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Abstract

Background: The Total Exposure Study was a stratified, multi-center, cross-sectional study designed to estimate
levels of biomarkers of tobacco-specific and non-specific exposure and of potential harm in U.S. adult current
cigarette smokers (≥one manufactured cigarette per day over the last year) and tobacco product non-users (no
smoking or use of any nicotine containing products over the last 5 years). The study was designed and sponsored
by a tobacco company and implemented by contract research organizations in 2002–2003. Multiple analyses of
smoking behavior, demographics, and biomarkers were performed. Study data and banked biospecimens were
transferred from the sponsor to the Virginia Tobacco and Health Research Repository in 2010, and then to SRI
International in 2012, for independent analysis and dissemination.

Methods: We analyzed biomarker distributions overall, and by biospecimen availability, for comparison with
existing studies, and to evaluate generalizability to the entire sample. We calculated genome-wide statistical power
for a priori hypotheses. We performed clinical chemistries, nucleic acid extractions and genotyping, and report
correlation and quality control metrics.

Results: Vital signs, clinical chemistries, and laboratory measures of tobacco specific and non-specific toxicants are
available from 3585 current cigarette smokers, and 1077 non-users. Peripheral blood mononuclear cells, red blood
cells, plasma and 24-h urine biospecimens are available from 3073 participants (2355 smokers and 719 non-users).
In multivariate analysis, participants with banked biospecimens were significantly more likely to self-identify as
White, to be older, to have increased total nicotine equivalents per cigarette, decreased serum cotinine, and
increased forced vital capacity, compared to participants without. Effect sizes were small (Cohen’s d-values ≤ 0.11).
Power for a priori hypotheses was 57 % in non-Hispanic Black (N = 340), and 96 % in non-Hispanic White (N = 1840),
smokers. All DNA samples had genotype completion rates ≥97.5 %; 68 % of RNA samples yielded RIN scores ≥6.0.

Conclusions: Total Exposure Study clinical and laboratory assessments and biospecimens comprise a unique
resource for cigarette smoke health effects research. The Total Exposure Study Analysis Consortium seeks to
perform molecular studies in multiple domains and will share data and analytic results in public repositories and
the peer-reviewed literature. Data and banked biospecimens are available for independent or collaborative research.

Background
The Total Exposure Study (TES) was designed by a to-
bacco company sponsor in the 1990s with the primary
objectives of estimating exposure of current U.S. adult
cigarette smokers to cigarette smoke constituents and of
investigating relationships between FTC tar categories
and cigarette smoke exposure. Other objectives included

investigating associations of smoking behavior and bio-
markers of exposure (BOE), comparing BOE in adult
smokers and non-users, and investigating relationships
between BOE and biomarkers of potential harm (BOPH)
[1]. From 2002 to 2003, internationally-recognized con-
tract research organizations (CROs), under contract to
the tobacco company sponsor, collected questionnaire
data, clinical data, and biological samples from 3,585
smokers and 1077 non-users at 39 clinical sites in 31
U.S. states and performed clinical chemistry, laboratory
and statistical analyses [1–3]. TES participants were

* Correspondence: andrew.bergen@sri.com
1Center for Health Sciences, SRI International, 333 Ravenswood Avenue,
Menlo Park, CA 94025, USA
Full list of author information is available at the end of the article

© 2015 Bergen et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Bergen et al. BMC Public Health  (2015) 15:866 
DOI 10.1186/s12889-015-2212-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-015-2212-5&domain=pdf
mailto:andrew.bergen@sri.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


recruited using Institutional Review Board-approved ad-
vertisements [1, 2], with defined inclusion and exclusion
criteria (Additional file 1). The study was approved by
an Institutional Review Board at each clinical site and
conducted in accordance with Good Clinical and La-
boratory Practices and principles of the Declaration of
Helsinki. Using blood and urine biospecimens and mass
spectrometry-based and clinical chemistry-based ana-
lyses, the CROs determined levels of BOE and BOPH in
smokers and non-users. Additional blood and urine bio-
samples were collected from consenting subjects for
possible future analyses.
The Virginia Tobacco Health Research Repository

(VTHRR) was formed in 2010 as a Virginia non-profit,
non-stock corporation by authorization of the Virginia
BioTechnology Research Partnership Authority Board, a
political subdivision of the Commonwealth of Virginia.
The VTHRR received TES data and biospecimens as a
contribution from the tobacco company sponsor. The
mission of the VTHRR is to make the TES data and
banked biospecimens available to scientists, research in-
stitutions, regulatory agencies and industry for research
to increase the scientific knowledge base of the health
effects of cigarette smoking [4].
Under a 2012 Asset Transfer Agreement between the

VTHRR and SRI International (SRI), an independent,
non-profit research institute incorporated in 1946 in the
state of California, TES data and biospecimens were trans-
ferred to SRI in 2012. The agreement between SRI and
VTHHR provides SRI with complete independence to
pursue valid scientific objectives. The principal intended
result of any analysis of TES data or biospecimens is the
generation of knowledge related to smoking and health
that is shared in the scientific peer-reviewed literature and
in appropriate databases. SRI will independently maintain,
curate, and make both data and biospecimens available to
the research community for this purpose.
In order to optimize the validity and utility of the TES

data and banked biospecimens to support its full use by
the global public health research community, there is a
need for thoughtful, objective scientific analysis of the
resource. The purpose of this analysis was to review TES
data and biospecimens, investigate distributions of self-
reported, clinical and laboratory measures of exposure
and potential harm (biomarker), and pote`ntial differ-
ences in biomarker levels between those participants
with banked biospecimens and those without, calculate
statistical power for genomic analyses, and perform ana-
lyses of plasma and peripheral blood monocyte analytes.

