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to a simulated epidemic: a virtual experiment
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Abstract

Background: Studies of social distancing during epidemics have found that the strength of the response can have
a decisive impact on the outcome. In previous work we developed a model of social distancing driven by
individuals’ risk attitude, a parameter which determines the extent to which social contacts are reduced in response
to a given infection level. We showed by simulation that a strong response, driven by a highly cautious risk
attitude, can quickly suppress an epidemic. However, a moderately cautious risk attitude gives weak control and, by
prolonging the epidemic without reducing its impact, may yield a worse outcome than doing nothing. In real
societies, social distancing may arise spontaneously from individual choices rather than being imposed centrally.
There is little data available about this as opportunistic data collection during epidemics is difficult. Our study uses a
simulated epidemic in a computer game setting to measure the social distancing response.

Methods: Two hundred thirty participants played a computer game simulating an epidemic on a spatial network.
The player controls one individual in a population of 2500 (with others controlled by computer) and decides how
many others to contact each day. To mimic real-world trade-offs, the player is motivated to make contact by being
rewarded with points, while simultaneously being deterred by the threat of infection. Participants completed a
questionnaire regarding psychological measures of health protection motivation. Finally, simulations were used to
compare the experimentally-observed response to epidemics with no response.

Results: Participants reduced contacts in response to infection in a manner consistent with our model of social
distancing. The experimentally observed response was too weak to halt epidemics quickly, resulting in a somewhat
reduced attack rate and a substantially reduced peak attack rate, but longer duration and fewer social contacts,
compared to no response. Little correlation was observed between participants’ risk attitudes and the psychological
measures.

Conclusions: Our cognitive model of social distancing matches responses to a simulated epidemic. If these
responses indicate real world behaviour, spontaneous social distancing can be expected to reduce peak attack
rates. However, additional measures are needed if it is important to stop an epidemic quickly.
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Background
Epidemics of infectious disease, such as influenza, are
recognized as one of the most serious risks faced by the
world today. It is essential to understand how such epi-
demics develop and how they can be effectively con-
trolled. A variety of studies have shown that human
behavioural changes, such as reducing social contacts
during outbreaks, can have a significant effect [1–8].

This social distancing response can be particularly useful
early in an epidemic, when pharmaceutical interventions
such as antiviral drugs and vaccinations might not yet be
readily available [4].
Social distancing may be enforced centrally, for ex-

ample by closing schools and workplaces and cancelling
events, or may emerge naturally as a result of individual
actions. Our work is aimed at understanding the spon-
taneous social distancing response. Individual decisions
may be driven by many factors, including awareness of
infection, advice from governments, and psychological
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factors. People may also make trade-offs between the so-
cial and economic benefits derived from contact and the
risk of infection. A number of modelling studies have
considered the economic and epidemiological conse-
quences of spontaneous social distancing [5–11]. Caley,
Philip, and McCracken [2], for example, found that so-
cial distancing behaviour can explain the observation of
multiple epidemic waves in the 1918–1919 influenza
pandemic. Maharaj and Kleczkowski [5] studied a model
which considers individuals’ risk attitude as the key par-
ameter driving the response. Simulations of this model
showed that the most effective control is achieved when
individuals are highly risk-averse, and reduce contacts
sharply even at low levels of infection, stopping epi-
demics quickly. Surprisingly, the worst outcome, as mea-
sured in terms of the overall number of cases and the
loss of contacts, arises when individuals are moderately
risk-averse, reducing their social contacts somewhat, but
not sufficiently to suppress the epidemic. This leads to
longer epidemics that spread more slowly but eventually
still affect the majority of the population. Although this
outcome may not be optimal, Lempel et al. [11] show
that slowing spread can nevertheless be beneficial by
lowering the peak attack rate and reducing stress on
healthcare systems.
These studies make clear the importance of under-

standing social distancing behaviour, but investigating
this in the real world is difficult. For obvious reasons, it
is not possible to create epidemics for the purpose of re-
search. Most existing studies are based on surveys that
either ask people how they would behave during a hypo-
thetical outbreak, or ask them to recall what they did
during a recent epidemic [12–14]. Such studies are lim-
ited by people’s capacity for imagination or recall. Some
studies have looked at data from real epidemics [15–20],
for example, public transport records during SARS and
swine flu epidemics, but opportunities for collecting
such data are limited.
Virtual experiments, using computer simulations as a

