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Abstract

Background: Bladder and kidney cancers are the ninth and twelfth most common type of cancer worldwide,
respectively. Internationally, rates vary ten-fold, with several countries showing rising incidence. This study describes
the spatial and spatio-temporal variations in the incidence risk of these diseases for Nova Scotia, a province located
in Atlantic Canada, where rates for bladder and kidney cancer exceed those of the national average by about 25 %
and 35 %, respectively.

Methods: Cancer incidence in the 311 Communities of Nova-Scotia was analyzed with a spatial autoregressive
model for the case counts of bladder and kidney cancers (3,232 and 2,143 total cases, respectively), accounting for
each Community's population and including variables known to influence risk. A spatially-continuous analysis, using
a geostatistical Local Expectation-Maximization smoothing algorithm, modeled finer-scale spatial variation in risk for
south-western Nova Scotia (1,810 bladder and 957 kidney cases) and Cape Breton (1,101 bladder, 703 kidney).

Results: Evidence of spatial variations in the risk of bladder and kidney cancer was demonstrated using both
aggregated Community-level mapping and continuous-grid based localized mapping; and these were generally
stable over time. The Community-level analysis suggested that much of this heterogeneity was not accounted for
by known explanatory variables. There appears to be a north-east to south-west increasing gradient with a number
of south-western Communities have risk of bladder or kidney cancer more than 10 % above the provincial average.
Kidney cancer risk was also elevated in various northeastern communities. Over a 12 year period this exceedance
translated in an excess of 200 cases. Patterns of variations in risk obtained from the spatially continuous smoothing
analysis generally mirrored those from the Community-level autoregressive model, although these more localized
risk estimates resulted in a larger spatial extent for which risk is likely to be elevated.

Conclusions: Modelling the spatio-temporal distribution of disease risk enabled the quantification of risk relative to
expected background levels and the identification of high risk areas. It also permitted the determination of the
relative stability of the observed patterns over time and in this study, pointed to excess risk potentially driven by
exposure to risk factors that act in a sustained manner over time.
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Background

Urinary tract cancers comprise primarily cancers of the
urinary bladder and kidney, the former accounting for
approximately two-thirds of all cases diagnosed. Bladder
cancer is the ninth most common type of cancer world-
wide (~360,000 cases per year) and the 13" most common
cause of death from cancer (~145,000 deaths per year
worldwide) [1, 2]. Kidney cancer is comparatively less
common, ranking twelfth and accounting for an approxi-
mate 150,000 new cases and 78,000 deaths annually [3, 4].

Internationally, the incidence rates for bladder and
kidney cancer have been reported to vary by as much as
ten-fold between countries. Incidence tends to be higher
in Southwestern Europe, North Africa (Egypt) and North
America; and lower in South America and Asia [1, 4, 5].
Parkin [2] reports the highest estimated mortality rates
to be in Egypt, where the world-standardized rate of 34
per 100,000 (in men) is more than three times higher
than the highest rates in Europe (Denmark 10.4, Spain
9.7) and eight times that in the United States (US) (3.4).

Several countries show increasing incidence for both
bladder and kidney cancers, although with evidence of
some stabilization or even decreases during the 1990s [2,
4]. Recent trends in stage-specific incidence rates for blad-
der cancer in some US populations, suggest however, that
rates may be stabilizing in late stage disease but continue
to increase in noninvasive predominantly low grade dis-
ease [6]. Regardless of space, time or stage at diagnosis,
rates are consistently higher for males than females [4, 5,
7-9]. In fact, in most developed countries, men are at
least, a three to five time greater risk than women.

Past variations in the prevalence of known etiological
factors, whether genetic, environmental, occupational or
behavioural, may to some extent, contribute to the re-
ported temporal and geographical variations of urinary
tract cancers among populations worldwide. In addition,
differences in the scope of case ascertainment between
national cancer registries may result in some countries
reporting solely invasive diagnoses while others may in-
clude non-invasive or in situ diseases. Some countries
count only one primary cancer in subjects with multiple
cancers in the urinary tract. In the Netherlands, such
practice is thought to reduce the reported incidence
of bladder cancer by up to 10 % [2]. Finally, varia-
tions in rates within and/or between countries can be
partly driven by the introduction of new imaging
techniques enabling the detection of pre-symptomatic
tumours.

In Canada, bladder cancer incidence rates increased
from 1970 to 1981 and have since gradually declined or
stabilized [10-12]. Kidney cancer incidence rates have
also stabilised in recent years among females, but con-
tinue to increase at a rate of about 1.3 % among
males [10, 11, 13, 14]. Rates of both bladder and kidney
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cancer are particularly high in Nova Scotia (NS), a prov-
ince of 900,000 people, in Atlantic Canada. NS consist-
ently has some of the highest rates of cancer in Canada
for both males and females and continues to show in-
creases in the age-standardized incidence rates of both
bladder and kidney cancers. For bladder cancer, age-
adjusted incidence rates estimated for 2015 exceed those
of the national average by about 25 and 30 % among
males and females, respectively [11]. Similarly, for
kidney cancer, excesses of 30 and 45 % have been re-
ported among males and females, respectively. This
noted excess burden of urinary tract malignancies in NS is
unlikely to result from health system related factors
(e.g. scope of case registration, imaging technology)
given the relative uniformity of health care delivery
within the country.

