168 0.054 0.066 0.299 0.131 0.086
d_Railway cap -0.093 0.347 0.035 0628 0.014 0.874
d_Flight cap —0.060 0441 -0.117 0.055 -0.112 0.112
d_Urban income 1.197 0.105 0.681 0221 2318 0.001
d_Rural income -0.908 0.141 —-0.649 0.159 -1516 0.007
distance -0.157 0.116 -0.176 0.015 -0.129 0.165
i_ Urban rate 3.041 0210 2.372 0.186 3.804 0.087
i_PGDP -1.181 0.540 -3.206 0.035 1.167 0495
i_Density —-0.100 0.800 —-0.268 0.358 -0.349 0.326
i_Road cap 0.230 0578 —-0.205 0497 0.533 0.154
i_Railway cap 1402 0.003 0.787 0.025 1612 0.000
i_Flight cap —0.642 0.108 -0.813 0.009 -0.779 0.034
i_Urban income 8.357 0.023 7424 0.010 7.521 0.023
i_Rural income —2.290 0.530 1.136 0675 -5.687 0.085
r 0393 0523 0479
R’ 0371 0506 0460
log-likelihood -160.094 —24.251 -50.304
Nobs, Nvars 729, 27

of the origin regions caused a greater variation in the
hospitalisation flow. The interregional hospitalisation
flows increased by 1.11 % with a 1 % increase in the
urban income of the origin regions, and the intrare-
gional flows exhibited a 6.6-fold increase over the in-
terregional flows. The interregional migrant flows
increased 2.32 % with a 1 % increase in the urban

income of the destination regions, and the intraregio-
nal flows increased by 7.52 %. However, the interre-
gional hospitalisation flow decreased by 1.16 % with a
1 % increase in the rural income of origin, and the
interregional migrant flow decreased by 1.20 %. The
intraregional migrant flow exhibited a 3.75-fold in-
crease over the interregional flow.
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Other factors also affected the SARS input-output
flows. Railway capacity, PGDP of origin, and urban rate
of destination had positive effects. The total flow in-
creased by 0.24 % with a 1 % increase in the railway cap-
acity of the origin, and the total intraregional flow
exhibited a 6-fold increase. The total flow increased by
1.12 % with a 1 % increase in the PGDP of the origin re-
gions. The total flow increased by 0.82 % with a 1 % in-
crease in the urban rate of the destination regions.

These factors also affected the migrant and hospitalisa-
tion flows. For example, regions with a high urban rate
received a strong migrant flow. When migration flows to
one destination increased by 0.99 % with a 1 % increase
in the urban rate in that region, and the regional flows
increased by 3.80 %. The PGDP of a region also played a
role in the hospitalisation flow. The hospitalisation flow
to one region decreased by 3.21 % with a 1 % increase in
the PGDP.

Distance decay

The effect of distance decay was not obvious; however,
we confirmed that it affected the SARS input-output
flows. Greater geographic distances were associated with
reduced SARS input-output flows. The SARS input-
output flow decreased by 15.7 % with a 1 % increase in
distance. Migrant and hospitalisation flows decreased by
12.9 and 17.6 %, respectively, with a 1 % increase in dis-
tance. However, only the distance of the hospitalisation
flow was significant at the 5 % level.

Discussion

This study used an adjusted spatial interaction model to
capture the spatial features and potential determinants
of inter- and intraregional flows regarding SARS trans-
mission in 2002-03. The model indicated spatial effects
on neighbouring regions and identified the potential so-
cioeconomic factors associated with the SARS input-
output flows. We found that geographic locations and
spatial effects played roles in SARS interregional trans-
mission. We also determined that income differences
were key causes of SARS input-output flows between
pairs of regions. Railway capacity, PGDP, and urban rate
also played important roles.

The gravity model used commuting data to capture
the relationship between the movement of people and
factors such as geographical distance and population size
in disease transmission [21-23, 58]. Some similarities
and differences exist between the studies that used the
gravity model and the present study, which used an
ASIM. The similarities include that diffusive disease
spread was related to distance decay. Gravity models
successfully capture short-range connections between
populations. ASIMs use geographical distance as an ex-
planatory variable and spatial weight matrices to capture
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spatial dependence. ASIMs capture the short- and long-
range connections between different population sizes.
We presented the same set of socioeconomic variables
associated with the SARS input-output flows in the grav-
ity model for comparison. ASIM simultaneously consid-
ered the O-D socioeconomic variables related to intra-
and interregional migration flows, whereas the gravity
model only considered the socioeconomic variables of
the interregional migration flows with regard to the
spread of infectious disease.

