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Abstract

Background: Brain cancer incidence rates in Spain are below the European’s average. However, there are two
regions in the north of the country, Navarre and the Basque Country, ranked among the European regions with the
highest incidence rates for both males and females. Our objective here was two-fold. Firstly, to describe the temporal
evolution of the geographical pattern of brain cancer incidence in Navarre and the Basque Country, and secondly, to
look for specific high risk areas (municipalities) within these two regions in the study period (1986–2008).

Methods: A mixed Poisson model with two levels of spatial effects is used. The model also included two levels of
spatial effects (municipalities and local health areas). Model fitting was carried out using penalized quasi-likelihood.
High risk regions were detected using upper one-sided confidence intervals.

Results: Results revealed a group of high risk areas surrounding Pamplona, the capital city of Navarre, and a few
municipalities with significant high risks in the northern part of the region, specifically in the border between Navarre
and the Basque Country (Gipuzkoa). The global temporal trend was found to be increasing. Differences were also
observed among specific risk evolutions in certain municipalities.

Conclusions: Brain cancer incidence in Navarre and the Basque Country (Spain) is still increasing with time. The
number of high risk areas within those two regions is also increasing. Our study highlights the need of continuous
surveillance of this cancer in the areas of high risk. However, due to the low percentage of cases explained by the
known risk factors, primary prevention should be applied as a general recommendation in these populations.
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Background
Several studies have pointed out that the Autonomous
Regions of Navarre and Basque Country show higher
brain cancer incidence [1] and mortality [2, 3] risks than
the rest of the Spanish regions. According to the latest
estimated data published by the GLOBOCAN project,
in 2012 a total of 2,056 and 1,661 new brain can-
cer cases were diagnosed in Spanish male and female
population respectively, representing 6.1 and 4.2 cases
per 100,000 inhabitants (age-standardized rates adjusted
to world population) [4]. Although these rates are
below the European average (6.3 and 4.6 in males and

*Correspondence: lola@unavarra.es
1Department of Statistics and O.R., Public University of Navarre, Campus de
Arrosadía, 31006 Pamplona, Spain
Full list of author information is available at the end of the article

females respectively), data from the International Agency
for Research on Cancer (IARC) showed that during
the period 2003–2007, brain cancer incidence rates in
Navarre and Basque Country provinces were among the
highest rates registered for all regions and both genders
[5]. With the aim of determining the possible causes that
explain these high risk clusters in Spain, an exhaustive
geographical study of the potential influence of land use
variables was assessed [6]. No evidence on the possible
association between the specific type of crop or land use
and the distribution of the disease was found. Recently, a
study of brain and central nervous system (CNS) cancer
incidence in Navarre was performed to describe tempo-
ral trends of cancer incidence rates during the period
1973–2008 [7]. In that work, the area was considered as
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an explanatory variable dividing the observed cases into
urban and non-urban areas. However, the geographical
distribution of the disease within Navarre was not ana-
lyzed. A study of spatial mortality patterns for several can-
cer locations (stomach, colorectal, lung, breast, prostate
and urinary bladder cancer) was also recently performed
on 8,073 Spanish municipalities during the period 1989–
2008 [8], but brain cancer was not studied. In this paper
our interest lies in analyzing the temporal evolution of
the geographical distribution of brain cancer incidence in
the municipalities of Navarre and Basque Country. We
are mainly interested in locating high risk municipalities
within both Autonomous Regions. Health areas consti-
tuted by several municipalities were also considered as a
new level of spatial aggregation to gain power in our anal-
ysis. According to the literature, just a small percentage
of brain cancer cases can be explained by the only clearly
established risk factors: genetic and environmental fac-
tors [9, 10], and ionizing radiations [11, 12]. This lack of
clearly established factors is the reason why the analysis
performed here becomes so crucial.

Methods
Ethics
This research has been performed with the approval of the
ethics committee of the Public University of Navarre (code
PI-004/14).