Methods
We obtained ethical approval from the SRI International
Human Subjects Committee to conduct these analyses
of TES data and biospecimens.

Each study site selected to use either their individual
site-specific IRB or a central IRB contracted by the pri-
mary clinical and laboratory CRO responsible for the
conduct of the study. TES participants were recruited,
provided informed consent and were screened in a two-
visit, multicenter process as current cigarette smokers,
stratified by their regular cigarette’s Federal Trade Com-
mission (FTC) tar level (≤2.9, 3.0–6.9, 7.0–12.9, and ≥
13 mg), and as non-users [1, 2]. Inclusion and exclusion
criteria are described in Additional file 1. Participants
were paid up to 300 U.S. dollars for completion of all
study components. Recruitment sites were distributed in
31 States over four regions [Midwest (19.7 %), Northeast
(13.0 %), South (37.8 %) and West (29.5 %)] and among
urban (68.5 %) and non-urban (31.5 %) areas.
All participants provided vital signs (at both visits),

medical history and concomitant medication data (at
the first visit), and completed a questionnaire survey re-
garding smoking history and attitudes and preferences
regarding smoking (in current smokers), demographics,
lifestyle and environmental exposures (at the second
visit). Between the first and second visit, smokers col-
lected cigarette butts over a 24-h period and smoking
topography information using a portable instrument
which measured the number of puffs, the length of
puffs and the length of the inter-puff interval. Both
smokers and non-users collected their urine over 24-h.
At the second visit, lung function tests were performed
and blood was collected for processing, biomarker as-
says and, under a separate consent for future research,
for banking.
Four tubes of whole blood [two 10 ml potassium ethyl-

enediaminetetraacetic acid (KEDTA) and two 8.5 ml acid
citrate dextrose solution A (ACDA) tubes] were obtained
from each participant at the second visit after a mini-
mum 6 h fast and processed for plasma, red blood cells
and monocytes [1]. The TES biospecimen aliquots in
SRI’s possession include approximately: a) 6000 peripheral
blood mononuclear cell (PBMC) samples; b) 7000 red
blood cell samples; c) 5000 24-h urine samples; and d)
3000 plasma samples. TES biospecimens have been stored
at −80 °C by the VTHRR and SRI.
We examined TES publications, accessed the Univer-

sity of California San Francisco Legacy Tobacco Docu-
ments Library (UCSF LTDL) website [5] TES-related
documents to 1) compare with documents we had re-
ceived from the VTHRR and 2) to learn more about the
study design and analysis goals of the TES, and engaged
with colleagues regarding the potential value of the TES
for tobacco research. We reviewed data collection, sam-
ple preservation, and laboratory assay protocols followed
by the CROs that conducted the TES. We inspected TES
clinical and biospecimen data and labeled biospecimens
to confirm that the dataset was deidentified.
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We queried the TES clinical data to assess the distribu-
tion of participant data among the analysis strata (age, sex,
and BMI) among the four smoking categories defined by
the smoker’s usual cigarette FTC tar level, and among
non-users. We evaluated the distributions of analysis
strata among all participants, by banked biospecimen
availability, and by biospecimen type. We analyzed
additional behavioral, demographic, biomarker and to-
bacco product variable distributions among participants,
and compared distributions between participants with and
without banked biospecimens.
We constructed logistic regression models predicting

the availability of biospecimens in self-identified non-
Hispanic Black and White smokers using individuals
with complete data in three increasingly complex
models. Model 1 comprised BMI and demographic co-
variates, Model 2 added BOE to the covariates in model
1, and Model 3 added BOPH to Model 2. We imputed
missing data for each model and repeated analyses with
the larger sample sizes. To determine the extent to
which random variability was responsible for the ability
of the demographic variables and biomarkers to predict
biospecimen availability, we randomly permuted the
variable indicating the availability of biospecimens and
determined a 95 % confidence interval for the percent
reduction in the variance of this randomly permuted
variable attributable to the covariates.
Plasma biospecimens were randomly selected (women

and men, aged 35–49 years, with BMI < 25 kg/m2, both
current smokers and non-users) and sent to the SRI
Clinical Analysis Laboratory (CAL). Six clinical laboratory
assays were performed on 47 plasma samples to measure
levels of glucose, aspartate and alanine aminotransferases,
total bilirubin, albumin, and total cholesterol. We es-
timated the correlation between SRI CAL plasma and
original CRO serum analyte values.
PBMCs randomly selected from TES participants

(N = 30, ~1 % of participants with available biospecimens)
from defined strata [ages 35–49 and with BMI < 25 kg/m2]
resulted in a sample that was 37 % female, 70 and 20 %
self-identified White and Black, with 67 % current
smokers. Initially, we performed DNA extraction from
a limited number of pellets using Gentra Puregene re-
agents (Qiagen). To conserve biospecimen resources,
we reviewed several multiple analyte protocols, and
selected a protocol for simultaneous DNA and RNA
extraction (NORGEN 48700 kit with Proteinase K).
We modified lysis buffer amounts by available white
blood cell count data and extracted ~1X106 cells from
each lysed pellet. DNA was sent to the Rutgers University
Cell and DNA resource for genotyping with the Smoke-
screen® Array [6]. RNA quality (RNA integrity score, RIN)
was analyzed using the Agilent 2100 BioAnalyzer using
the Eukaryote Total RNA Nano assay.