The gravity model is simpler and often used to explain
O-D flows in epidemiology. We used a simple regression
model to evaluate each pair of SARS input-output flows
to compare the gravity model with the ASIM. Additional
file 1: Table S3 presents the results of the SARS flows
compared with the gravity model. Table 1 shows that the
findings using the ASIM confirmed the relevant spatial
effects and socioeconomic factors regarding the spread
of SARS. However, the ASIM results have certain advan-
tages. First, the log-likelihood and R’ values are much
higher than those of the gravity model. Higher such
values indicate better model fits to the data. Second, the
results of the ASIM appear to be more realistic than
those of the gravity model, and the former explained the
estimated coefficients under the 10 % significance level.
Third, only the ASIM were able to estimate the factors
related to the intraregional flows simultaneously.

Disease transmission is generally characterized by the
aggregation or clustering in one location and its neigh-
bouring regions. Therefore, flows from nearby locations
are similar in magnitude [27] and measured via the
spatial dependence index. The factors that determine
disease transmission in a region can also affect neigh-
bouring regions indirectly, and this phenomenon is
known as “spillover”. Spatial dependence and spillover
are important indices when examining disease cluster
and transmission characteristics. The potential effects of
spatial dependence and spillover increase the importance
of balancing medical resources between providing health
services in migrating host regions (e.g., Hebei, Inner
Mongolia, Shanxi, Shandong, and Sichuan) and man-
aging infectious diseases in migrant-receiving areas (e.g.,
Beijing, Guangdong, and Tianjin). Therefore, it is im-
portant to address current public health management is-
sues including the education of healthcare professionals,
management guidelines for non-endemic areas, and the
use of health services and health outcomes in both mi-
grant and local populations.

The income differences between the provinces in
mainland China played an important role in the nation-
wide transmission of SARS. Urban income was shown to
always play a positive role; however, rural income often
played a negative role. This relationship reflects the ul-
timate effect of migration: the pursuit of potential job
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opportunities and expected income. The level of urban
income in the origin region was also a pull factor for
hospitalisation-related flows. Regions with higher urban
incomes attracted more people who were seeking med-
ical treatment, and rural income was a push factor in
origin regions such as Hebei, Inner Mongolia, and
Heilongjiang. As such, origin regions with higher rural
incomes exhibited lower interregional flows for medical
treatment. However, areas with higher rural incomes
(e.g, Guangdong, Beijing, Shanghai, and Tianjin)
attracted increased intraregional flows for medical treat-
ment. These results suggest that policies seeking to
improve the income level of rural residents will reduce
the role of infected migrants in the interregional trans-
mission of infectious disease.

Our study confirmed that the large-scale spread of in-
fectious diseases such as SARS is related to railway cap-
acity, PGDP, and urban rate. Notably, migrant workers
did not have access to healthcare in receiving cities.
Thus, migrants returned to their original areas for treat-
ment, which might have consequently facilitated epi-
demic dissemination. Our findings offer empirical
support for the domination of migration motivation via
economic mechanisms and the effect of migration pat-
terns on the spatial dynamics of disease dissemination.
These results suggest that improving the levels of eco-
nomic development and rural income is a method to re-
duce infectious disease transmission as measured by
SARS input-output flows.

Migration flows were the primary cause of the spread of
SARS from China’s central cities to its remote rural areas.
It is necessary for China to promote a nationwide health
insurance scheme that can accommodate regional resettle-
ment as soon as possible to reduce the large-scale trans-
mission of another disease outbreak. Hospitalisation flows
also led to hospital infections at destination locations.
Therefore, it is necessary to balance healthcare resources
across the country as well as improve the healthcare and
medical infrastructure throughout China’s urbanization.

The spillover effects of the present study suggest that
indirect effects arise from the decisions or actions of the
neighbourhood [59, 60]. For example, the disease trans-
mission in one region affected the actions of its neigh-
bouring regions. ASIMs allow researchers to separate
the effects of the local spillover, which affected handling
government resources to address the different character-
istics of disease dissemination in the origin, destination
regions and their neighbours. This characteristic pro-
vides the theoretical basis for local governments to ad-
just prevention and control strategies as well as the local
public budget to address infectious disease emergencies
such as SARS.