substitute for reality, can be useful for studying scenarios
that cannot practicably be reproduced in the real world
or laboratory. Plagues and disease simulations have long
been a feature of many popular computer games [21],
and have also been used in education [22, 23], but their
use for scientific research is relatively recent. Interest
was sparked in 2007 by an accidental outbreak that took
place in the World of Warcraft online role playing game
[24]. A recent study used a computer game to investi-
gate the relationship between self-protective behaviour
during epidemics and cost [25]. In this study participants
were asked to choose between abstract “high” or “low”
cost protective behaviours. Our study also incorporates
economic choices, but focusses specifically on social dis-
tancing, representing this graphically in a computer

game setting. This gives participants a concrete under-
standing of what kind of behaviour they are being asked
to consider and is intended to trigger more realistic
responses.

Methods
We begin with a model of social distancing introduced
by Maharaj and Kleczkowski [5], comprising three parts:
1) an epidemic model, representing the dynamics of in-
fection and recovery; 2) a spatial network model, repre-
senting relationships amongst individuals which govern
the awareness of information about disease and the pos-
sibility of physical contact that might spread infection;
3) a cognitive model, representing how an individual re-
sponds to the awareness of disease by social distancing
behaviour. The model, which was previously used for
simulations of social distancing within a homogeneous
population [5], is here applied to a population in which
individuals may vary in their attitude to risk, both across
the population and over time.
Experiments with human participants were carried out

to validate the cognitive model by comparing it with the
behaviour of real people. Participants played a computer
game which incorporated the epidemic and spatial as-
pects of the social distancing model of [5], but replaced
the cognitive aspect with the participant’s own behav-
iour. Participants also completed a questionnaire based
on a psychological theory of health-protective behaviour,
the Protection Motivation Theory [26]. The experimen-
tal data were used to derive a statistical model of partici-
pants’ attitude to risk. This model was then used in a
simulation study to explore the outcome in epidemics
where people behaved as they did in the experiments.
In the rest of this section we describe in detail the

social distancing model (epidemiological, spatial, and
cognitive aspects), the population model, the game inter-
face, and the psychological measures.

Epidemic model
Disease transmission and recovery are modelled using
the well-known Susceptible-Infected-Recovered (SIR)
model [27], adapted to deal with discrete individuals and
discrete time. The epidemic model is closely linked with
the spatial model, see Figs. 1 and 2. Initially, a fraction I0
of the population are infected and the rest are suscep-
tible. At each time step, each individual makes contact
with others; the details of which individuals can contact
each other are left to the explanation of the spatial
model (below). Each contact between a susceptible and
an infected individual may cause the susceptible to be-
come infected, with probability p. At each time step, in-
fected individuals may recover, with probability q, after
which they remain immune.
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Spatial model
The spatial model represents the locations of individuals.
It determines what information an individual knows
about the extent of the epidemic, and what social con-
tacts the individual can make. The population is as-
sumed to be arranged in fixed locations on a square
lattice network, as illustrated partially in Fig. 2a. For
each individual i on this network, we define a neigh-
bourhood of radius r centred on i as including all other
individuals whose Euclidean distance from i is at most r.
We consider two such neighbourhoods. The awareness
neighbourhood, which has a fixed radius that is the same
for all individuals, represents the information available
to the individual: at each time step, i is aware of the level
of infected cases present in this neighbourhood. The

infection neighbourhood, whose radius may vary among
individuals over time, represents the people with whom i
has contact, possibly leading to infection transmission.
The infection neighbourhood lies within the awareness
neighbourhood, and coincides with it when at its max-
imum size.

Cognitive model
Social distancing behaviour is represented by having sus-
ceptible individuals contract their infection neighbourhood
when infection is present locally, thereby reducing the
number of social contacts they make. At each time step t
during the epidemic, each susceptible individual i is as-
sumed to be aware of the local infection load Ii,t and may
reduce or increase contacts by adjusting the infection ra-
dius in the next time step in response to this information.