Data source
The study is based on brain cancer incidence cases
(International Classification of Diseases-10, code C71)
recorded throughout the period 1986–2008 in Navarre
and Basque Country population based cancer registries.
The municipalities considered were those existing at the
beginning of the period (year 1986). Later, there were
some changes (some new municipalities arose) but then,
the population of the new areas were aggregated to the
municipality they belonged to in 1986, resulting in a total
of 501 municipalities. The quinquennial population was
provided by both the Statistical Institute of Navarre (IEN)
and the Basque Country Statistical Institute (EUSTAT).
Population for non census years was computed using lin-
ear interpolation. A total of 5,223 cases were recorded
throughout the period 1986–2008 (1,214 in Navarre and
4,009 in the Basque Country), of which 2,891 were diag-
nosed in males and 2,332 in females. The expected cases
per year and municipality ranges from 0 to 35.7, whereas
the number of observed cases varies from 0 to 44. The
overall incidence rate is about 9.6 per 100,000 inhabitants
in Navarre and and 8.3 cases per 100,000 inhabitants in
the Basque Country. Population sizes of the small areas
(municipalities) considered in our study are highly unbal-
anced, where average population during the period 1986–
2008 vary from 21 to 360,623. Mean values of the most

populated municipalities of each health area are shown in
Table 1.

Statistical analysis
The statistical model used to smooth (relative) incidence
risks is a mixed Poisson model including spatial and tem-
poral correlation. It is explained in some detail in what fol-
lows. As mentioned above, Navarre and Basque Country
(two Autonomous Regions in Spain) are divided into n =
501 small areas (municipalities) labelled as i = 1, . . . , n
and data are available for time periods t = 1, . . . ,T . Let
Eit represent the number of expected cases in region i
and year t computed using age and sex-standardization
with the population of the study as reference. The indirect
standardization method allowed to compare each munici-
pality in a certain year with the overall area throughout the
entire study period. Then, conditional on the relative risks
rit , the number of cancer incidence counts Oit is assumed
to be Poisson distributed with mean μit = Eitrit . That is,

Oit|rit ∼ Poisson(μit = Eitrit)

logμit = logEit + log rit

Several models have been considered to smooth the log-
risks. The most common models in spatio-temporal dis-
ease mapping are possibly the non-parametric conditional
autoregressive (CAR) models described in [13], where
different types of space-time interactions between the
main spatial and temporal random effects are proposed.
Here, we considered a two-level spatial structure where
municipalities were aggregated into larger health areas
(see Fig. 1). The model can be seen as an extension of the

Table 1 Mean values of the most populated municipalities of
each health area in the period 1986–2008

Health area Municipality Population

Bilbao Bilbao 360,623

Araba Vitoria 214,687

Pamplona Pamplona 181,683

Gipuzkoa San Sebastián 179,814

Ezkerraldea-Enkarterri Barakaldo 103,645

Uribe Getxo 80,924

Bidasoa Irún 56,044

Interior Basauri 47,416

Bajo Deba Eibar 30,183

Tudela Tudela 28,465

Alto Deba Mondragón 24,108

Goierri-Alto Urola Azpeitia 13,581

Estella Estella 12,958
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Fig. 1Map of the n = 501 municipalities of Navarre and Basque Country aggregated by health areas

models proposed by Schrödle et al. [14]. Specifically, the
log-risks are modeled as

log rit = α + ξi + ψj(i) + γt + δj(i)t (1)

where j(i) denotes the health area (j = 1, . . . , 13) munic-
ipality i belongs to, α quantifies the logarithm of the
global risk, ξi and ψj(i) represent the two-level spatial
effects (municipality and health area effects respectively),
γt (t = 1, . . . , 23) denotes temporal effects, and δj(i)t are
space-time interaction effects.
The municipality-level random effects ξi were modeled

initially using the CAR model modification proposed by
Leroux et al. [15]. However, all the spatial variability was
structured and then, an intrinsic CAR model was finally
fitted. An exchangeable distribution was considered for
the health area random effect, ψ ∼ N