This study thus, describes spatial and spatio-temporal
variations in the risk of bladder and kidney cancer for
NS in order to identify those areas where rates are
higher than what would be expected given the preva-
lence of known risk factors. This is an important step to
guide both etiological research and public health inter-
ventions in the province. We use two geospatial methods
for modelling disease risk, both of which are appropriate
for low-density populations such as NS. The first ap-
proach is a Community-level analysis using a spatial
autogregression (or Besag, York and Mollie model), a
Bayesian method that models diseases risk for spatially
aggregated case counts [15, 16]. The second approach
estimates spatially continuous variation in risk using a
Local Expectation Maximization (local-EM) smoothing
algorithm, an emerging geostatistical method developed
by Fan, Stafford and Brown [17], which models spatial
and temporal variation in risk when cases are aggregated
to time-varying spatial boundaries. To our knowledge,
this is the first attempt to model the risk of bladder and
kidney cancer in NS and one of the first epidemiological
applications of the Local-EM algorithm for cancer
mapping in Canada.

Methods

Data sources

Cancer incidence data were obtained from the NS
Cancer Registry and were divided into two cohorts:
Cohort 1 included all NS residents diagnosed with blad-
der or kidney cancer between 1998 and 2010 and aged
20 years and older; Cohort 2 included cases diagnosed
between 1980 and 2010 and aged 20 years and older.
Cases were coded according to the International Classifi-
cation of Diseases (ICD-O) as following: bladder (ICDO:
188.0-188.9; ICD-0O-2/3: C67.0-C67.9); kidney (ICDO:
189.0; ICD-O-2/3: C64.9). Because of a change in
disease-coding over time, bladder cases included both, in
situ (36 %, period 1998-2010; 21 %, period 1980-2010;
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Table 1) and invasive diagnoses; kidney cases included
invasive diagnoses only.

The Community-level (BYM) analysis was restricted to
Cohort 1. This is because the proportion of cases with
incomplete residential addresses (i.e. civic street address)
was fairly large prior to 1998. During those early years,
most cases were assigned to a town or a six-digit postal
code, which vary greatly in size, especially between
urban and rural settings. Depending on the spatial scale
of analysis, one postal code may belong to several
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geographic units or one unit of geography may contain
several postal codes, resulting in the potential misclassifi-
cation of the spatially aggregated data. The spatially
continuous-grid based (local-EM) analysis was able to
accommodate data from the entire 30 year period
(Cohort 2) because the method allows for both
changes in the spatial distribution of risk over time,
and accounts for uncertainties in location of cases
where civic street addresses are missing but postal
codes or administrative regions are known.

Table 1 Cases characteristics for the two periods under study, Nova Scotia, Canada

Bladder Kidney
Total Females Males Total Females Males
Period 1998 - 2010
Nova Scotia
Cases diagnosed 3,292 834 2,458 2,199 863 1,336
Cases analyzed* 3,232 820 2412 2,143 848 1,295
In situ 1,164 298 866 0 0 0
Invasive 2,068 522 1,546 2,143 848 1,295
Mean age at diagnosis (years) 71 712 705 65 66 63.7
Spatial referencing (%)
Civic address 86.6 85.5 86.9 859 86.4 85.5
Postal code 2.29 207 2.36 2.10 1.65 239
Town name 1.1 124 10.7 12.0 1.9 121
Period 1980 - 2010
Nova Scotia
Cases diagnosed" 6,473 1,642 4,831 3,762 1,493 2,269
Mean age at diagnosis (years) 70 70.5 69.9 65 659 63.8
South-western Nova Scotia
Cases analyzed 1,810 423 1,387 957 358 599
In situ 386 86 300 0 0 0
Invasive 1,424 337 1,087 957 358 599
Spatial referencing (%)
Civic address 436 404 44.6 472 506 452
Postal code 529 56.3 519 49.8 46.1 521
Town name 34 33 35 29 33 2.7
Cape Breton Island
Cases analyzed 1101 283 818 763 306 457
In situ 172 41 131 0 0 0
Invasive 929 242 687 763 306 457
Spatial referencing (%)
Civic address 437 459 429 53.7 542 534
Postal code 47.0 413 489 392 36.6 409
Town name 94 12.7 8.2 7.1 9.2 57

*Excludes 116 cases (2.1 %) diagnosed in a Community for which population data was not available
"Excludes 21 bladder cases (0.32%) and 10 kidney cases (0.27%) due to unavailable spatial information
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The Nova Scotia Civic Address File (NSCAF) was
used to assign spatial locations (i.e. longitude-latitude
coordinates) to all cases for which a civic street address
was available. When civic address was unavailable, the
Desktop Mapping Technologies Inc (DMTI) conversion
file was used to geo-reference postal codes. For the
Community-level model, where postal code was unavail-
able or located in rural areas, a gazetteer of place names
was used to georeference the centroid of the town. For the
spatially-continuous local-EM, where postal code was
available, cases locations were treated as spatially censored
somewhere within one of the census regions containing at
least one address with the postal code in question. Where
postal code was unavailable, the local-EM analysis used the
Census Division boundaries as a second type of spatial cen-
soring. Proportions of case by spatial data type, including
the numbers of cases excluded from each analysis due to
uncertainty in their spatial location, are shown in Table 1.

Population data from seven census years (1981, 1986,
1991, 1996, 2001, 2006, and 2011) were used for this
study. Each census provided counts of people aged
20 years and older by age and sex group, and were used
as the denominator for cases diagnosed within two years
of a given census period.

For the modelling of risk using the spatial autoregres-
sive model, population estimates were aggregated at the
Community level, a set of geographic administrative
units, which represent groupings of neighbourhoods
with a degree of shared identity and social processes
[18]. This level of spatial aggregation represents the fin-
est unit of geography for which boundaries are stable
over time. There were 311 Communities in NS over the
study period with population counts up to 30,900 per-
sons. In total, 36 Communities (30 First Nations Com-
munities and 6 wilderness and park Communities) were
excluded due to unavailable population information.