Fig. 1 Flow diagram illustrating epidemic spread and social distancing. At each time step t, a susceptible individual i modifies its infection radius
ri,t + 1 in response to the local infection load Ii,t and current risk attitude αi,t. It then makes contact with all neighbours within its infection radius.
Each contact with an infected neighbour may cause the susceptible to become infected, with probability p = 0.05. At each time step, infected
individuals may recover with probability q = 0.2, and remain immune from then on

Fig. 2 Model network (a) compared to the game user interface (b). a shows a part of the square lattice spatial network with the player-controlled
susceptible individual (black circle) in the centre. The player’s awareness neighbourhood (outer, dark blue circle, radius 4) contains infected
neighbours (red circles) and non-infected neighbours (green circles). Nodes outside this circle contain individuals that are not visible to the player,
but which may transmit infection into the player’s awareness neighbourhood. The inner, light blue circle shows the player’s chosen infection
radius, ri,t. Here, ri,t = 1.5 and the player will contact 8 neighbours (bold-outlined circles). b shows the same scenario as displayed to the player via
the game interface. The player controls the size of the infection radius by making the blue circle larger or smaller. Neighbours remain in fixed
locations in the underlying lattice, but are displayed in the game interface as animated figures that move around rapidly. This prevents players
from wrongly thinking that they can know the exact location of their infected neighbours and attempting to adjust the circle to exclude
those locations
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Ii,t is defined as the ratio at time t of the number of infected
cases within i’s awareness neighbourhood to the total num-
ber of neighbours within that neighbourhood, and therefore
lies in the range [0,1].
In previous work [5] we proposed a cognitive model,

Eq. 1 and Fig. 3, to represent this behaviour. Equation 1
describes how the individual adjusts the infection radius
in the next time step, ri,t+1, in response to the current
local infection load, Ii,t. The parameter αi,t represents the
individual’s attitude to risk, and is a positive real number,
unbounded from above. Lower values of αi,t represent
more cautious, or risk-averse attitudes, and produce a
larger reduction in the infection radius for a given infec-
tion load. Equation 1 has the property that when no in-
fection is present individuals will choose the maximum
possible infection radius, r0.

ri;tþ1 ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Ii;t

� �αi;tq
ð1Þ

[Note: The cognitive model in [5] described redu-
cing the number of contacts rather than the infection
radius. In this paper we use the same model but
focus on the infection radius for ease of comparison
with the computer game. The square root in Eq. 1
comes from the fact that this radius is proportional
to the square root of the number of contacts].

Population model
In our previous simulation study [5] it was assumed that
all individuals within the population have the same risk
attitude, and that this remains fixed over time. Here we
relax this assumption and introduce the possibility of
heterogeneous and time-varying risk attitudes. We
propose that an individual’s risk attitude at a given time

step is a combination of up to four factors: the baseline
risk attitude in the population, the variation due to the
individual, the individual’s variation over repeated
games, and the individual’s variation over time within a
game. A statistical model of this variability will be de-
rived from experimental data, as described later.

Computer game
A computer-game tool was created to allow experimental
investigation of social distancing behaviour in real people.
The game is based upon an underlying agent-based
simulation of an epidemic. It is played by a single player
who controls the behaviour of one agent (representing a
susceptible individual), interacting with a population of
computer-controlled agents. This technique is known as
agent-based participatory simulation [28–30].
The simulation uses the epidemic model described

above, with parameters p = 0.05 and q = 0.2. Initially, 6 %
of the population are infected, and the rest are suscep-
tible. These values were chosen as they generate simu-
lated epidemics that expose participants to a wide range
of infection levels, allowing risk attitudes to be esti-
mated. The simulation also uses the spatial model de-
scribed above, with 2500 individuals arranged on a 50 ×
50 square lattice, and with the awareness radius (and
maximum infection radius) r0 set at 4. This means that
each individual may contact at most 48 neighbours at
each time step, Fig. 2a. Note that the use of a square lat-
tice network makes it necessary to use epidemic parame-
ters that are much higher than those used in mean-field
or random network models. This is because the network
structure exhibits spatial correlations that suppress
transmission [31] and lower the effective reproductive
ratio.
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Fig. 3 Cognitive model of social distancing. Equation 1 is illustrated for three values of αi,t. The plots show the reduction in infection radius in response to
infection load. Lower values of αi,t represent more cautious risk attitudes, and cause a sharper reduction in infection radius for a given infection load