(
0, σ 2

ψ Im
)
. The

temporal effect γt was modeled using a second order ran-
domwalk to borrow strength from second-order temporal
neighbors. The interaction term δj(i)t designates specific
and independent temporal trends for each health area
(Type II interaction in [13]). The model was fitted from
an empirical Bayes approach using the well known penal-
ized quasi-likelihood (PQL) technique [16–18]. To avoid
identifiability problems all the random effects of Eq. (1)
were reparameterized using appropriate transformation
matrices based on the eigenvector decomposition of the
variance-covariance matrices of these random effects.
Finally, spatial, temporal and spatio-temporal patterns
defined by the estimated log-risks were analyzed sepa-
rately. The corresponding variances were computed using
the delta method. Upper one-sided confidence intervals
were constructed for the spatial effects and the true risk
values to find high risk municipalities. When the lower

limit was greater than one, the region was classified as a
high risk region. All the analysis were carried out using R
3.1.2 software [19].

Results and conclusions
The spatial pattern explains most of the total variability of
the relative risks (about 85%), while the rest of variabil-
ity is explained by the temporal (9%) and spatio-temporal
(6%) patterns. Figure 2 on the upper-left shows the spa-
tial incidence risk pattern associated to each municipality
and constant along the whole period, while high risk
municipalities are displayed on the upper-right hand in
Fig. 2. The areas with the highest spatial risks are located
mainly in a region surrounding the capital of Navarre,
Pamplona, but there are also a few municipalities with
significant high risks in the northern part of the region,
specifically in the border between Navarre and the Basque
Country (Gipuzkoa). Conversely, the areas with the low-
est spatial risks belong to the health area of Tudela
(South of Navarre) and Ezkerraldea-Enkarterri (West of
the Basque Country). The temporal risk pattern common
to all regions is displayed at the bottom of Fig. 2. An
increasing risk is observed from 1986 till approximately
1994, where the risk remains stable until 2002. From there
on an upward trend is observed. This global increase in
brain cancer incidence risk is also seen in Fig. 3, where the
temporal evolution of the geographical incidence pattern
is represented for some years of the period 1986–2008.
Finally, temporal evolutions of relative incidence risks

are plotted in Fig. 4 for the most populated municipalities
of each health area. In general, differences are observed
among specific risk evolutions. For instance, the areas of
Bilbao, Mondragón and San Sebastián show a decrease
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Fig. 2 Geographical pattern of brain cancer incidence (upper left figure), significant high risk municipalities (upper right) and global temporal trend
(bottom)

in their relative incidence risks during the second half
of the period 1986–2008, while other municipalities like
Azpeitia, Eibar, Irún and Pamplona in particular show an
increase during the last years. These deviations from the
global trend (see Fig. 2) are possible due to the flexibility
of the selected model.

Discussion
The model used in the data analysis is very rich, allow-
ing to evaluate the evolution of the geographical pattern
of brain cancer incidence in Navarre and the Basque
Country. It has the potential to obtain altogether in one
the geographical pattern for the whole period, the global
temporal trend, and the temporal evolution of the geo-
graphical pattern. Previous models analyzing brain cancer
incidence data in Navarre and the Basque Country only
provided geographical [6] or temporal patterns [7]. Due to
the large number of areas involved in our analysis and the
evident differences in the risk evolution in each of them,
the use of spatio-temporal models including space-time

interactions becomes essential. Our analysis reveals that
the number of high risk municipalities is increasing with
time, and that the risk evolution for particular municipal-
ities differs from the global temporal pattern. The model
used is a non-parametric CAR model where different pre-
cision matrices can be used to model the spatio-temporal
interaction term [13]. In our case, after considering alter-
native models to smooth the log-risks, a two-level (munic-
ipalities within health areas) spatial structure model was
selected. The model also includes a random walk of order
two for the temporal effects that borrows strength from
second order time neighbors, and a temporally structured
health area level interaction effect. Model fitting was car-
ried out from a frequentist perspective and it was carefully
programmed to take into account identifiability issues.
Variability measures were also derived as they are not
directly obtained from the fitting.
The brain cancer incidence data used in our analysis