The uncertainties of this study were primarily due to
two aspects: data source and the model employed. The
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flow data presented in this study were extracted from
patients with final diagnoses of SARS. The movement
frequencies of the migrant and hospitalisation flows
were not obtained for the entire SARS transmission, and
this gap represents an area of uncertainty in our analysis.
Many potential direct factors were not quantified.
Therefore, we used proxy variables, which might repre-
sent another source of uncertainty in our data. Another
source of uncertainty was the model itself: Spatial rela-
tionships in our model were expressed only using their
first-order neighbours; however, distant regions might
also influence SARS transmission.

Conclusions

This study found that the SARS input-output flows pre-
sented significant geographic spatial heterogeneity and
spatial effects. Income differences were a primary cause
of the migration flows between pairs of regions. Railway
capacity, PGDP, and urban rate also played important
roles. These findings illuminate the migration patterns
of infected individuals who were motivated by either
push or pull factors of spatial features. The results pro-
vide valuable information for the Chinese government to
control future epidemics.

Additional file

Additional file 1: Table S1. Description of O-D variables of SARS input-
output flows. Table S2. SARS input-output flows matrix. Table S3. SARS
input-output flows estimated using gravity model. Table S4. Direct and
indirect effects of SARS input-output flows estimated using an ASIM.
(DOC 204 kb)

Abbreviations

SARS: severe acute respiratory syndrome; ASIM: adjusted spatial interaction model;
SIMs: spatial interaction models; O-D: origin-destination; PGDP: per-person gross
domestic product.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JFW and LW conceived and designed the experiments. LW, CDX, and TJL
performed the experiments. LW and CDX analysed the data. LW wrote the
paper. All authors read and approved the final version of the manuscript.

Acknowledgements
MOST (2012CB955503), NSFC (41271404; 41431179; 41421001) and the China
Postdoctoral Science Foundation (2014 M550817) supported this research.

Author details

'LREIS, Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing 100101, China. “University of Chinese
Academy of Sciences, Beijing 100049, China. *Key Laboratory of Surveillance
and Early-warning on Infectious Disease, Chinese Center for Disease Control
and Prevention Jiangsu, China. “Jiangsu Center for Collaborative Innovation
in Geographical Information Resource Development and Application Jiangsu,
China.

Received: 11 July 2015 Accepted: 15 February 2016
Published online: 29 February 2016


dx.doi.org/10.1186/s12889-016-2867-6

Wang et al. BMC Public Health (2016) 16:191

References

1.

20.

21.

22.

23.

24.

25.

26.

27.

Frenk J, Gdmez-Dantés O, Knaul FM. Globalization and infectious diseases.
Infect Dis Clin North Am. 2011;25:593-9.

Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-
emerging infectious diseases. Nature. 2004;430:242-9.

Gushulak BD, MacPherson DW. Globalization of infectious diseases: the
impact of migration. Clin Infect Dis. 2004;38:1742-8.

Perera R, Wang P, Gomaa M, El-Shesheny R, Kandeil A, Bagato O, et al.
Seroepidemiology for MERS coronavirus using microneutralisation and
pseudoparticle virus neutralisation assays reveal a high prevalence of antibody
in dromedary camels in Egypt, June 2013. Euro Surveill. 2013;18:20574.
Brockmann D. Human mobility and spatial disease dynamics. In: Schuster

HG, editor. Reviews of Nonlinear Dynamics and Complexity, vol. 2. Germany:

Wiley-VCH; 2009. p. 1-24.

WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9
months of the epidemic and forward projections. N Engl J Med. 2014;371:
1481-95.

Xu C, Wang J, Wang L, Cao C. Spatial pattern of severe acute respiratory
syndrome in-out flow in 2003 in Mainland China. BMC Infect Dis. 2014;14:3843.
Heymann DL, Mackenzie JS, Peiris M. SARS legacy: outbreak reporting is
expected and respected. Lancet. 2013;381:779-81.

Ali SH, Keil R. Global cities and the spread of infectious disease: the case of
severe acute respiratory syndrome (SARS) in Toronto, Canada. Urban Stud.
2006;43:491-509.

Belik V, Geisel T, Brockmann D. Recurrent host mobility in spatial epidemics:
beyond reaction-diffusion. Eur Phys J B. 2011,84:579-87.

Grenfell BT, Bjornstad ON, Kappey J. Travelling waves and spatial hierarchies
in measles epidemics. Nature. 2001;414:716-23.

Wesolowski A, O'Meara WP, Eagle N, Tatem AJ, Buckee CO. Evaluating
spatial interaction models for regional mobility in Sub-Saharan Africa. PLoS
Comput Biol. 2015;11, e1004267.