Kleczkowski et al. BMC Public Health  (2015) 15:973 Page 4 of 13



Social distancing behaviour in the game is determined
by the player, who is given information about the
current local infection load Ii,t and is allowed to adjust
ri,t + 1 freely. Equation 1 is inverted to calculate the
player’s effective risk attitude, αi,t, so that:

αi;t ¼
log 1− ri;tþ1

4

� �2� �

log Ii;t
� � ð2Þ

This inverse is defined when infected cases are present
and the player reduces contact (Ii,t > 0, ri,t + 1 < 4). In all
other cases, the player’s risk attitude is not calculated.
The player interacts with the underlying simulation

via a computer game interface (Fig. 2b and Fig. 4).
After viewing instructions, Fig. 4a-b, the player sees a
visualization of the local neighbourhood, Fig. 4c, with
animated red and green figures representing, respect-
ively, infected and non-infected neighbours. The

player uses the mouse to adjust the size of a circle,
Fig. 2b, representing the chosen infection radius ri,t +
1, and then clicks a button to submit the choice for
the next day. The player’s effective risk attitude αi,t is
then calculated as described above, and is applied to
adjust the contacts made by the computer-controlled
agents. [It is necessary for the computer-controlled
agents to modify their contacts; if they do not do so,
the simulated epidemic rapidly becomes invasive and
the game ends before sufficient data can be collected.
By having the computer-controlled agents adopt the
same risk attitude as the player, the game maintains
consistency with the model used in previous work [5],
where all members of the population have the same
risk attitude, but not necessarily the same infection
radius due to differing local infection loads].
One step of the epidemic dynamics is then carried

out, causing individuals to either remain in the same

Fig. 4 Game interface. a Welcome screen. b Instructions. c Play screen showing infection load on the current day. The player chooses the number of
contacts to make by adjusting the circle and then clicks the submit button. d Outcome if the player remains healthy; points are given for contacts
made and game play continues. e Outcome if the player becomes infected; game play ends. f Outcome if the player remains well until all infected
cases have recovered; game play ends and the player receives extra points. Play may also end due to time-out after 60 days (not shown)
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state or to change from susceptible to infected or
from infected to recovered. If the player becomes in-
fected, the game ends and the message “You have
been infected” is displayed, Fig. 4e. If the player man-
ages to remain uninfected until all infected cases re-
cover, the game ends, and the message “You are a
survivor” is displayed, Fig. 4f. To prevent excessively
long play, the game also ends after a timeout period
of 60 days. If the game does not end, the player is
credited with a number of “points” corresponding to
the number of contacts made during the current day,
and play continues to the following day, Fig. 4d.
Players who survive an epidemic lasting less than
60 days are credited with additional points equivalent
to making full contacts during the period from the
end of the epidemic to the 60-day maximum. This
removes any incentive for players to deliberately at-
tempt to prolong the epidemic so as to amass more
points.

Psychological measures
Protection Motivation Theory (PMT) is a psychological
framework for understanding what motivates people to
change their behaviour in order to protect their health
[26]. According to PMT, people’s motivation to protect
themselves from health threats is determined by four
main factors: perceived severity of the threat, perceived
vulnerability to the threat, perceived efficacy of the rec-
ommended protective behaviour (response-efficacy), and
belief in one’s ability to carry out this behaviour (self-
efficacy). Support for PMT measures as predictors of
behaviour during epidemics comes from studies of re-
sponses to recent outbreaks of SARS, avian flu and
swine flu [32–35].
After playing the game, participants in our study com-

pleted a self-report questionnaire which asked them to
state the extent to which they agreed or disagreed with
several statements designed to measure their beliefs
according to PMT: perceived severity, perceived vulner-
ability, fear, response efficacy, self-efficacy, response cost,
and intention. Table 1 shows examples of these state-
ments. The questionnaire was based upon one used pre-
viously in a study of exercise participation [36].