The spatially-continuous (local EM) analysis used
population counts by age and sex group at the finest
level of geography for which digitized spatial boundary
data were available. These were census subdivision level
(CSD) for the 1981 and 1986 census years; enumeration
areas (EA) for the 1991 and 1996 census years; and dis-
semination areas (DA) for census 2001 onward. There
were 113 CSD in 1981 and 118 CSD in 1986. The num-
ber of EA/DA ranged from 1379 to 1645 between the
1991 and 2011 census periods; their size varied to target
a population of 400 to 700 individuals.

It was assumed that populations were uniformly dis-
tributed within these finest levels of census regions, a
not unreasonable assumption if one accepts that these
census regions generally follow physical boundaries, such
as major streets and waterways, and are designed to be
fairly homogeneous. An exception is regions which are
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indicated by Statistics Canada to be partially uninhabited,
or lying outside the population ecumene, in which case
the population is assumed to be homogeneously distrib-
uted within the inhabited portion.

Covariates included in the Community-level spatial
autoregressive model were indicators of socioeconomic
deprivation and well water usage. The latter obtained
from NS Environment, aimed to account for spatial varia-
tions in risk which may relate to exposure to environmen-
tal sources of heavy metals such as arsenic in drinking
water, a known risk factor for the development of bladder
and kidney cancer [19]. Socioeconomic deprivation
indicators were derived from socio-economic data ob-
tained from Statistics Canada. They were constructed
as Community-level area-based composite indices of
social and material deprivation intended to be used as
a proxy for unavailable individual-level measures such
as smoking, a key factor in the development of urin-
ary tract malignancies. Material and social depriva-
tions indices were also used to capture the contextual
setting of a place of residence, which has been shown
to independently predict smoking habit in both men
and women and other health outcomes [20-24]. Each
index summarized information relating to six socio-
economic indicators from the 2006 Canadian Census;
all of which having known links to health outcomes
and known application as geographic proxies of socio-
economic conditions [21, 25-28]. For people age
15 years and over, these variables were: the propor-
tion of people with no high school diploma, the indi-
vidual average income, the employment rate, the
proportion of separated, divorced or widowed, the
proportion of single-parent families, and the proportion of
persons living alone. The first three indicators reflect the
material dimension of deprivation; the others reflect its
social aspect. Variables were combined using a Principal
Component Analysis (PCA), a standard factorial approach
that recognizes the interlinked nature of variables by
accounting for their correlation and co-variation [29].
Methodological details appear in Saint-Jacques et al. [30].
Covariates were not included in the spatially-continuous
analysis as the local-EM method does not currently
accommodate covariates.

Data analyses

Community-level analysis

The Besag York and Mollié (BYM) model (see [15, 16]),
a popular and convenient spatial autoregressive model
for count data referenced to discrete spatial regions, was
used to perform Community-level analysis. The ap-
proach treats the case counts by Community as response
variables, rather than Standardized Incidence Ratios
(SIR), because the latter is unstable when computed
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from low counts. This is particularly important in this
study due to the low population density of NS and the
rarity of the health outcomes measured. Possible spatial
dependence in the data, with pairs of nearby Com-
munities tending to be more similar than Communi-
ties situated far apart, is accounted for with the
inclusion of a spatially autocorrelated random effect
term. The BYM models the case counts as Poisson
distributed and supports Baysesian inference for
model fitting, which in this study, was performed
separately for each data set (bladder male, bladder fe-
male; kidney male, kidney female) using Integrated
Nested Laplace Approximations [31]. Further details
pertaining to this analytical approach are described
in Additional file 1.

Spatially-continuous analysis

The local-EM kernel smoothing was used to perform
the spatially-continuous analysis. The method developed
by Fan, Stafford and Brown [17] was extended by Lee et
al. (Lee J, Nguyen P, Brown P, Stafford ], Saint-Jacques
N: Local-EM Algorithm for Spatio-Temporal Analysis
with application in Southwestern Nova Scotia. Submit-
ted in Ann Appl Stat; [32]) to accommodate the require-
ments of modelling the cancer incidence data presented
here. Collected between 1980 and 2010, the data were
subject to aggregation boundaries changing over time
and were geocoded with varying degrees of precision.
Exact spatial locations were derived from full residential
civic street addresses for most of the recent cancer cases,
though the proportion of cases spatially referenced with
partial street address (i.e. postal codes) or with census
regions, increased with the age of the data. Where exact
location is unavailable, the local-EM kernel smoothing
algorithm produces an optimal risk surface which aver-
ages out all the possible locations at which each case
could be located. The bandwidth of the smoothing
kernel is chosen by cross-validation (see Additional
files 2 and 3) and determines the degree of smoothing
in the risk surfaces. A detailed description of the
methodology is contained in Lee et al. (Lee ], Nguyen
P, Brown P, Stafford J, Saint-Jacques N: Local-EM Al-
gorithm for Spatio-Temporal Analysis with application
in Southwestern Nova Scotia. Submitted in Ann Appl
Stat) and in Nguyen et al. [32], and summarized in
Additional file 1.

In this study, local-EM analyses focused on two re-
gions of the province which the BYM models suggested
risk was particularly high, as to describe localized pat-
terns in risk. Two models were applied: (1) a spatial
model testing for significant variation in risk over space,
and where a spatial effect was detected; (2) a spatio-
temporal model was applied to determine whether risk
also varied significantly over time. Maps were produced
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where statistically significant spatial or spatio-temporal
effects were detected. Estimated risk surfaces based on
local-EM are not presented to minimize risk of disclos-
ure of personal health information. Rather, a p-value for
testing for relative risk being lower than 1.1 (risk less
than 10 % above the population average) at each location
and time is presented. These p-values were computed
with a parametric bootstrap, with 100 synthetic data-
sets simulated with a constant relative risk of A(s,f) =
1.1 and for each s and ¢ the p-value is the proportion
of these datasets where the local-EM algorithm yields
risk estimates exceeding the estimate produced by the
data. Shown are exceedance probabilities, or one
minus the p-values, which are large when risk is be-
lieved to exceed 1.1.

