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Abstract

Background: Efforts in global heath need to deal not only with current challenges, but also to anticipate new
scenarios, which sometimes unfold at lightning speed. Predictive modeling is frequently used to assist planning,
but outcomes depend heavily on a subset of critical assumptions, which are mostly hampered by our limited
knowledge about the many factors, mechanisms and relationships that determine the dynamics of disease systems,
by a lack of data to parameterize and validate models, and by uncertainties about future scenarios.

Discussion: We propose a shift from a focus on the prediction of individual disease patterns to the identification
and mitigation of broader fragilities in public health systems. Modeling capabilities should be used to perform
“stress tests” on how interrelated fragilities respond when faced with a range of possible or plausible threats of
different nature and intensity. This system should be able to reveal crosscutting solutions with the potential to
address not only one threat, but multiple areas of vulnerability to future health risks.

Summary: Actionable knowledge not based on a narrow subset of threats and conditions can better guide policy,
build societal resilience and ensure effective prevention in an uncertain world.
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Background

In the last 40 years the human population has almost dou-
bled [1]. Massive concentrations of people in mega-cities,
rapid changes of land use and competition for natural
resources, fertile land and energy sources are all growing
challenges [2] that already consign a disturbing proportion
of humanity to hardship and poverty. Almost half the
world’s population live on less than $2.50 a day [3]
and every day around 21,000 children die [4] due to
preventable diseases [5]. On top of all this, environ-
mental, socioeconomic and geopolitical conditions we
take for granted can change, and may exacerbate the
already daunting challenge of a healthy and productive
life for all.
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There have been substantial efforts to forecast these
changes and predict their consequences to guide pre-
paredness and preventive efforts in public and global
health systems. Prediction of the likelihood of disease
outbreaks, the emergence of new diseases, geographic
areas at risk, disease spread, and the timing and severity
of disease events has indeed achieved a prominent role
in epidemiological and global health research.

However, reliance on predictive models can be danger-
ously misleading given the many sources of uncertainty
associated with predictive modeling exercises. The re-
duction of disease systems to key components for the
purpose of an abstracted mathematical model may re-
flect only partial understanding that may not include
pertinent factors. Model parameters may behave with
wide margins of poorly characterized variability. Import-
ant features of a system may be also missing, Hypothet-
ical future scenarios may be specified inappropriately
and novel conditions or non-linear dynamics may render
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the past an unreliable guide to the future. Also, influen-
tial but rare conditions are often missing from the input
data used in modeling efforts. Additionally, models can
only rarely be tested, as they are simplified representa-
tions of complex and interdependent relations among
factors that may vary in time and space. These limita-
tions have been articulated strongly for environment, en-
ergy and economics [6] fields in which long term
predictions are very important, but they are equally ap-
plicable to the health sector.

Here we argue for a shift in epidemiology and global
health research that orientates the formulation of research
questions and integrates interdisciplinary expertise to ad-
dress complex health issues and guide the development of
practical solutions. This interdisciplinary framework is less
reliant on the uncertain exercise of predicting specific
risks associated with novel scenarios or rare events and
conditions. Instead, it focuses on the identification of in-
terventions most likely to mitigate fragilities and build re-
silience among populations and public health systems,
increasing their ability to adapt to changing circumstances
[7, 8] and emerging threats.

Discussion
Predictive modeling in global health and epidemiology
Models are simplified abstractions designed, with par-
ticular questions, to help understand key components of
a system or to evaluate scenarios in which those pro-
cesses or components change. Because they condense
current knowledge into explicit and tractable forms, they
have been productively used to tease apart relationships
and risk factors in many disease systems [9-11]. They
can also qualify some forms of uncertainty in current
knowledge, thereby assisting decisions to manage risks
under resource constraints [12]. With advances in com-
puting power and the adoption of massive shared data
[13, 14], as adopted for example by the Global Burden of
Disease initiative [15], inputs to models are improving,
as are existing modeling approaches with the use of
techniques borrowed from different disciplines. For in-
stance, machine learning methods can be used to extract
information, simulation modeling enables better use of
observed data and the possibility to run hundreds of in
silico experiments [16] and model averaging approaches
[17] can help to describe and account for variability both
from data and from structural uncertainty in existing
models. These methods, however, still depend on the
quality of biological assumptions and observations [18].
Modeling efforts are, however, constrained by our
current understanding of the processes investigated,
hence by the suitability of assumptions made. That is
often the case with phenomena involving many variables
that behave in uncertain ways (e.g., the spatio-temporal
dispersion of a newly emerging disease). First, key