Experiments
The experiments involved 230 participants recruited at
two locations: 200 individuals were visitors to the
Glasgow Science Centre, a large science museum that is
popular with families, and 30 were students at a univer-
sity in the west of Scotland. There were 109 male and
121 female participants, with ages ranging from 18 to
89 years and a mean age of 32.4 years, standard deviation
14.22. The age distribution shows a large peak around 20,
representing students, and another around 45, most likely

representing parents visiting the Glasgow Science Centre.
Participants first played repeated rounds of the computer
game and then completed the questionnaire. There was
no payment or other reward given for taking part in the
experiment.

Ethics statement
This study was approved by the School of Psychological
Sciences and Health Ethics Committee at the University
of Strathclyde. Informed written consent was obtained
from all participants before commencing the study. For
descriptive purposes, all participants were asked to indi-
cate their age and gender (male/female). No other con-
founding variables were included.

Results
Each of the 230 participants played between 1 and 9
games, yielding 852 games to be analysed. The number
of time steps in each game ranged from one to the max-
imum permissible length of 60. The first game was des-
ignated as a practice game for getting familiar with the
game interface, and results indicate that it was indeed
used for this purpose. The mean duration of first games
was 7.8 steps as compared to 14.7 steps for subse-
quent games (t-test, p < 0.001, 565df ), whereas there
was no difference in duration between second and
third games (t-test, p = 0.74, 416df ), and the same ap-
plied to subsequent ones. Only three participants
played more than 5 games. We therefore considered
only games 2 to 5 in the analysis. We also removed
all games for which the duration was just one step (5.7 %),
leaving 589 games.

Table 1 Example statements for measuring PMT beliefs

Perceived severity of illness:

• If I were to develop an infectious disease (e.g. flu) I would suffer a
lot of unpleasant symptoms.

• Developing an infectious disease would be unlikely to cause me to
die prematurely.

Perceived vulnerability:

• My chances of developing an infectious disease (e.g. flu) in the
future are likely.

• I am unlikely to develop an infectious disease (e.g. flu) in the future.

Response efficacy:

• If I were to engage in social distancing (e.g. by avoiding public
transport and social events) I would lessen my chance of
developing an infectious disease.

Self efficacy:

• I am discouraged from engaging in social distancing during times
of infectious disease, because I feel it would be difficult to do so.

• I feel confident in my ability to engage in social distancing during
times of infectious disease.
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Comparison of social distancing model with
responses in experiments
In our cognitive model of social distancing (Eq. 1), an
individual i responds to the infection pressure, Ii,t, by
adjusting the infection radius, ri,t + 1. This response
was observed in experiments but was characterised by
large variability; for examples see Fig. 5. Using Eq. 2,
we calculated the participant’s risk attitude αi,t at each
time step in all games played, ignoring time steps
where this could not be calculated. The distribution
of αi,t was found to be highly skewed (mean 0.20,
standard deviation 0.35, skewness 8.8). A log trans-
formation [37] was applied to reduce skewness, as the
distribution of log αi,t is approximately normal (mean -2.2,
standard deviation 1.0, skewness 0.4). We therefore refer
to log αi,t (or the log risk attitude) in the analysis that
follows.
The model predicts a gradual decrease in ri,t + 1 in re-

sponse to increased infection pressure, Ii,t, Fig. 3. For
each game that was played, we take the experimentally
observed value of log αi,t, averaged over all time steps in
the game, to find the value of r̂ i;tþ1 predicted by Eq. 1,

for every experimentally observed value of Ii,t. This al-
lows us to compare the predictions of Eq. 1 with the ac-
tual response of the participant who played that game.
The results range from a very good agreement with the
model (Fig. 5a-d), through indifference (Fig. 5e), to in-
crease in ri,t + 1 (Fig. 5f). We quantify the quality of the
model predictions by using the Mean Absolute Percentage
Error averaged over each game k, MAPEk ¼ 100=nk�X
t

ri;tþ1−r̂ i;tþ1

�� ��=ri;tþ1 (where |x| denotes the absolute

value of x and nk is the number of steps in game k),
[38]. This procedure yields a distribution of MAPEk
for all games. The mean value of MAPEk is 14 %, but
the distribution is strongly influenced by a small
number of games where the discrepancy between the
data and the model is particularly severe (cf. games
612 and 740 in Fig. 5e and f ). 57 % of the games
have MAPEk smaller than 10 %; this number increases to
88 % with MAPEk smaller than 25 %. Thus, for the major-
ity of the games, Eq. 1 captures the behaviour of the
participants.