Tang JW, Li Y, Eames I, Chan PKS, Ridgway GL. Factors involved in the
aerosol transmission of infection and control of ventilation in healthcare
premises. J Hosp Infect. 2006;64:100-14.

National Bureau of Statistics of the People's Republic of China. Tabulation
on the 2010 Population Census of the People’s Republic of China. Beijing:
China Statistical Press; 2010. http://www.stats.gov.cn/english/statisticaldata/
censusdata/rkpc2010/indexch.htm.

Funk S, Salathé M, Jansen VA. Modelling the influence of human behaviour on
the spread of infectious diseases: a review. J R Soc Interface. 2010;7:1247-56.
Sattenspiel L. Population structure and the spread of disease. Hum Biol.
1987,59:411-38.

Sattenspiel L, Simon CP. The spread and persistence of infectious diseases
in structured populations. Math Biosci. 1988,90:341-66.

Sigdel RP, McCluskey CC. Global stability for an SEI model of infectious
disease with immigration. Appl Math Comput. 2014;243:684-9.

Xu X-J, Wang W-X, Zhou T, Chen G. Geographical effects on epidemic
spreading in scale-free networks. Int J Mod Phys C. 2006;17:1815-22.

Han XP, Zhao ZD, Hadzibeganovic T, Wang BH. Epidemic spreading on
hierarchical geographical networks with mobile agents. Commun Nonlinear
Sci Numer Simul. 2014;19:1301-12.

Xia Y, Bjernstad ON, Grenfell BT. Measles metapopulation dynamics: a
gravity model for epidemiological coupling and dynamics. Am Nat. 2004;
164:267-81.

Truscott J, Ferguson NM. Evaluating the adequacy of gravity models as a
description of human mobility for epidemic modelling. PLoS Comput Biol.
2012;8, €1002699.

Balcan D, Colizza V, Gongalves B, Hu H, Ramasco JJ, Vespignani A. Multiscale
mobility networks and the spatial spreading of infectious diseases. Proc Natl
Acad Sci U S A. 2009;106:21484-9.

Agusto FB. Malaria drug resistance: the impact of human movement and
spatial heterogeneity. Bull Math Biol. 2014,76:1607-41.

Reiner RC, Stoddard ST, Scott TW. Socially structured human movement
shapes dengue transmission despite the diffusive effect of mosquito
dispersal. Epidemics. 2014;6:30-6.

Balcan D, Gongalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling
the spatial spread of infectious diseases: the GLobal epidemic and mobility
computational model. J Comput Sci. 2010;1:132-45.

Griffith DA, Fischer MM. Constrained variants of the gravity model and

spatial dependence: model specification and estimation issues. J Geogr Syst.

2013;15:291-317.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

Page 11 of 12

Bell DM, Bradford JB, Lauenroth WK Scale dependence of disease impacts
on quaking aspen (Populus tremuloides) mortality in the southwestern
United States. Ecology. 2015;96:1835-45.

Czarnota J, Wheeler DC, Gennings C. Evaluating geographically weighted
regression models for environmental chemical risk analysis. Cancer Inform.
2015;,14:117-27.

Neelon B, Li F, Burgette LF, Neelon SEB. A spatiotemporal quantile
regression model for emergency department expenditures. Stat Med. 2015;
34:2559-75.

Ortiz PL, Rivero A, Linares Y, Perez A, Vazquez JR. Spatial models for
prediction and early warning of Aedes aegypti proliferation from data on
climate change and variability in Cuba. MEDICC Rev. 2015;17:20-8.
Restrepo AC, Baker P, Clements ACA. National spatial and temporal patterns
of notified dengue cases, Colombia 2007-2010. Trop Med Int Health. 2014;
19:863-71.

Fischer MM, Wang J. Spatial data analysis: models, methods and techniques.
Heidelberg: Springer; 2011.

Diamantides ND. International migration as a dynamic process. Kybernetes.
1994;23:37-55.

Hao LX. Cumulative causation of rural migration and initial peri-urbanization
in China. Chin Sociol Rev. 2012;44:6-33.

Stimson RJ, Minnery J. Why people move to the ‘sun-belt a case study of
long-distance migration to the Gold Coast, Australia. Urban Stud. 1998;35:
193-214.

Easterlin RA. Population and Economic Change in Developing Countries.
Chicago: University of Chicago Press; 1980.