Page 2 of 7

factors and covariates may be unknown or missing [19];
input data to train models may be also lacking or lim-
ited; and the suitability of surrogate variables may be un-
certain. Sampling variability and measurement errors
further add to the uncertainty. Because epidemiological
models are developed using historical observations that
often exclude rare events, our ability to predict new con-
ditions of relevance (crises, outbreaks, environmental
changes and other disasters) or the cascading conse-
quences of extreme events is limited. Incomplete know-
ledge of system dynamics and mediating mechanisms
may often lead to exclusion of important variables, inter-
actions and improper choices during model design. The
uncertainty derived from the multiple choices involved
in data processing and model construction (e.g., type of
model, dynamic aspects, spatio-temporal scale, discrete
or continuous nature of variables, stochasticity, level of
analysis and the various statistical choices) is also often
unaccounted, despite their direct effects on model esti-
mates [20]. Additional sources of uncertainty come into
play when model outcomes are extrapolated into the fu-
ture, including poor specification of hypothetical future
scenarios and the uncertainty or suitability of assuming
that the past can mirror the future reliably. Finally, veri-
fication and validation to determine the credibility of
outcomes is only rarely conducted (or impossible given
the infrequency and unique challenge of each health out-
break), instead relying on post-hoc rationalization, yield-
ing a false impression of predictive credibility [6, 21, 22].

Consider for example the shortcomings associated
with the use of predictive modeling approaches in two
of the most widely studied disease systems in global
health: influenza and malaria. Although influenza is one
of the most studied infectious diseases of our time, we
still lack an explanation for the basic mechanisms driv-
ing influenza disease burden during regular (seasonal)
epidemics in different climates and regions [23]. Accord-
ingly, accurate actionable predictions are both difficult
to generate (e.g. [16, 24]) and rarely tested [25, 26]. Al-
though models of influenza dynamics are common, pre-
dictions are often limited in their time and geographic
horizons as well as their ability to distinguish the burden
of illness associated with other respiratory pathogens
and disease drivers [27-29]. The challenge is made
harder when one moves beyond predicting regular
events (e.g. seasonal dynamics) to predicting the features
of rare events, such as the magnitude, duration, location
or time when a pandemic might emerge [30]. Although
predictive models of influenza pandemics abound, im-
portant aspects such as transmission dynamics and be-
havioral factors are often missing (reviewed in [31]).
Additionally, given the rare nature of these events,
modeling outcomes are rarely validated [31] and param-
eter choices are often based on past studies, not on
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independent data [31]. Importantly, the ability to specify
the dynamics of putative future pandemics appropriately
is further hindered when we consider that emergence of
new viral strains is inherently unpredictable [32, 33].

A second example is the forecast of disease distri-
bution as a function of climate, an approach widely
adopted in the development of risk maps of malaria
[34, 35] and other diseases [36—38]. These models at-
tempt to identify past climatic conditions that best dis-
criminate between the observed presence of a disease
and theoretical areas of absence [39]. The model then
projects this statistical association between climate and
the current or historic disease distribution into the fu-
ture. Nevertheless, the ecological space occupied by a
disease at present is heavily influenced by historical fac-
tors other than climate [40, 41], such as efforts to ac-
tively eliminate the disease. Therefore existing spatial
distributions (the “realized niche”) are, in fact, a sub-
set of the ecological space that the species could oc-
cupy (the “fundamental niche”) [39]. Areas assumed
to be climatically unsuitable for malaria (absence
points) may be in fact suitable, impairing the predict-
ive ability of this exercise. This exemplifies how un-
certainties about even a single factor (of the many
possible) can affect model predictions and the policies
that derive from them. Not surprisingly, forecasts on
the effect of climate change on malaria transmission
have been shown to be spatially heterogeneous and
largely inconsistent [42].