Fig. 5 Best and worst examples of model fit. The player’s chosen infection radius ri,t + 1 is plotted against the corresponding infection load, Ii,t, at
all time steps t for six games. (A “game” refers to a single round of the computer game, played by a distinct participant). The solid line shows the
prediction based on Eq. (1) with α calculated as a geometric mean of the values of αi,t at each step in the given game; broken lines are based
upon the 95 % confidence intervals for α. Games number 336, 808, 237 and 66 (panels (a)to (d), respectively) are examples of a very good fit (low
MAPE scores), whereas games 619 (panel (e)) and 749 (panel (f)) are examples where the fit was bad
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Statistical modelling of participant behaviour
The experimentally-observed log risk attitude varies
among players. For each player, it varies among
games, k = 2,…,5, and within a single game it varies
over time. We explore the data through a series of
linear models with the aim of deriving a model of
population heterogeneity and time variation in risk at-
titudes. The models, labelled A-D, are presented in
Table 2.

Model A takes into account all factors. The first term,
μ, represents the average log risk attitude of the popula-
tion. The second term, λi describes the variability among
participants, so that μ + λi represents the log risk attitude
for participant i averaged over their games and time
steps. The third term, ηi,k describes the differences be-
tween different games played by each participant, so that
μ + λi + ηi,k represents the log risk attitude adopted by
participant i in game k. Finally, the last term, εi,k,t,

Fig. 6 Distribution of (log) risk attitudes across (a) games and (b) participants. In (b), the 230 participants are ordered according to median log
risk attitude, with the most cautious at the left. The figure shows box plots of the log risk attitude for each participant. The solid central line
shows the median for each participant, surrounded by quartiles (thinner black line) with ranges shown as dots

Table 2 Models of (log) risk attitude as a function of games, participants and time

Model Formula Population μ Participants λi Games ηi,k Time εi,k,t AIC

A log(αi,k,t) = μ + λi + ηi,k + εi,k,t –1.934 0.7354 0.2730 0.5833 14502

B log(αi,k,t) = μ + λi + εi,k,t –2.004 0.7935 0.6719 15835

C log(αi,k,t) = μ + ηk + εi,k,t –2.382 0.1697 0.9544 20235

D log(αi,k,t) = μ + εi,k,t –2.325 0.9628 20348

Random effects (λi, ηi,k) and time variability (εi,k,t) are distributed according to a normal distribution with average 0 and standard deviation listed in the table. AIC is
the Akaike Information Criterion [40]
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represents the variation in the log risk attitude over time
steps within a single game.
Model A is a linear model with nested effects. The

participant effect is clearly a random effect, as we are in-
terested in the variation for the whole population from
which the participants form a random sample. Although
in our design we limit the number of games, we are in-
terested in how people would respond in an unspecified
number of games; this allows us to treat the game effect
as random as well. We treat the last term as an error
term, as it represents the random variation in the re-
sponse from step to step.
We also study three reduced models: Model B,

where only the participant effect is considered; Model C,
where only the game effect is considered; and Model D,
where the log risk attitude is assumed to be constant
across participants and games. Results of the models with
quality of fit based on the Akaike Information Criterion
(AIC) are given in Table 2.
The effect of the game appears to be small, Model C,

Fig. 6a. There appears to be some trend towards lower
log risk attitude and hence towards more cautious

behaviour as more games are played, but it is very weak
(when the game effect is added, the AIC drops from
20348 (Model D) to 20325).
There is, however, a strong participant effect, Model

B, Fig. 6b. Although the variation within each partici-
pant (due to the combined effect of game and time)
is considerable, the AIC shows a significant decrease
when Model B is compared with Model D (cf. AIC =
15835 for Model B with 20348 for Model D), or
Model C.
Finally, the most complex model, Model A, improves

the AIC from 15835 for Model B to 14502. This de-
crease is significant, so Model A is used for the simula-
tions described in the next section.