Statistical analyses were performed using SAS version
9.2 (Cary, North Carolina) and STATA SE version 12.0
(Stata Corp, College Station, Texas). Except where speci-
fied, the alpha used for statistical significance was 0.05.
We evaluated power to detect genetic variants for serum
cotinine at genome-wide significance using Quanto [7].

Results
Review of the published TES literature
Scientists employed by the tobacco company sponsor
have published analyses in peer-reviewed scientific jour-
nals using data from the TES pilot study [8] and the TES
main study [2, 3, 9–16]. Analyses included population
estimates of BOE levels for smokers and non-users [2],
estimates of levels of BOPH in smokers and non-users
[3], the relationships between machine-derived tar yields
of cigarette products and BOE in smokers [9], models of
BOPH [11], the impact of menthol-containing cigarettes
on selected BOE in White and Black smokers [10], and
the relationships between selected BOE and BOPH in
smokers [14]. These scientists have also reported on the
relationships between BOE and nicotine dependence
[13] and between nicotine and carbon monoxide BOE
and other factors, including smoking topographical vari-
ables [12]. These authors utilized TES data to examine the
relationships between smoking mentholated cigarettes or
non-mentholated cigarettes and glucuronide metabolite ra-
tios [15], and with measures of nicotine dependence [16].
We review Roethig et al. [2] and Frost-Pineda et al. [3]
here to introduce TES BOE (Additional file 2: Table S1)
and BOPH (Additional file 3: Table S2).
Roethig et al. published estimates of BOE (Additional

file 2: Table S1) in smokers and non-users and, within
smokers, within different age, sex, BMI, and self-identified
racial strata [2]. Mean levels of BOE were weighted by age,
sex and BMI variance estimates from the U.S. Behavioral
Risk Factor Surveillance System (BRFSS), an annual
telephone-based behavioral survey established in 1984
[17], to produce weighted estimates of BOE reported and
described by Roethig et al. as population estimates [2].
The BRFSS used post-stratification weighting based on
United States Census data from the 1980s until 2011 [17].
Lee and Messiah criticized the application of weights
extracted from a nationally representative sample to a
sample for which inclusion rates at recruitment sites
were not known or not reported [18]. In response,
Sarkar and Liang noted that the weighted means were
similar to or unchanged from unadjusted means [19].
Weighted estimates of tobacco-specific biomarkers
[nicotine, cotinine and trans-3′-hydroxycotinine and
their glucoronides (nicotine equivalents, NE), serum
cotinine, and total 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanol and glucuronide (total NNAL)] suggested that
the younger participants (21–34 years) and female
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participants had the lowest tobacco-specific exposures,
and that individuals with BMIs < 25 kg/m2 compared
with individuals with BMIs ≥ 25 kg/m2 had higher
serum cotinine levels and lower total NNAL levels,
suggesting reduced cotinine clearance and NNK metabol-
ism in heavier individuals [2]. Significant differences in
serum cotinine by BMI similar to those reported in the
TES have been previously observed in the National Health
and Nutrition Examination Survey [20]. In the TES,
self-identified White smokers smoked significantly
more cigarettes per day and had greater NE and total
NNAL exposure over 24 h, but lower NE and total
NNAL exposure per cigarette, and lower serum cotin-
ine exposure, than self-identified Black smokers [2]. It
has previously been observed that White smokers
smoke more cigarettes per day than Black smokers
and that nicotine intake per cigarette measured by
serum cotinine is higher in Black smokers than in
White smokers [21, 22], which is related to signifi-
cantly reduced nicotine clearance in Blacks compared
to Whites [23, 24].
Frost-Pineda et al. [3] reported mean values for 29