A third and more recent example illustrates how data
from an unusual outbreak (in contrast to the well
described epidemiology of malaria and influenza) were
used to build short-term forecasts. The 2014—2015 Ebola
outbreak in West Africa rapidly led to several models
forecasting the size of the epidemic and evaluating
alternative interventions [43—50]. The majority of these
models were variations on an existing framework [51],
but whether they were deterministic models or
attempted to account for random stochastic chance,
these models all over-estimated the epidemic [52, 53].
This was additionally noteworthy because the assess-
ment of model accuracy was conducted not by the
model developers, but by journalists. In terms of what
we could learn from the models, the interventions evalu-
ated (e.g. hygiene practices, funeral arrangements and
availability of hospital beds) were not novel and their
lack of implementation was more likely a symptom of a
weak health infrastructure and execution than some fail-
ure related to this individual outbreak [54, 55]. Indeed, a
general improvement to health access and provision would
not only have had a dramatic positive impact on the Ebola
outbreak, but also addressed other health fragilities [56, 57].
Though difficult to implement (e.g. [58]), investment in
wider fragilities would have even wider reaching benefits.
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In the following section we propose an alternative
framework for health research and policy formulation.

An alternative framework to guide health research and
policy

The limitations of predictive endeavors are not an im-
pediment to directing efforts to lower the impacts of
current and putative threats. We argue that we need to
shift the focus from the prediction of specific health
breakdowns, reliant on accurate and detailed knowledge
of risk factors, to the identification of broader points of
fragility within communities, regions and societies. A
similar debate has been on-going in the climate change
literature as to whether prevention strategies ought to
be based on the predictions of a small number of hypo-
thetical future scenarios or if the response to present
and past conditions should be adaptive to uncertain
future change [12].

We suggest identifying points at which a society is fra-
gile to changes in broad causes of stress or inter-related
family of stresses. We prefer to be deliberately inclusive
in characterizing stressors that are capable of impacting
negatively (directly or indirectly) the provision of public
health. For example, one such stressor might be climate,
another may be military conflict and another could be
fluctuating economics. The practical outcome is a more
immediately manageable picture for public health deci-
sion makers. Importantly, we do not suggest the com-
mon practice of devolving identification of actionable
responses from model construction. Instead, the ap-
proach proposed is based on three layers shown in left
hand side of the diagram of Fig. 1. Because focusing on
the likelihood of a particular event might ignore the fra-
gility of public health to more general classes of perturb-
ation, preparedness plans focused on specific risks might
do little to reduce the overall fragility of a health system
to multiple stressors. Therefore, efforts should be biased
toward identification of points of fragility associated
with maximal cascading challenges for public health,
and on the evaluation of cross-cutting and flexible solu-
tions for an uncertain future. Greater societal resilience
to known and unpredictable disease risks can be simi-
larly achieved by the active identification and mitigation
of fragilities to a wide range of stressors. A broader
framework for policy and research should also enable
trans-disciplinary collaboration, reducing public spend-
ing on multiple fronts by preventing of simultaneous
efforts as much as possible.

Identification of fragilities within public health systems

A vast number of pathogens can affect humans, and
some operational classification is necessary to identify
generalized fragilities. This is a non-trivial challenge [59].
However, a convenient start can be the International
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Identification of fragilities in the
system

—
Measurement of resilience to
different stress levels

—>

Identification of present and
hypothetical risks/threats

more actionable and effective interventions

_

—

Fig. 1 Suggested framework to analyze the fragility of public health systems given uncertainty about potential stressor with the goal of enabling

Actionable knowledge to guide
policy, build resilience and
ensure prevention

Statistical Classification of Diseases and Related Health
Problems [60], which groups disease causes hierarchically
based on shared anatomical and physiological features.
Knowledge of grouped threats can directly inform re-
search and policy: for example, a community that does
not generally adopt safe sexual practices is fragile to STDs.
We require neither knowledge that pathogens responsible
for STDs are circulating nor indeed data of the precise
disease burden in current circulation to make the case
that there is a potential (future) risk. Of course, the more
comprehensive the available information is, the better the
assessment of differential outcomes in response to variable
levels of exposure (see below). Efforts such as the Global
Burden of Disease [15] to compile and make available
massive and robust standardized data sets offer the oppor-
tunity to capitalize on significant efforts to gather detailed
information to establish health status and explore com-
mon risk groups.