have been obtained from two internationally standard-
ized population based cancer registries subject to quality
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Fig. 3 Temporal evolution of the geographical pattern of brain cancer incidence estimated risks (up) and corresponding maps of significantly high
risk municipalities (down) of Navarre and Basque Country

controls. Nowadays population based cancer registries
include benign brain tumors for a better understand-
ing of brain cancer epidemiology. However, we have not
included them in this study because we did not have this
information available for the whole period 1986–2008.
The last figures for different cancer registries published by
the International Agency for Research on Cancer (IARC)
[5] for the period 2003–2007, showed that CNS tumors
including brain cancer (ICD-10 codes C70-72) incidence
rates adjusted to world population were 7.8 and 7.2 for
males, and 5.7 and 5.2 for females in Navarre and Basque
Country respectively. Although these rates are high, there
are other European regions with higher rates in both
genders like Croatia, Norway, Serbia, Sweden and some
regions of Italy and Poland. In Spain, rates ranged from
4.8 in Cuenca to 7.8 in Navarre for males, while for

females the range varied between 3.0 in La Rioja and 5.7
in Navarre. In our analysis, significantly high risk areas
were found in Pamplona and surrounding areas and also
in municipalities close to the border between Navarre
and Gipuzkoa. Similar results were observed in López-
Abente et al. [6], where only geographical patterns of brain
cancer incidence data were analyzed during the period
1978–1992. These results are also similar to previously
published works on brain cancer incidence [1, 7] andmor-
tality [2]. The findings in Etxeberria et al. [7] showed a
higher brain cancer incidence rates in urban (Pamplona)
rather than in rural areas. Although many agricultural
chemicals and pesticides used in rural areas were believed
to be brain cancer risk factors [6], the last data stand out
that their effects in Navarre were small since the rates in
rural areas were lower than in urban regions. Our analysis
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Fig. 4 Temporal evolution of the estimated brain cancer incidence risks r̂it for the more populated municipalities of each health area in Navarre and
the Basque Country

showed an increase of the risk along the study period.
Part of this increase could be explained by the improve-
ment of diagnostic techniques allowing for a more specific
diagnosis of this tumor.
The geographical differences worldwide have been

attributed, at least in part, to the accessibility to health
services in general and to the use of new technologies in
particular. This makes it possible to have better informa-
tion on the morphology of tumors, particularly in older
age groups, but it may also contribute to the diagnosis of
incidental neoplasms [20]. The small number of cases, the
long latency period, and the variations in study designs
and available information, make it difficult to draw con-
clusions on specific brain tumors and individual risk fac-
tors. Brain tumors are rare tumors and their only clearly
established risk factors are hereditary syndromes, ionizing
radiation and age [21]. A great number of environmental
expositions have been studied in adults aiming at explain-
ing the exposition frequency but results were inconsistent.
For example some studies have revealed the association

between parental and subject occupation and brain can-
cer [22–24] but other studies have found no association
[25, 26]. In 2011, the International Agency for Research on
Cancer (IARC) of theWorld Health Organization (WHO)
classified radio frequency (RF) as “possible carcinogenic
to humans - 2B" [27] but no definite conclusions have
been shown yet. Finally, Provost et al. [28] found that
agricultural workers with the highest level of exposure to
pesticides were twice as likely to be diagnosed with brain
cancer as those with no exposure. However, pesticides are
used in vineyards, and the areas of wine production in our
study (the Ribera district of Navarre and La Rioja in the
Basque Country) did show a low brain cancer incidence
risk. The high risk municipalities that we found in this
study are not related to any particular type of farmer-land
or industrial setting. The results of the analysis performed
in this paper are not conclusive as they are of descrip-
tive nature. However, the study points out the relevance
of using population based cancer registries to identify
high risk areas related to environmental exposures. These
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registries are extremely valuable tools for providing useful
and reliable information on brain cancer and other central
nervous system tumors incidence [29]. Our study high-
lights the need of continuous surveillance of this cancer in
the areas of high risk. However, due to the low percentage
of cases explained by the known risk factors, primary pre-
vention should be applied as a general recommendation in
these populations.
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