BOPH (Additional file 3: Table S2) in both smokers and
non-users. The BOPH represented various physiological
functions: cardiovascular, endothelial, hematologic, in-
flammation, lipid, hepatic, renal, respiratory, metabolic,
and oxidative stress [3]. The effects of multiple BOE
[cigarettes per day (CPD), NE, and smoking duration]
on the BOPH in current smokers versus non-users were
evaluated in two stepwise regression models (model A
with CPD and smoking duration, and model B with NE
and smoking duration) with age, sex, BMI and self-
identified race as additional independent variables [3]. The
three most elevated mean BOPH in current smokers ver-
sus non-users were those reflecting oxidative stress, plate-
let activation and inflammation. The oxidative stress
biomarker 8-epi-prostaglandin F2α exhibited the largest
difference between smokers and non-users (+42 %), while
BMI and age, and BMI and NE, were the most important
correlates in models A and B, respectively. The platelet ac-
tivation biomarker 11-dehydrothromboxane B2 exhibited
the second largest difference between smokers and non-
users (+29 %), and sex and BMI, and sex and NE were the
most important correlates in models A and B, respectively.
The inflammation biomarker white blood cell count ex-
hibited the third largest difference between smokers and
non-users (+19 %) and BMI and self-identified race were
the most important correlates in both models. Overall,
BMI and sex were the first and second most common sig-
nificant correlates reported by Frost-Pineda et al. [3].
Our search of the UCSF LTDL identified multiple docu-

ments we had received from the VTHRR, including: the
Amended Final Research Protocol, dated 19 August 2002,
that describes the clinical protocol, laboratory testing and

biospecimen banking procedures to be conducted by the
primary clinical and laboratory CRO [1]; the TES Adult
Smoker Survey [25]; and the TES Adult Non-Smoker Sur-
vey [26]. We found no differences between the documents
we had received from VTHRR and those available on the
UCSF LTDL. We also identified summary documents that
provided information on the design and analysis goals of
the TES, including: a Statement of Work for data manage-
ment and analysis to be conducted by the primary data
analysis CRO dated 30 April 2004 [27]; a draft version of
the Statistical Analysis Plan dated 1 September 2004 [28];
and a PowerPoint presentation dated 7 February 2005 that
presented TES pilot results, and design and initial analyses
of the TES [29]. Review of these documents enriched our
understanding of the design and conduct of the study and
confirmed study parameters, e.g., numbers of individuals
recruited within design strata. With the assistance of a
UCSF Industry Documents Digital Librarian, we identified
SAS datasets available in the Philip Morris collection but
these refer to an unrelated study [30].

TES recruitment and analysis strata
The original enrollment goal of the TES [1] was 1000
smokers among four strata defined by FTC tar levels of the
smoker’s usual cigarette (≤2.9, 3–6.9, 7–12.9, and ≥ 13 mg),
and 1000 non-users [1]. The distribution of evaluable sub-
jects in the five categories (504, 953, 1066, and 1062
smokers, and 1077 non-users) was significantly different
from the design (Pearson χ24d.f. = 159.9, P < 0.0001). The
distribution of participants with clinical data by enrollment
strata and by demographic strata is shown in Table 1.

TES demographics and smoking status
The demographic composition of TES participants with
clinical data (N = 4662) was 57.9 % female, with mean
(standard deviation, SD) age 42.1 (13.2) years and mean
(SD) BMI 27.9 (6.7) kg/m2 (Table 2). Self-identified race
distributions were 77.1 % “Caucasian or White”, 16.5 %
“African American or Black”, and four other self-identified
race categories comprising 6.5 % of participants. Only a
small fraction of TES participants self-identified as
Hispanic ethnicity (3.8 % of total participants). Most
(76.9 %) TES participants were current smokers with
mean (SD) CPD of 16.0 (8.9). Age, self-identified race,
and education distributions differed significantly by
smoking status (current smokers were significantly
more likely to be older, self-identify as Black, and sig-
nificantly less likely to have a college degree), while
sex, BMI, and self-identified ethnicity (Hispanic versus
Not Hispanic) did not differ by smoking status.

TES banked biospecimen availability and smoking status
Two-thirds (66 %) of TES participants have banked bios-
pecimens. PBMCs are the most common biospecimen
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type while urine is the least common (Table 3). Among
participants with banked biospecimens, and among the
four biospecimen types, there are no significant differ-
ences in sex, age and BMI proportions, but there are sig-
nificant differences in smoking status (Table 4). Compared
to participants with banked PBMC biospecimens, partici-
pants with banked urine biospecimens are significantly
more likely to be smokers (OR = 1.26, 95 % CI 1.11–1.44,
P = 0.0004).

TES demographics
Participants with banked biospecimens are significantly
older (age, continuous or categorical), have significantly
increased BMI (continuous), and are more likely to self-
identify as White compared to those without (Table 2).
When stratified by ethnicity and race, self-identified
non-Hispanic Black participants with banked biospeci-
mens are significantly older and have significantly in-
creased BMI than those without biospecimens [mean (SD)
age 40.8 (10.7) vs 38.8 (11.1) years, t = 2.45, P = 0.0144,
N = 755; mean (SD) BMI 30.5 (8.0) vs 28.5 (6.9) kg/m2,
t = 3.58, P = 0.0004, N = 755, data not shown]. Signifi-
cant differences in age and BMI among all participants
and stratified by self-identified ethnicity and race are small
(Cohen’s d-values = 0.10, 0.09, 0.18 and 0.27, respectively).
Smoking duration, CPD (continuous and categorical), and
usual cigarette FTC tar level (categorical) are significantly
increased in those with banked biospecimens com-
pared to those without, overall, and when stratified
by self-identified race (Table 5). Significant differences
are small; d-values for smoking duration overall, and
among self-identified non-Hispanic Blacks and Whites
are 0.13, 0.22 and 0.08, respectively, and d-values for
CPD among self-identified non-Hispanic smokers, and
among self-identified non-Hispanic White smokers,
are 0.14 and 0.09, respectively.