The software used was R version 3.1.1 (http://
www.r-project.org) in combination with the disease
mapping package [33] and the INLA software [34].
This study received ethics approval from Capital
Health Research Ethics Board. The study was a secondary
analysis of anonymised cancer registry data obtained from
the NS Provincial Cancer Registry and a waiver of consent
was approved.

Results

Cohort characteristics summary

A total of 6,473 bladder cancers and 3,762 kidney cancers
were diagnosed in NS between 1980 and 2010 (Table 1),
95 % of which included spatial information on residence
at time of diagnosis and were successfully geo-referenced.
In total, 3,232 bladder and 2,143 kidney cancers were in-
cluded in the analyses focusing on the 1998-2010 time
period, and; 2,911 bladder and 1,720 kidney cancers were
included in the analyses covering the 1980-2010 time
period, which focused specifically on cases diagnosed in
south-western (SW) NS (2,767 cases) and Cape Breton
(CB; 1,864 cases) — two regions where risk was mapped
at a finer spatial resolution. Geo-referencing based on
exact residential location at diagnosis was more common
for cases diagnosed in the most recent time period,
between 1998 and 2010 (bladder 86.6 %; kidney
85.9 %) than for cases diagnosed between 1980 and
2010 (SW: bladder 43.6 %; kidney 47.2 %; CB: bladder
43.7 %; kidney 53.7 %). On average, kidney malignan-
cies were diagnosed at a slightly younger age than
bladder cancers (65 vs 70 years). Overall, the male to
female ratio was about 2.9 and 1.5 for bladder and
kidney cancer diagnoses, respectively.

Spatial patterns of bladder cancer

Community-level analysis

Estimates and credible intervals for regression and
variance parameters obtained from the BYM models
are shown in Table 2. These coefficients represent the
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Table 2 Posterior summaries for regression and variance parameters — Bladder cancer, Nova Scotia 1998-2010

Bladder cancer Males Females

Parameter Mean 25 % 975 % Mean 25 % 97.5 %
Intercept -0.105 —-0.297 0.086 0.007 —-0.301 0309
% using well water 0.001 -0.002 0.003 -0.001 —-0.005 0.003
Material deprivation -0.297 —-0.109 0.048 0.055 —0.067 0.178
Social deprivation 0.046 —0.023 0.116 -0.018 -0.130 0.094
Spatial standard deviation 0.228 0.157 0.352 0.199 0.086 0439
Unstructured standard deviation 0.124 0.072 0.193 0.240 0.126 0421

log relative risk in bladder cancer incidence over the
entire province and study period. None of the covari-
ates — well water usage or material and social
deprivation — significantly affected the estimated risk
for bladder cancer among males and females (Table 2).
Thus, much of the observed spatial heterogeneity in
risk relates to unmeasured risk factors which ap-
peared to have a similar effect on the distribution of
disease in both males and females. Both the spatially
correlated and the independent random errors have
standard deviations in the range of 0.1 to 0.4, reason-
ably large values considering that they apply to risk
on the log scale (Table 2).

Figure 1 maps the residual spatial variation in bladder
cancer risk, more specifically the posterior means
E[exp(U;)|data] of the exponentiated random effects,
among males (Fig. la) and females (Fig. 1b). These
values are equivalently the ratio between the predicted
risk \; for each community and the risk exp(u+ X,)
which is typical given the region's covariates X;. Regions
of elevated risk are common in the south-western sec-
tion of the province where several communities exhibit
risk well above what is typical (i.e. > 1.2). Looking at
these Community-level variations for the province, one
identifies a clear southwest to northeast gradient among
females, additional pockets of high risk being observed
in Cumberland county (north central region).

Uncertainties associated with these maps can be visu-
alized with exceedance probabilities, which are the prob-
abilities that the risk in a Community or location
exceeds a given threshold, defined here as 10 % above
the risk that would be typical given the region's
deprivation and well water usage. We denote these prob-
abilities as P,(10 %) = Pr{\; > [1.1 exp(p + X;B)] | data}, or
equivalently Prlexp(U;) >1.1|data]. Figure 2a shows ex-
ceedance probabilities for bladder cancer amongst males,
with 28 communities in SW NS having a probability
P;(10 %) in excess of 80 % and four communities having
Pi(10 %) >95 %, again supporting a southwest to north-
east gradient. Estimated risk in these communities
ranged between 1.24 —1.56, and between 1.39 — 1.56,

respectively. The exceedance probabilities for females in
SW NS are for the most part in the range of 0.2 — 0.8
(Fig. 2b), as the smaller number of cases for female can-
cers makes it more difficult to assess with any certainty
whether a region has risk above or below a given thresh-
old. In total of 9 Communities show exceedance prob-
abilities for female risk above 80 % and 2 have
probabilities above 95 %, the latter located in south central
NS (Fig. 2b). Risk in those areas was higher than that esti-
mated for males, with risk ranging between 1.38 — 1.69
and between 1.58 —1.69, respectively. Over the 12 year-
period, high risk areas (Prlexp(l];) >1.1|data] >80 %) had
33 and 52 % more cases of male and female bladder can-
cer being diagnosed, respectively.