Consequences of experimentally-observed
behaviour
To explore the consequences of the experimentally-
observed behaviour in an epidemic, we performed
simulation studies. The simulation model used is the
same agent-based model underlying the computer

Fig. 7 Experimental behaviour and simulated outcomes. The results of simulations with a population behaving according to Model A, and with
epidemic and spatial parameters as in the experiments, but with varying baseline log risk attitude (μ), is shown as black points with error bars
representing ± one standard deviation based on 100 replicates. Solid (blue) vertical lines show the experimentally observed μ = − 1.934 as in
Model A. Solid (green) horizontal lines show the outcomes from 100 simulations with the experimentally observed μ, with dashed horizontal lines
corresponding to ± one standard deviation. Broken (red) horizontal lines show outcomes from 100 simulations with no social distancing response,
with dotted horizontal lines corresponding to ± one standard deviation. a shows the attack rate, that is, the proportion of recovered individuals
when the epidemic is over. b shows the peak attack rate. c shows the duration. d shows the amount of social contact over 1000 time steps. It is
assumed that all individuals resume full social contact once the epidemic is over

Kleczkowski et al. BMC Public Health  (2015) 15:973 Page 9 of 13



game, with the difference that all individuals are
computer-controlled and carry out social distancing
behaviour according to Eq. 1.
We looked at the effect of sweeping through the

range of log risk attitudes seen in the experiment.
Simulated agents were programmed to behave as de-
scribed in Model A, with variation amongst partici-
pants, games, and over time steps as in Table 2, but
with the population baseline log risk attitude (μ) sys-
tematically swept across the range [−5,1]. This range
includes all the log risk attitudes observed in the ex-
perimental participants. The epidemic and spatial
models were parameterized as in the experiments,
that is, with p = 0.05, q = 0.2, and the awareness radius
and maximum infection radius both equal to 4. Each
simulated epidemic was allowed to run until it was
complete, that is, there were no infected individuals
left in the population, or for a maximum of 1000
time steps. Each run was replicated 100 times. To
provide a baseline for comparison, we also per-
formed simulations using the same epidemic and
spatial parameters, but without the social distancing
response.

Figure 7 shows the results of the simulation study.
When μ is low, the behaviour is very cautious and even
a small infection pressure results in a strong contraction
of the infection radius. This stops the disease spread,
resulting in very limited epidemics of short duration (left
hand side of Fig. 7a and c). As a result a high overall
level of social contact is achieved, due to the resumption
of full contact once the epidemic is over (left-hand side
of Fig. 7d). The peak attack rate is also very low (left
hand side of Fig. 7b).
At the other extreme, high values of μ result in be-

haviour that does not react to even high infection
load, leading to short epidemics that quickly reach
most if not all of the population (right hand side of
Fig. 7a and c). Again, the overall number of contacts
is relatively high, due to the short epidemic duration
(right hand side of Fig. 7d). The peak attack rate is
also high (right hand side of Fig. 7b).
A sharp transition occurs at middle values of μ, separ-

ating the cautious behaviour that can suppress spread
and the more relaxed behaviour that leads to a major
outbreak. Interestingly, most participants displayed a log
risk attitude that was either near this transition or