TES BOE
Most tobacco-specific (NE, serum cotinine and total
NNAL) and non-specific BOE are significantly higher in

Table 1 TES participants with clinical data, by recruitment variables and by previously utilized analysis strata

Analysis Variable ≤2.9 mg 3.0–6.9 mg 7.0–12.9 mg ≥13 mg Smokersa Non-usersb

Sex Female 293 (58.1) 648 (68.0) 604 (56.7) 514 (48.4) 2059 (57.4) 639 (59.3)

N (%) Male 211 (41.9) 305 (32.0) 462 (43.3) 548 (51.6) 1526 (42.6) 438 (40.7)

Age, years 21–34 82 (16.3) 273 (28.6) 397 (37.2) 387 (36.4) 1139 (31.8) 358 (33.2)

N (%) 35–49 224 (44.4) 394 (41.3) 377 (35.4) 428 (40.3) 1423 (39.7) 358 (33.2)

≥50 198 (39.3) 286 (30.0) 292 (27.4) 247 (23.3) 1023 (28.5) 361 (33.5)

BMI (kg/m2) <25 177 (35.1) 392 (41.1) 425 (39.9) 411 (38.7) 1405 (39.2) 398 (37.0)

N (%) ≥25 327 (64.9) 561 (58.9) 641 (60.1) 651 (61.3) 2180 (60.8) 679 (63.0)

Total 504 (14.1) 953 (26.6) 1066 (29.7) 1062 (29.6) 3585 (76.9) 1077 (23.1)
aParticipants smoking ≥ one manufactured cigarette per day during the last year. bNon-users of tobacco or nicotine products for the last five years, and
throughout the study

Table 2 TES demographics and smoking status, overall and
among those with and without banked biospecimens

Characteristic All With Without χ2 or t, P

Sexa 2.33, .13

Female 2698 (57.9) 1754 (57.1) 944 (59.4)

Male 1964 (42.1) 1319 (42.9) 645 (40.6)

Age (Years)b 42.1 (13.2) 42.5 (13.0) 41.2 (13.5) 3.0, .002

21–34 1497 (32.1) 927 (30.2) 570 (35.9) 16.83, .0002

35–49 1781 (38.2) 1222 (39.8) 559 (35.2)

≥ 50 1384 (29.7) 924 (30.1) 460 (28.9)

BMI (kg/m2)c 27.9 (6.7) 28.1 (6.8) 27.5 (6.5) 2.6, .009

< 25 1803 (38.7) 1161 (37.8) 642 (40.4) 3.05, .08

≥ 25 2859 (29.7) 1912 (30.1) 947 (59.6)

Self-identified Racee 26.5, <.0001

White 3578 (77.1) 2420 (79.1) 1158 (73.2) 23.8, <.0001d

Black 765 (16.5) 447 (14.6) 318 (20.1)

Other 121 (2.6) 80 (2.6) 41 (2.6)

Multi-racial 73 (1.6) 48 (1.6) 25 (1.6)

Native American 67 (1.4) 44 (1.4) 23 (1.5)

Asian 24 (0.5) 12 (0.4) 12 (0.8)

Ethnicityf 0.07, .79

Hispanic 178 (3.8) 119 (3.9) 59 (3.7)

Not Hispanic 4458 (96.2) 2937 (96.1) 1521 (96.3)

Educationg 4.0, .26

< High School 356 (7.7) 230 (7.6) 126 (8.0)

HS/some College 3292 (71.3) 2199 (72.2) 1093 (69.5)

≥ Bachelors 969 (21.0) 615 (20.2) 354 (22.5)

Smoking status 0.35, .55

Non-smoker 1077 (23.1) 718 (23.4) 359 (22.6)

Smoker 3585 (76.9) 2355 (76.6) 1230 (77.4)
aχ2smoking status = 1.22, P = .27.btsmoking status = 3.2, P = .001. ctsmoking status = 1.33,
P = .18. dWhite and Black. eAll races, χ2smoking status = 5.81, P = .016.
fχ2smoking status = 2.04, P = .15. gχ2smoking status = 223, P = <.0001
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smokers with banked biospecimens than in smokers
without, except for serum cotinine, 4-ABP and MHBMA
(Table 6). Metabolites of acreolein and 1,3 butadiene are
significantly greater in non-users with banked biospeci-
mens than in non-users without. All statistically signifi-
cant differences in BOE by banked biospecimen
availability have small effect sizes, ranging from 0.10 to
0.24. When stratified by self-identified ethnicity and
race, more BOE differ significantly by biospecimen
availability among non-Hispanic Whites than among
non-Hispanic Blacks (Tables 7 and 8). The effect sizes
of the two BOE differences in self-identified non-
Hispanic Black smokers are small, and the effect size
of the one BOE difference in self-identified non-Hispanic
Black non-users is a medium effect size (d = 0.47). Among
self-identified non-Hispanic White smokers, NE, total
NNAL, carboxyhemoglobin and an acreolin metabolite,
and among self-identified non-Hispanic White non-users,

a 1,3 butadiene metabolite, exhibit significant differences.
All these significant differences are of small effect size.