Spatially-continuous analysis

Table 3 a shows optimal spatial and spatio-temporal band-
widths obtained from cross-validation scores (Additional
files 2 and 3) and p-values of Scores-Test that assess the
statistical significance for spatial and spatio-temporal
effects in bladder cancer risk in SW NS and CB. Spatial
and spatio-temporal bandwidths determine the extent of
the smoothing kernel used in risk estimation, and in this
study, they ranged between 3 km and 22 km in space and
5 to 13 years over time. Based on these bandwidths, we
observed significant localized variations in the spatial
distribution of bladder cancer risk for males from both
SW NS and CB regions (Table 3). For SW NS, the results
suggested that these spatial patterns also varied over time
(Table 3; p = 0.07). Statistically significant spatial variations
in bladder cancer risk were not observed in females from
either SW NS or CB regions (Table 3). These results
possibly reflect a combination of small case counts and
location misclassification. For example, there were only
247 cases of female bladder diagnosed between 1980
and 2010 in Cape Breton, and 76 % of those were
geocoded to a single location. During cross validation,
half the cases would be excluded from model fitting
and optimal spatial bandwidths would be determined
based on too few events to produce stable and statis-
tically significant results.
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Random effects

0.00-0.78
0.79-0.88
0.89-0.93
0.94-0.98
0.99 - 1.03
| |104-108
1.09-1.14
1.15-1.20
121-1.27

2156

Random effects

0.00-0.81
0.82-0.86
0.87-0.94
0.95- 1.00
-1.05
-1.09
-1.14
-1.18
-1.26
-1.70

Fig. 1 Posterior means relative risks for male (a) and female (b) bladder cancer, Nova Scotia 1998-2010

Exceedance probabilities obtained from fitting a
spatially continuous risk surface with the local-EM algo-
rithm are shown in Fig. 3 for male bladder cancer in SW
NS and CB. These exceedance probabilities can be inter-
preted in a similar manner to the quantities from the
BYM model shown in Fig. 2, with one difference being
they refer to a threshold of 10 % above the average risk

for NS without adjustment for deprivation and well
water usage. Another difference is these probabilities
vary over a continuous spatial surface as opposed to
between Communities with set boundaries and, hence,
provide insights on finer resolution patterns in risk. Thus,
we write, P(s;10 %) as one minus a p-value for testing
A(s)<1.1 with probabilities being computed using
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P(i, 10%)

Bo-02
| |[0.2-04)
| | [0.4-08)
B 0.8-095)
Woss-1

P(i, 10%)
Bo-02

| [0.2-04)
| |[0.4-08)
P 0.8-095)
Woss-1)

Fig. 2 Exceedance probabilities (P(10 %)) for male (a) and female (b) bladder cancer, Nova Scotia 1998-2010
A\

parametric bootstrapping (see details in Nguyen et al.
[32] and Lee et al. (Lee J, Nguyen P, Brown P, Stafford
J, Saint-Jacques N: Local-EM Algorithm for Spatio-
Temporal Analysis with application in Southwestern
Nova Scotia. Submitted in Ann Appl Stat). As ob-
served using Bayesian inference, results from these
finer-scale analyses also show probabilities of above-

average risk in excess of 80 % along the Fundy shore
and near Cape Sable Island and Shelburne, areas lo-
cated on the south shore of NS (Fig. 3a). In Cape Bre-
ton, patterns of exceedance probabilities in excess of
80 % (Fig. 3b) pointed to areas of elevated risk where
aggregated analysis based on BYM modeling had
shown P;(10 %) to be less than 20 % (Fig. 2a).
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Table 3 Optimal spatial and temporal bandwidth (BW) from
cross-validation scores, bladder and kidney cancer, Nova
Scotia 1980-2010

Spatial Spatio-temporal
Region Sex BW (Km) P-value BW (Km) BW (years) P-value
Bladder
SW M 11 <0.001 M1 13 0.07
F 3 041 - - -
CB M 4 0.01 4 13 >0.2
F 22 0.79 - - -
Kidney
SW M 3 0.03 3 17 >0.2
F 7 0.05 7 13 >0.2
CB M 6 0.01 6 5 >0.2
F 10 0.38 - - -
a .'.'. {
E g
P(s, 10%)
Blo-02
| |02-04)
\'l"l' |_]|o.4-o_a)
o F adl I 038-095)
§70° 0 o e -10.95- 1)
b

P(s, 10%)

. [0-0.2)
D [0.2-04)
| |w04-09
P 0:8-095)
. [0.95 - 1]

Fig. 3 Bootstrapped exceedance probabilities (P(s; 10 %)) for risk
surface of male bladder cancer in south-western Nova Scotia (a)
and Cape Breton (b) regions
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Figure 4 shows the exceedance probabilities obtained
from fitting a spatio-temporal risk surface to male blad-
der cancer for SW NS, a region where risk varied over
time (Table 3). In this latter model, where risk varies in
time as well as in space, we write P(s,t10 %) as one
minus a p-value for testing \(s,t) < 1.1. Here, P(s,;10 %)
is shown for four specific years, 1980, 1990, 2000 and
2010. Exceedance probabilities for the intervening years
can be found in the supplementary materials and at
http://pbrown.ca/jlee/spatio_temporal/. Note that while
patterns of exceedance probabilities for year 2000 (i.e.
Fig. 4c) includes data from 1980-2010, the 13 years clos-
est to this index year will have the greatest influence
upon parameter estimates. This is because the relative
influence is determined by a weighting function that fol-
lows a Gaussian distribution with a standard deviation
of 13 years (i.e. optimal temporal bandwidth for male
bladder cancer). Simultaneously, the spatial weighting
function associated with a point estimate also follows
from a Gaussian distribution with a standard deviation
of 11 km (i.e. optimal spatial bandwidth for male bladder
cancer). Overall, the results are similar to those obtained
with the spatial model, highlighting large areas with
P(s,t;,10 %) above 80 % along the Fundy Shore and south
portion of the region. However, when adding a temporal
component and thus further zooming into a finer scale
of analyses, several locations show P(s,t; 10 %) surpassing
95 %, pointing to broad areas of significantly elevated
risk where the estimated relative risk varied between
1.27 — 2.84 (not shown).