Fig. 8 Local sensitivity of simulation outcomes to probability of transmission. The results of simulations with a population behaving according to
Model A, with epidemic and spatial parameters as in the experiments, except that p is varied in a narrow range [0, 0.1] around the experimental
value (p = 0.05, indicated by a vertical line in the figures). Each black point represents the mean of 100 replicates, with error bars representing ±
one standard deviation. a shows the attack rate. b shows the peak attack rate. c shows the duration. d shows the overall level of social contact
during 1000 time steps. It is assumed that all individuals resume full social contact once the epidemic is over
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towards the more relaxed strategy, cf. Figs. 6 and 7 (ver-
tical blue line). The outcomes of this behaviour (Fig. 7,
horizontal solid green line) can be contrasted with the
outcomes when there is no response (Fig. 7, horizontal
broken red line). The experimentally-observed response
results in epidemics that are invasive, but with an attack
rate that is lower than the outcome with no response
(18 % reduction, 0.82 compared to 1.00; 1.00 correspond-
ing to the whole population infected). However, there is a
substantial reduction in the peak attack rate (44 %; 0.23
compared to 0.67 without response). The average epidemic
duration is increased (63 time steps compared to 41) and
the total number of contacts taking place is reduced (55.19
million, compared to 56.05 million, counted over the max-
imum run length of 1000 steps, with the assumption that
full contact is resumed once the epidemic is over).
Figure 7 also shows that small shifts from the

experimentally-observed response towards more cau-
tious behaviour (smaller μ) reduce the attack rate and
peak attack rate further, but also prolong the epidemic
and reduce the number of contacts. In order to improve
all four outcomes, it is necessary to substantially reduce μ
(to around −4, corresponding to an average risk attitude
of 0.02).

Local sensitivity analysis was performed to explore
the effect of slightly varying the values of p and q
used in the simulations. The results are shown in
Figs. 8 and 9. Small increases in p lead to increases
in the attack rate, peak attack rate, and number of
contacts, and a reduction in the duration. Small in-
creases in q lead to reductions in the attack rate,
peak attack rate and duration, and an increase in the
number of contacts.

Comparison with psychological measures
Data from questionnaires were used to measure the
four factors of Protection Motivation Theory, namely,
perceived severity of illness, perceived vulnerability,
response-efficacy, and self-efficacy. A detailed analysis
of the questionnaire results has been published separ-
ately [39]. It was found that fear, response efficacy,
and self-efficacy were all significant predictors of
intention to engage in social distancing behaviour.
However none of the PMT variables were significant
predictors of social distancing behaviour during the
computer game task itself. Further work is needed to
investigate the reasons for this. Some possible expla-
nations are discussed in [28] and [39].

Fig. 9 Local sensitivity of outcomes to probability of recovery. The results of simulations with a population behaving according to Model A, with
epidemic and spatial parameters as in the experiments, except that q is varied in a narrow range [015,0.25] around the experimental value (q = 0.20,
indicated by a vertical line in the figures). Each black point represents the mean of 100 replicates, with error bars representing ± one standard
deviation. a shows the attack rate. b shows the peak attack rate. c shows the duration. d shows the overall level of social contact during 1000 time
steps. It is assumed that all individuals resume full social contact once the epidemic is over
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Discussion and conclusions
Evidence found for social distancing
Our study found evidence of social distancing behav-
iour within a virtual experiment setup. Participants
showed large variability in their behaviour, but in gen-
eral they did practice social distancing by reducing
their social contacts in response to local infection
pressure. There was good agreement between participants’
responses and our cognitive model of social distancing
behaviour (Eq. 1).

Effectiveness of spontaneous social distancing for
controlling epidemics
A key conclusion of our study is that the spontaneous
social distancing response appears to be too weak to be
relied upon as a sole means of controlling epidemics.
Our study shows that in the experimental scenario, with
a population behaving similarly to the experimental par-
ticipants, epidemics are invasive and would affect over
80 % of the population. If this is indicative of real world
behaviour, it suggests that policy makers may not be able
to rely exclusively on spontaneous social distancing to
control epidemics but should supplement this with other
measures such as enforced social distancing (e.g., school
closures, event cancellations) and similar strategies. Our
cognitive model assumes that individuals have perfect
knowledge of the infection load within the awareness ra-
dius. Our previous study [5] considered the situation
where the infection load is over- or under-estimated (by
using an awareness radius that is, respectively, larger or
smaller than the maximum infection radius). In both
cases, the effectiveness of social distancing is reduced.
A second key observation is that spontaneous social

distancing leads to a substantial reduction in the peak
attack rate. In a real world situation, this could be very
beneficial for preventing healthcare systems from being
overwhelmed [11]. However, this benefit must be bal-
anced against other less desirable outcomes, such as the
prolongation of the epidemic and the reduction in social
contacts.
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