TES BOPH
The distribution of BOPH by banked biospecimen avail-
ability is shown in Table 9. Six of 29 BOPH measures
have nominally significantly higher levels in TES partici-
pants with available banked biospecimens versus those
without, while the respiratory function measure FVC
and hemoglobin remain significantly different after false
discovery rate correction (q-values = 0.0128 and 0.0496,
respectively) [31]. After excluding individuals with im-
plausible FEV1 values < 35 % or > 125 % of predicted, as
suggested by Frost-Pineda et al. [3], and then stratifying
by self-identified ethnicity and race, and then by smok-
ing status, we observed that self-identified non-Hispanic
White smokers with banked biospecimens have signifi-
cantly increased FVC compared to those without [93.9
(23.2) vs 90.8 (17.9), t = 3.81, P = 0.0001, N = 2584]. The
statistically significant increase in % predicted FVC
among self-identified non-Hispanic White smokers with
available biospecimens is unexpected because multiple
BOE are significantly increased in self-identified non-
Hispanic White smokers with banked biospecimens and
lung function is expected to be reduced in individuals
with increased measures of exposure. Evidence for the
influence of current smoking on longitudinal decline in
FEV1 and FVC suggests that current smoking influences
longitudinal FEV1 decline more than FVC [32], though
this would not explain an increase in FVC. We con-
structed another regression model including education
and household income, but these potential confounders
[33] had no effect on the observed differences in FVC

Table 3 TES banked biospecimen aliquots, by biospecimen
type

Aliquots per participant PBMCa RBCb Plasmac Urined Total

1 Aliquot 40 94 2914 321

2 Aliquots 2923 905 2299

3 Aliquots 1771

Total N Aliquots 5886 7217 2914 4919 20936

Total N participants with
Aliquots

2963 2770 2914 2620 3073

aFrom one 8.5 mL ACDA yellow-top tube processed in two vials. bFrom one
10 mL K2EDTA tube processed into three vials. cFrom one 10 mL K2EDTA tube
of whole blood processed into two vials. dAliquots of 100 mL from a 24 h
urine sample

Table 4 TES banked biospecimen availability, by biospecimen type, and by strata previously used for analysis

Any PBMC RBC Plasma Urine

3073 2963 2770 2914 2620

Smoking status

Smoker 2355 (76.6) 2272 (76.7) 2120 (76.5) 2223 (76.3) 2112 (80.6)

Non-user 718 (23.4) 691 (23.3) 650 (23.5) 691 (23.7) 508 (19.4)

Sex

Female 1714 (55.8) 1686 (56.9) 1582 (57.1) 1648 (56.6) 1495 (57.1)

Male 1359 (44.2) 1279 (43.1) 1188 (42.9) 1266 (43.4) 1125 (42.9)

Age (years)

21–34 927 (30.2) 880 (29.7) 822 (29.7) 876 (30.1) 783 (29.9)

35–49 1222 (39.8) 1184 (40.0) 1109 (40.0) 1171 (40.2) 1057 (40.3)

≥ 50 924 (30.1) 899 (30.3) 839 (30.3) 867 (29.8) 780 (29.8)

BMI, kg/m2

< 25 1161 (37.8) 1117 (37.7) 1046 (37.8) 1092 (37.5) 1000 (38.2)

≥ 25 1912 (62.2) 1846 (62.3) 1724 (62.2) 1822 (62.5) 1620 (61.8)

Pearson χ2, by biospecimen type: Smoking Status, χ2 = 19.59 (P = .00021); Sex, χ2 = 0.22 (P = .97); Age, χ2 = 0.44 (P = .99); BMI, χ2 = 0.29 (P = .96)
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within non-Hispanic White smokers (data not shown).
Further analyses of lung function measures and other
variables in the TES may identify possible explanatory
factors or confounders. After stratifying by self-identified
race and ethnicity, and then by smoking status, we
observed that self-identified non-Hispanic White non-
users exhibit a significant difference in hemoglobin by
banked biospecimen availability [14.50 (1.42) vs 14.31
(1.25), t = 1.84, P = 0.033, N = 828]. Statistically significant

differences in FVC and hemoglobin in these strata are
small (d-values are 0.15 and 0.14, respectively).

TES participant usual cigarette brand
Information on participant’s usual cigarette brand is avail-
able from 606 and 1336 self-identified non-Hispanic Black
and non-Hispanic White smokers, respectively. The top
20 brands account for 66.0 and 49.4 % of the brand infor-
mation available from self-identified non-Hispanic Black
and non-Hispanic White smokers, respectively (Table 10).
Usual cigarette brand distributions do not differ signifi-
cantly among self-identified non-Hispanic Black or among
non-Hispanic White smokers by the presence or absence
of banked biospecimens (Table 10).