Spatial patterns of kidney cancer

Community-level analysis

As observed for bladder cancer, posterior summaries for
regression and variance parameters show that the mea-
sured covariates had no significant influence on the esti-
mated risk of kidney cancer (Table 4). Random effects
for both spatially and unstructured random errors were
significant, although showing greater unstructured het-
erogeneity for males than previously observed with male
bladder cancer risk (i.e. ranging between 0.17 — 0.27 vs
0.07 — 0.19, respectively; Tables 2, 4). Maps of posterior
means displayed strong spatial heterogeneity in male and
female kidney cancer risk (Fig. 5a-b). Regions of elevated
risk for male kidney cancer were common in the south-
western region of the province as well as in several com-
munities of CB Island, correlating with the elevated risk
observed amongst females which is uniformly high in that
region (Fig. 5a-b). Female kidney cancer rates were
elevated in some Communities along the southern shore
of SW NS and around the south shore of central NS
(Fig. 5b). Figure 6a-b shows P10 %) for kidney cancer
and a risk threshold that would be typical given the
region's deprivation and well water usage. In total, 11
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Fig. 4 Bootstrapped exceedance probabilities (P(s, t; 10 %)) for risk surface of male bladder cancer for 1980, 1990, 2000, 2010, in south-western

Table 4 Posterior summaries for regression and variance parameters — Kidney cancer, Nova Scotia 1998-2010

Kidney cancer Males Females

Parameter Mean 25 % 97.5 % Mean 25 % 97.5 %
Intercept 0.032 -0.231 0.290 0.038 —0.259 0326
9% using well water —0.001 —-0.004 0.002 —-0.001 —-0.004 0.003
Material deprivation —0.006 -0.112 0.097 0.052 —0.064 0.167
Social deprivation 0.008 -0.087 0.103 0.0004 -0.107 0.109
Spatial standard deviation 0.138 0.048 0.298 0.156 0.052 0.366
Unstructured standard deviation 0.265 0.174 0.390 0.251 0.137 0440
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Random effects
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Fig. 5 Posterior means relative risks for male (a) and female (b) kidney cancer, Nova Scotia 1998-2010

Communities showed P;,(10 %) in excess of 80 % amongst
males (estimated risk: 1.36 — 2.52); 2 of these being
statistically significant (i.e. Prlexp(U;) >1.1|data) >0.95;
estimated risk: 1.73 — 2.52). The majority of these
Communities are located along the south shore of
SW NS (Fig. 6a). Exceedance probabilities above 80 %
for females risk were observed in 8 Communities

(estimated risk: 1.35 — 1.86); 4 located along the
south shore of SW NS and 4 along the north shore
of CB (Fig. 6b). Of these, 1 had a statistically signifi-
cant probability (estimated risk: 1.87). Over the
12 year-period, high risk areas (Prlexp(U;) >1.1|data] >
80 %) had 52 and 57 % more cases of male and female
kidney cancer being diagnosed, respectively.
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Fig. 6 Exceedance probabilities (P(10 %)) for male (a) and female (b) kidney cancer, Nova Scotia 1998-2010

Spatially continuous analysis

Optimal spatial and spatio-temporal bandwidths from
cross-validation scores (Additional files 2 and 3) and as-
sociated p-values testing for spatial and spatio-temporal
effects in kidney cancer risk, are shown in Table 3. Based
on these bandwidths, we observed significant variation in
the spatial distribution of kidney cancer risk in males and

females from SW NS and in males from CB. Statistically
significant spatio-temporal effects were not observed
(Table 3; p >0.2) and therefore maps of exceedance prob-
abilities were derived from the spatial models with 30 years
of pooled data (1980-2010). In comparison to the results
obtained with BYM modeling, probabilities in excess of 80
and 95 % had a larger spatial extent. This pattern was
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Fig. 7 Bootstrapped exceedance probabilities (P(s; 10 %)) for risk
surface of male kidney cancer in south-western Nova Scotia (a) and
Cape Breton (b) regions

generally observed across regions and genders. In
addition, the probabilities produced by local-EM were less
spatially smooth, allowing the detection of more localized
risk. Again, P(5;10 %) for males in SW NS showed a high
probability of excess risk along the southern shore, but
also toward the centre of the region. Significant probabil-
ities of exceedance in risk of male kidney cancer were also
detected in several areas of CB; an occurrence that
was not observed with BYM models (Fig. 6a, 7b).
Correspondingly, exceedance probabilities for females
were high along the southern shore of SW NS (Fig. 8).
Overall, estimated relative risk for female kidney can-
cer ranged between 1.34 — 1.98 and 1.45 -1.98, for
P(s;10 %)|data) >0.80 and P(s;10 %)|data) >0.95, re-
spectively. For males, these values ranged between
1.53 — 2.54 and 2.01 —-2.54.

P(s. 10%)

- [0-0.2)
D [0.2-04)