An excellent example of a health fragility is illustrated
by the Mills-Reincke phenomenon [61]. In the 1900s,
improvements to municipal water supplies successfully
reduced the burden of mortality from typhoid disease —
the motivating target for the action. However, all-cause
mortality was also reduced (saving between 1.5 to 16
times the number of lives from combined ‘all cause’

compared to the number saved from typhoid alone), as
was substantial indirect morbidity with more recent esti-
mates that around 4 % of all deaths might be directly at-
tributable to water/sanitation [62]. At the time the routes
of infection and breadth of individual pathogens were un-
known, but the same logic is widely applied in WASH
(water, sanitation and hygiene) programs that attempt to
block routes of infection (Fig. 2) rather than attempt to
focus on individual pathogens — of which there are many
[63]. WASH programs not only tackle fragilities to mul-
tiple enteric infections, but they focus on proximate
stressors (e.g. water quality at the point of use, or house-
hold hygiene) rather than ultimate stressors that might,
for example damage the supply of clean water.

Identification of present and potential proximate stressors

The probability that pathogens can successfully establish
an infection and the pathological consequences thereof
are frequently so inter-dependent with environmental
conditions that we might choose to operationally waive
individual pathogens as “stressors”, and instead concen-
trate on those conditions that permit them to harm public
health (important exceptions to this assumption include
the introduction of highly transmissible and deadly patho-
gens; in such cases, it is more appropriate to consider

Sanitatione——_
‘L Bacteria
Fluids —_— e.g. Escherichia coli
Salmonella typhi
Floors S Campylobacter jejuni
Viruses
. i e.g. Rotavirus
Flies — | Infecton 5 Fece B
Parasites
Foods —— e.g. Giardia lamblia
Entamoeba histolytica
i —_ Cryptospridium parvum
Flngers Ascaris lumbricoides
T Hygiene« |
Fig. 2 The “F-diagram” clustering routes of transmission for diarrheal pathogens [72]. WASH (water, sanitation and hygiene) programs attempt to
tackle the common routes of infection rather than separately address individual pathogens
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pathogens themselves as stressors). The identification and
systematization of exposure conditions and potential
threats is fundamental to characterize fragilities within a
system. This task requires multidisciplinary calls for link-
ing as many as physical, physiological, social, epidemio-
logical and geopolitical processes as possible.

To simplify stressors into operational units, it is im-
portant to discriminate them as “proximate” or “ultim-
ate”, namely those with direct or indirect consequences
for public health, respectively. We suggest focusing on
the former, since their immediate effect on health makes
them more readily identifiable. For example, per capita
water shortages represent one such proximate stres-
sor. It may have different causes, such as the contam-
ination of reservoirs, increase in price, a weather
related event, local or global climatic changes or a
terrorist act, all of which are ultimate stressors (i.e.
these stressors are one step removed from public
health; their effect is felt via the proximate stressor —
water shortage). Since different events can lead to
water shortage, instead of trying to predict which
could trigger a current or future shortage event, it
would be more effective to examine whether and how
much proximate public health stressors (in this case,
water shortage) can impact populations, and prepare
for it accordingly.