Modeling banked biospecimen availability by
demographics, BOE and BOPH
Sample sizes among self-identified non-Hispanic Black
and White smokers with complete data and with im-
puted data for the progressively more complex models
were 3236 and 3318 (2.5 % of participants had missing
data in Model 1), 2317 and 3318 (30.2 % of participants
had missing data in Model 2), and 1090 and 3053
(64.3 % had missing data in Model 3), respectively. How-
ever, while a large fraction of the population was missing
one or more variable values, on average they were only
missing a single value out of a large number of inde-
pendent variables. The number of missing values that
were imputed was relatively small; 0.3 % of all values re-
quired imputation in Model 1, 1.9 % in Model 2, and
2.5 % in Model 3. Significant demographic variables,
BOE and BOPH in progressively more complex multi-
variate models of banked biospecimen availability with
imputed data were: Model 1) BMI, self-identified race,
age and age squared; Model 2) self-identified race, age,
age squared, and NE/24 h; and Model 3) self-identified
race, age, age squared, NE/24 h, serum cotinine,
MHBMA and FVC (Table 11). The mean (SD) predicted
probabilities of banked biospecimen availability, in pro-
gressively more complex multivariate models without
and with imputed data are: Model 1) 0.647 (0.069) and
0.665 (0.060); Model 2) 0.643 (0.077) and 0.668 (0.070);
and Model 3) 0.625 (0.102) and 0.669 (0.095). Explana-
tory power estimates (r2) of the anthropometric, demo-
graphic, BOE and BOPH variables in progressively more
complex multivariate models with imputed data among
self-identified non-Hispanic Black and White smokers to
predict banked biospecimen availability are 0.018, 0.024,
and 0.037, respectively. In permutation analyses of self-
identified non-Hispanic Black and White smokers with
imputed data in Model 3, the mean (95 % confidence
interval) r2 was 0.020 (0.016 - 0.023) suggesting that
about half of the explanatory power of variables is due
to random variability (0.020/0.037 = 0.54).

Table 5 TES self-reported BOE, non-Hispanic current smokers by
self-identified race, and by banked biospecimens

Characteristic All With Without χ2 or t, P

Years smoked [N (%)]a 22.0 (12.9) 22.6 (12.8) 20.9 (13.0) 3.62, .0003

Black 18.6 (11.8) 19.7 (11.8) 17.1 (11.5) 2.69, .0074

White 22.8 (13.0) 23.1 (13.0) 22.0 (13.2) 2.05, .0404

CPD [N (%)]b 16.3 (8.9) 16.7 (8.9) 15.5 (8.9) 3.60, .0003

Black 11.3 (6.3) 11.4 (6.4) 11.1 (6.1) 0.61, .5393

White 17.4 (9.1) 17.6 (9.0) 16.8 (9.2) 2.13, .0329

CPDc 1–10 952(28.8) 579 (26.6) 373 (33.1) 17.7, .0005

11–20 1487 (45.0) 996 (45.8) 491 (43.6)

21–30 643 (19.5) 453 (20.8) 190 (16.9)

≥ 31 221 (6.7) 148 (6.8) 73 (6.5)

Black 1–10 327 (54.0) 179 (52.7) 148 (55.6) 0.705, .8720

11–20 227 (37.5) 130 (38.2) 97 (36.5)

21–30 43 (7.1) 26 (7.7) 17 (6.4)

≥ 31 9 (1.5) 5 (1.5) 4 (1.5)

White 1–10 625 (23.2) 400 (21.8) 225 (26.1) 7.701, .0526

11–20 1260 (46.7) 866 (47.2) 394 (45.8)

21–30 600 (22.3) 427 (23.3) 173 (20.1)

≥ 31 212 (7.9) 143 (7.8) 69 (8.0)

FTC tar, mgd 9.16 (5.4) 9.18 (5.3) 9.13 (5.6) 0.23, .8187

Black 10.9 (6.9) 10.7 (6.9) 11.2 (6.9) –0.74, .4622

White 8.8 (5.0) 8.9 (4.9) 8.5 (5.0) 1.86, .0624

≤ 2.9 472 (14.3) 314 (14.4) 158 (14.0) 13.28, .0041

3–6.9 887 (26.8) 551 (25.3) 336 (29.8)

7–12.9 985 (29.8) 689 (31.6) 296 (26.2)

≥ 13 965 (29.2) 627 (28.8) 338 (30.0)

Black ≤ 2.9 135 (22.3) 81 (23.8) 54 (20.3) 1.35, .7183

3–6.9 76 (12.5) 40 (11.8) 36 (13.5)

7–12.9 74 (12.2) 40 (11.8) 34 (12.8)

≥ 13 321 (53.0) 179 (52.7) 142 (53.4)

White ≤ 2.9 337 (12.5) 233 (12.7) 104 (12.1) 14.62, .0022

3–6.9 811 (30.0) 511 (27.8) 300 (34.8)

7–12.9 911 (33.7) 649 (35.3) 262 (30.4)

≥ 13 644 (23.8) 448 (24.3) 196 (22.7)
aN = 3274. bCigarette butts returned, 24 h, N = 3303. cFTND coding (1–10 = 0,
11–20 = 1, 21–30 = 2, >30 = 3). d N = 3309
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Table 6 TES laboratory-based BOEa among smokers and non-users, and among those with and without banked biospecimens