1 5 0 1020Km -
Led A

Fig. 8 Bootstrapped exceedance probabilities (P(s; 10 %)) for risk

surface of female kidney cancer in south-western Nova Scotia
~ J

Discussion

Summary of findings

This study showed evidence of spatial variation in the
risk of bladder and kidney cancer in Nova Scotia.
Posterior summaries for regression and variance parame-
ters suggested that much of the heterogeneity in risk re-
lated to unmeasured risk factors. High risk areas for
bladder cancer were predominantly distributed along a
southwest to northeast gradient. Kidney cancer risk
followed a similar distribution, although areas of elevated
risk were also detected in various northeast Communities
of Cape Breton, for both genders. Focusing on aggregated
spatial units (Communities), the study showed that areas
identified to have high probability of exceedance (BYM:
Prlexp(U;) >1.1|data] > 80 %) in the risk of male (28 Com-
munities) or female (9 Communities) bladder cancer had
33 % (males) and 52 % (females) more cases diagnosed
over the 12 year period, compared to the number of cases
expected. Similarly, high risk areas for male (11 Commu-
nities) or female (8 Communities) kidney cancer had 52 %
(males) and 57 % (females) more cases diagnosed than ex-
pected. From a public health perspective, this translates in
an excess of nearly 200 urinary tract cancer (UTC) cases
(150 bladder; 45 kidney) being diagnosed in those high risk
areas where the estimated risk was observed to be at least
10 % above the NS average rate. Over a 12 year period, this
corresponds to an additional 16 UTC cases annually, a
conservative figure given that exceedance probabilities in
excess of both 80 % and 95 % had much larger spatial ex-
tent when derived from the spatially-continuous analysis
than with the Community-level model. This was true for
risk measured in either sex or cancer site. Focusing on
localized spatial patterns, this study also highlighted
significant spatial and spatio-temporal variations in the
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risk of male bladder cancer within SW NS, with areas
of elevated risk along the Fundy shore and south shore
of the region. Elevated risk of both, male and female
kidney cancer were also observed along the south shore
of SW NS. In addition, risk for both male bladder and
kidney cancer varied significantly in CB, although areas
of elevated risk did not always overlap. Overall, spatial
patterns were generally stable over time.

Interpretation of spatial patterns

Patterns of spatiotemporal heterogeneity in risk provide
clues to the occurrence and influence of extrinsic factors
involved in the rise or fall of a disease. In this study, pat-
terns of spatial variations in bladder and kidney cancers
risk were stable over time, suggesting persistent risk ex-
posure. The exception being male bladder, for which the
results pointed to a temporal effect. However, the pat-
tern of spatial variations in risk remained stable over a
13 year period, possibly also reflecting persistent effects.
Similarly, a study of space-time patterns of bladder can-
cer incidence in Utah, US, detected high risk areas that
were persistent over time [35]. These high relative risk
areas were subsequently found to be associated with the
presence of Toxic Release Inventory sites, where the risk
was observed to range between 1.14 and 1.82 for both
genders combined and between 1.12 to 1.47 for males
only. While the processes generating the elevated risk in
NS are unknown, the magnitude of the estimated risk in
high risk areas for NS was similar to that reported in Utah,
ranging between 1.24 — 1.56 and 1.38 — 1.69 among males
and females, respectively based on BYM and between
148 — 1.99 and 148 — 1.95 among male from SW NS and
CB, respectively, when based on local-EM. The latter tigh-
ter lower bounds of the estimates are attributable to
the more conservative rule of exceedance probability
applied in NS (NS: P,(10 %) >0.8 and P(s;10 %) >0.8;
Utah: P(exp(s;) >1.0|data)>0.8) for the determination
of high risk areas. Both studies suggest an increased
effect in females.

Several factors affect the incidence of urinary tract
cancers worldwide. Exposure to tobacco smoke, occupa-
tional toxins and environmental source of heavy metals
such as arsenic in drinking water, are amongst well
established risk factors for bladder cancer, in particular,
transitional cell carcinoma which account for 90 % of
the bladder cancer cases diagnosed in developed coun-
tries [5, 7, 19]. Tobacco smoking [5, 9, 36—41] and long-
term exposure to high levels of arsenic in drinking water
also increase kidney cancer risk [19, 42] along with obes-
ity [38, 43, 44], hypertension [38], the use of phenacitin-
containing analgesics and exposure to trichloroethylene
and polycyclic aromatic hydrocarbons [38, 45-47].
Whether measured independently or synergistically, the
magnitude of influence of these risk factors for the
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development of UTC varies. However, meta-analyses of
over 30 years of epidemiological studies suggest, for in-
stance, that tobacco smoking could increase the risk of
bladder and kidney cancer by at least 270 and 50 %, re-
spectively, in current smokers compared to non-smokers
[37, 48]. Exposure to arsenic in drinking water shows ef-
fects of similar magnitude, increasing the risk of bladder
cancer by about 40 %, 230 and 310 % at levels exposure of
10, 50 and 150 pg/L, respectively [19]. Obesity has been
reported to account for 30—40 % of kidney cancer cases in
Europe and the United States; and is known to increase
the risk of renal cell carcinoma in a dose—response fashion
(12, 49]

In this study, residual spatial variation and resulting
probabilities of exceedance for bladder and kidney cancer
risk suggest that smoking is not the only factor contributing
to the observed spatial patterns. This is because the proxy
measures of smoking included in the analyses (ie. social
and material deprivation indices) did not change the spatial
variations in risk or its magnitude. As well, the heterogen-
eity in bladder and kidney cancer risk observed in high risk
areas was greater than what could be accounted by known
spatial variations in smoking prevalence in Nova Scotia.
Nonetheless, synergistic relationships between smoking and
other un-measured risk factors cannot and should not be
ruled out. This is especially important in Nova Scotia, a
province known for its high prevalence of tobacco smoking
[50], obesity [51] and where inorganic arsenic in drinking
water was observed to be a major contributor to arsenic
body burden in a study population [52]. Overall, the two
spatial approaches used to model disease risk provided con-
sistent and complementary results. Inclusion of a time-
varying component in the spatially-continuous models per-
mitted the determination of whether high average risk in a
given location was sustained over time or changed over
time; two different situations that could be derived from
the same number of accumulated cases in an area over a
set time period. As described by Abellan et al. [53], the
epidemiologic interpretations of these two situations
are important. In one scenario, spatial patterns are
more likely to occur in a constant manner over time
and hence could be induced by environmental or
socio-demographic risk factors that act in a sustained
manner. In the second scenario, the rate of case accu-
mulation may be more temporally clustered with dis-
tinct variability, possibly reflecting emerging short-
latency risk factors that would generate high excess
cases in shorter time intervals or, alternatively, due to
artificial or sudden variations associated with changes
in disease coding or screening practices (see details in
Abellan et al. [53]). Hence, it would not be unreasonable
to suggest that the observed heterogeneity in the
spatial distribution of high-risk areas for bladder and
kidney cancer in both SW NS and CB, support a
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scenario in which risk factors act in a relatively sus-
tained manner over time.