In some cases the relationship between stressors and
health fragility is relatively simple and well described. Air
quality is, for example, one of the main environmental fac-
tors of concern for acute lower respiratory infections
(ALRI) [64]. Thus, information about air quality — the
proximate stressor — that is routinely collected for other
purposes, provides a reasonably accurate approximation
of where the population is likely to be susceptible to ALRI
without necessarily requiring detailed knowledge of ALRI
itself (surveillance of which may not be routine or might
only be for symptoms, by which time people are already
infected). In other cases, the association between risk
factors and health outcomes is more opaque. For in-
stance, an increase in winter temperatures may permit
bacterial growth over a longer period of the year, in-
creasing the risk of enteric disease. Simultaneously,
warmer winters may reduce survival of respiratory vi-
ruses or temperature-induced injury to host defenses
[23], thereby reducing the stress imposed on the re-
spiratory system.

Focusing on proximate stressors avoids the uncer-
tainty about which event (ultimate stressor) will im-
pact public health since we concentrate on immediate
chains of events. Careful identification of proximate
stressors can reduce the many different sources of
public health fragility into a lower number of factors
likely to be more readily evidenced than specific pub-
lic health challenges.
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Assessment of system resilience to different stress levels
Where stressors can be broken into more refined qualita-
tive (better yet, quantitative) levels, an analytical refine-
ment is to estimate the degree of resilience or fragility of
populations to varying levels of exposure. For example,
maps that identify ‘hotspots’ of stress based on the inter-
section of layers of information for different sources of so-
cietal fragility together with environmental stressors can
provide a powerful means for policy makers to interpret
either realized or plausible scenarios characterized by
gradual or unexpected disruption to services in response
to changes in one or more layers of stress (with due con-
sideration to demography of affected sectors of society). A
recent example is the mapping of hotspots of emergent
diseases to highlight surveillance needs based on the
overlap between areas of high human population dens-
ity, the presence of animal reservoirs and specific cli-
matic conditions [65].

An exciting and particularly useful exercise is the identi-
fication of mechanistic links between stressors (Fig. 1) that
can inform the classification (or gradation) of potential
stressors and identify ways that changes at one layer may
cascade across others (e.g., the economic consequences of
human disease on conflict and health [61, 66]). Cost-
benefit analysis of alternative strategies that use these
cross-linkages of multiple fragilities may suggest solutions
that would not be apparent if fragilities are examined in
isolation. An example is the introduction of remote con-
sultation by telephone or email for health care of low-risk
patients [67, 68]. Through an improved ability to use re-
mote communication for medical care, such a system not
only reduces fragility to infectious diseases transmitted in
public settings (e.g. influenza in hospital waiting rooms), it
would also enable populations to gain ‘anti-fragility’ [21]
to a wider range of stressors (e.g., it could reduce burden
in other contexts, such as the aftermaths of earthquakes,
civil unrest and other disruptions to infrastructure).

Conclusions

Predictive modeling of complex systems has inherent
weaknesses that stem from extrapolating current cir-
cumstances into the future, ignoring knowledge limita-
tions about key components of the system and their
interactions, their dynamics and driving factors and from
difficulties to test and falsify predictions as their trial is
set ahead in the future (exceptions include the fields of
meteorology, elections and sports, where models are
often based on a short enough time frame and regular
occurrence to allow validation).

We propose the identification of public health fragil-
ities — which may result from current stressors, pre-
dicted trends or a range of potential shocks — as an
important target for public health models. Policies
responding to future forecasts concentrating on these
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health system fragilities would be more robust to uncer-
tainty than case-by-case models. The rhetoric of “health in
all policies” in cross-organizational policy organization is
not always translated into action, since preventative or
promotion of health gets diluted amongst several specific
initiatives or becomes an independent silo [69]. Our pro-
posed approach resembles more the adoption of “all
policies in health” by the modeling and research com-
munity in an effort to move away from predictive
models of individual and specific health risks and to-
ward models that encompass health fragilities within
broader societal systems [7, 70].

By extending this framework across different categor-
ies of risk, strategies can be devised that account for dif-
ferent sources of exposure, mitigating more effectively
the cascading consequences of unforeseen extreme
events. Instead of predicting specific conditions or risks
in the future, the approach proposed here builds on re-
cent efforts concentrated on climate [71] to deal with a
range of plausible scenarios, testing the resilience of a
system in face of an unpredictable, though predictably
uncertain, future.
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