Walton-Roberts M. International migration of health professionals and the
marketization and privatization of health education in India: from push-pull
to global political economy. Soc Sci Med. 2015;124:374-82.

White RG. Commentary: what can we make of an association between
human immunodeficiency virus prevalence and population mobility? Int J
Epidemiol. 2003;32:753-4.

LeSage JP, Pace RK. Spatial econometric modeling of origin-destination
flows. J Reg Sci. 2008,48:941-67.

LeSage JP, Fischer MM. Spatial econometric methods for modeling origin-
destination flows. In: Fischer MM, Getis A, editors. Handbook of Applied
Spatial Analysis. Berlin: Springer; 2010. p. 409-33.

LeSage JP. An introduction to spatial econometrics. Revue d'économie
industrielle. 2008:19-44.

Althouse BM, Bergstrom TC, Bergstrom CT. A public choice framework for
controlling transmissible and evolving diseases. Proc Natl Acad Sci U S A.
2010;107:1696-701.

Guo DS. Flow mapping and multivariate visualization of large spatial
interaction data. IEEE Trans Vis Comput Graph. 2009;15:1041-8.

Fischer MM, Griffith DA. Modeling spatial autocorrelation In spatial
Interaction data: an application to patent citation data In the European
Union*. J Reg Sci. 2008;48:969-89.

Gong P, Liang S, Carlton EJ, Jiang Q, Wu J, Wang L, et al. Urbanisation and
health in China. Lancet. 2012;379:843-52.

Gu C, Cai J, Zhang W, Ma Q, Chan RCK, Li W, et al. A study on the patterns of
migration in Chinese large and medium cities. Acta Geogr Sin. 1999;54:204-12.
Ding J, Liu Z, Cheng D, Liu J, Zou J. Areal differentiation of inter-provincial
migration in China and characteristics of the flow field. Acta Geogr Sin.
2005;60:1.

LeSage JP, Llano-Verduras C. Forecasting spatially dependent origin and
destination commodity flows. Empir Econ. 2014;47:1543-62.

Du QY, Wang YX, Ren F, Zhao ZY, Liu HQ, Wu C, et al. Measuring and
analysis of urban competitiveness of Chinese provincial capitals in 2010
under the constraints of major function-oriented zoning utilizing spatial
analysis. Sustainability. 2014;6:3374-99.

LeSage JP, Thomas-Agnan C. Interpreting spatial econometric origin-
destination flow models. J Reg Sci. 2015;55:188-208.

Fischer MM, Scherngell T, Jansenberger E. Geographic localisation of
knowledge spillovers: evidence from high-tech patent citations in Europe.
Ann Reg Sci. 2009;43:839-58.

LeSage JP, Fischer MM. The Impact of Knowledge Capital on Regional Total
Factor Productivity. 2009. http://ssrn.com/abstract=1088301.

LeSage J, Llano C. Forecasting Spatially Dependent Origin and Destination
Commaodity Flows. 2012. http://ssrn.com/abstract=2174613.

Marrocu E, Paci R. Different tourists to different destinations. Evidence from
spatial interaction models. Tour Manag. 2013;39:71-83.


http://www.stats.gov.cn/english/statisticaldata/censusdata/rkpc2010/indexch.htm
http://www.stats.gov.cn/english/statisticaldata/censusdata/rkpc2010/indexch.htm
http://ssrn.com/abstract=1088301
http://ssrn.com/abstract=2174613

Wang et al. BMC Public Health (2016) 16:191

56.

57.

58.

59.

60.

Fischer MM, Reggiani A. Spatial interaction models: From the gravity to the
neural network approach. Urban Dynamics and Growth: Advances in Urban
Economics. 2004;266:319-46.

LeSage JP, Fischer MM. Spatial regression-based model specifications for
exogenous and endogenous spatial interaction. 2014. http://ssrn.com/
abstract=2420746.

Viboud C, Bjernstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT.
Synchrony, waves, and spatial hierarchies in the spread of influenza.
Science. 2006;312:447-51.

LeSage JP, Dominguez M. The importance of modeling spatial spillovers in
public choice analysis. Public Choice. 2012;150:525-45.

LeSage JP. What regional scientists need to know about spatial
econometrics. Rev Reg Stud. 2014;44(1):1-31.

Page 12 of 12

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central



http://ssrn.com/abstract=2420746
http://ssrn.com/abstract=2420746

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data
	ASIM procedure

	Results
	Spatial dependence and spillover effects
	Spatial differences in income levels
	Distance decay

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