Strengths and limitations

This study has important strengths. First, it is based on
30 years of cancer incidence data obtained from a
population-based cancer registry adhering to registration
standards of both the Canadian Cancer Registry and the
North American Association of Central Cancer Regis-
tries. Those standards allow for consistency in disease
coding over time and; ensure case ascertainment and
completeness through a network of activities including
automated and manual edit processes, record linkages
and data audits. In addition, the systematic collection of
spatial information at time of diagnosis enabled 100 % of
cases in Cohort 1 and 95 % of cases in Cohort 2 to be
successfully geo-referenced with a high degree of cer-
tainty, thus minimizing location misclassification (Cohort
1, ~ 85 % exact location; Cohort 2, ~ 50 %). Second, the
two statistical methods used in this study accounted for
spatial dependence (random effects) in risk estimates
which reduce the likelihood of Type I error — declaring an
area as having elevated risk when in fact its underlying
true rate equals the background level [54]. Third, the
exceedance probability rules, P,(10 %) > 0.8, P(s;10 %) > 0.8
and P(s,:10 %) > 0.8, used here to classify spatial risk has
high specificity even when data are sparse, further redu-
cing the risk of false alarms, although perhaps increasing
the likelihood of Type II error — declaring an area as hav-
ing average risk when in fact its underlying true rate is ele-
vated relative to background levels [54]. Fourth, the
application of the local-EM algorithm treated risk as a con-
tinuously varying process in space and time and so was not
constrained to be within arbitrary administrative boundar-
ies which often change between census periods [52]. This
allows for the integration and use of irregularly aggregated
or point-location data within a single framework and min-
imizes loss of information. It presents a real advantage for
the estimation of disease risk in small-area analyses or for
rare diseases that requires the monitoring and accumula-
tion of cases collected over a long time period as it maxi-
mizes statistical power and results in more meaningful
inference [55]. As such, it is reasonable to suggest that ap-
plying the Local-EM framework improved the sensitivity
of the study, offering a balance to the Community-
level autoregressive model, a more conservative approach
with generally lower sensitivity (see [54, 55]. Finally, mod-
elling the spatio-temporal variation in risk with local-EM
algorithm provided useful insights about the stability
of the estimated spatial patterns of disease. It also
produced predictions that were generally less spatially
smooth, and as such, is a more sensitive tool for the
detection of localized areas of elevated risk, which
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ultimately better informs health service planning,
public health interventions and resource allocation.

Nonetheless, this study has limitations. First, location at
time of diagnosis was used as a surrogate for the location
where a person was thought to be exposed to factors
which increased their risk of cancer. This is a common
approach in the geographic analyses of many disease
outcomes given the difficulty of obtaining a full history of
residence and building estimates of lifetime exposure. The
consequent exposure misclassification can result in less
informative maps that impedes hypothesis generation or
identification of environmentally or sociologically driven
processes occurring over long time periods. Second,
individual-level information on important risk factors
such as smoking frequency and duration was not available
as cancer registries do not routinely collect information
unrelated to patient care. This study used neighbourhood
social and material deprivation as a proxy for smoking
prevalence. As a result, it is possible that maps of posterior
means relative risks include some residual confounding
due to smoking. Third, current algorithms for local-
EM estimation do not allow for the inclusion of co-
variates. Fourth, the method is computationally inten-
sive. Finally, although the local-EM analyses benefited
from the inclusion of cases diagnosed over a longer
time period, when reporting for the Cape Breton region,
the number of cases was still quite low, which resulted
in unstable results. This was particularly evident when
determining optimal spatial and temporal bandwidths
in females risk for which incidence counts was about
1.5 to 3 times lower than for males.

Conclusion

Modeling the geographical distribution of disease within
a population is essential to public health surveillance. It
permits the quantification of the risk of disease relative
to expected background levels, and the identification of
unusually high and low risk areas which can guide health
service planning, public health intervention and resource
allocation. The current approach further permits the
estimation of residual spatial dependence resulting from
exposure to unmeasured risk variables, and as such,
helps identify areas where other etiological factors may
be at play. In this study, spatial analyses demonstrated
evidence of spatial heterogeneity in the risk of both blad-
der and kidney cancers in Nova Scotia. The temporal
component of the spatially-continuous approach permit-
ted the determination of the relative time scales of high
average risk in a given area and hence provided an un-
derstanding of the stability of the spatial patterns of the
estimated risk; and the generation of hypotheses about
the nature of possible exposure. Based on this infor-
mation, we suggest that the excess bladder and kidney
cancer risk for both male and potentially, female in
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south-western NS may be driven by exposure to unknown
risk factors that act in a sustained manner over time. Fur-
ther research may uncover the nature of these factors and
lead to future opportunities for disease prevention.

The findings from this study warrant further investiga-
tion in three main areas. First, further work is required
in the area of exposure modeling in order to elucidate
the potential factors driving the observed patterns of
variations in the risk of UTC in NS. Second, they high-
light the need for the development of local-EM methods
that incorporate individual- and neighborhood-level co-
variates. Finally, they reaffirm the need for the establish-
ment of a public health platform that would enable the
collection of individual- and/or neighborhood level in-
formation relating to disease causing-risk factors, such
as behavioural, occupational and environmental factors.
Such information permits more accurate quantification
and understanding of disease risk.
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