All With Without t P

Among smokers

NE per cigb 0.89 (0.7) 0.91 (0.7) 0.86 (0.7) 2.33 .020

NE mg/24 hrc 12.78 (7.9) 13.3 (7.9) 11.76 (7.8) 5.48 <.0001

Serum cotinine ng/mld 188.9 (103.4) 190.0 (103.1) 186.7 (147.7) 0.9 .37

Total NNAL ng/cige 29.4 (23.7) 30.3 (23.9) 27.8 (23.1) 3.03 .0025

Total NNAL ng/24 hrf 425.2 (303.9) 445.5 (308.2) 385.7 (291.5) 5.67 <.0001

COHb % saturationg 5.26 (2.3) 5.35 (2.3) 5.09 (2.3) 3.25 .0012

1-OHP ng/24 hrh 259.8 (345) 268.3 (343) 243.3 (349) 2.32 .02

3-HPMA ug/24 hri 1941.9 (1326) 2017.6 (1302) 1796.6 (1361) 4.73 <.0001

4-ABP pg/g Hbj 43.5 (53.6) 44.2 (56.8) 42.3 (47.1) 0.96 .34

MHBMA ug/24 hrk 3.52 (3.3) 3.60 (3.3) 3.38 (3.4) 1.87 .062

DHBMA ug/24 hrl 530.1 (276.3) 541.1 (255.7) 508.9 (311.2) 3.11 .0019

Among non-smokers

COHb % saturationm 1.46 (0.5) 1.46 (0.6) 1.45 (0.5) 0.08 .94

3-HPMA ug/24 hrn 461.7 (532) 484.3 (571) 416.3 (441.0) 2.14 .033

4-ABP pg/g Hbo 14.5 (70.8) 13.2 (71.5) 17.0 (69.6) −0.68 .5

MHBMA ug/24 hrp 0.49 (1.0) 0.48 (0.8) 0.50 (1.3) −0.16 .88

DHBMA ug/24 hrq 385.6 (172.5) 398.8 (182.3) 359.1 (147.7) 3.82 <.0001
aDefinitions (and parent compounds) of BOE from Additional file 2: Table S1: NE Nicotine Equivalents (Nicotine); Total NNAL Total 4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanol, and its glucuronide (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone); COHb carboxyhemoglobin (carbon monoxide); 1-OHP Total 1-hydroxypyrene (polycyclic
aromatic hydrocarbons); 3-HPMA 3-hydroxy-propylmercapturic acid (acreolein); 4-ABP 4-aminobiphenyl hemoglobin (Hb) adducts (4-aminobiphenyl); MHBMA
monohydroxyl-butenylmercapturic acid (1,3 butadiene); DHBMA = dihydroxy-butyl-mercapturic acid (1,3 butadiene)
bN = 3529, d = 0.10. cN = 3535, d = 0.18. dN = 3469. eN = 3529, d = 0.11. fN = 3535, d = 0.20. gN = 3558, d = 0.11. hN = 3554, d = 0.07. iN = 3556, d = 0.17. jN = 2801.
kN = 3415. lN = 3558, d = 0.11. mN = 1069. nN = 1058, d = 0.13. oN = 723. pN = 629. qN = 1074, d = 0.24

Table 7 TES Non-Hispanic Black laboratory-based BOE by smoking status, and by banked biospecimen availability

All With Without t P

Among smokers

NE per ciga 1.04 (0.8) 1.05 (0.8) 1.02 (0.9) 0.49 .6254

NE mg/24 hra 10.3 (6.7) 10.6 (6.6) 9.82 (6.7) 1.46 .1449

Serum cotinine ng/mlb 205.3 (113) 206.8 (114.5) 203.2 (111.2) 0.37 .7081

Total NNAL ng/cigc 33.4 (27.5) 34.8 (28.0) 31.5 (26.8) 1.47 .1414

Total NNAL ng/24 hr3 331.8 (233.9) 349.7 (236.9) 308.6 (228.3) 2.13 .0336

COHb % saturationd 4.74 (2.1) 4.75 (2.1) 4.74 (2.1) 0.08 .9355

1-OHP ng/24 hre 326.4 (421) 333.8 (379.8) 316.9 (469) 0.47 .6352

3-HPMA ug/24 hrf 1605 (1083) 1670 (1005) 1521 (1172) 1.64 .1012

4-ABP pg/g Hbg 39.6 (28.2) 40.1 (29.8) 39.0 (26.6) 0.41 .6831

MHBMA ug/24 hrh 2.65 (2.8) 2.9 (3.2) 2.3 (2.1) 2.75 .0062

DHBMA ug/24 hri 495.5 (270.2) 511.7 (276.9) 474.4 (260.4) 1.67 .0946

Among non-smokers

COHb % saturationj 1.5 (0.7) 1.49 (0.7) 1.52 (0.6) −0.24 .8116

3-HPMA ug/24 hrk 433.5 (379.8) 458.8 (430.1) 380.3 (237.3) 1.43 .1546

4-ABP pg/g Hbl 12.9 (16.6) 14.7 (19.7) 9.24 (5.7) 1.96 .054

MHBMA ug/24 hrm 0.57 (0.9) 0.64 (1.1) 0.42 (0.6) 1.41 .1619

DHBMA ug/24 hrn 401.3 (177) 426.3 (188.3) 349.2 (138.8) 2.83 .0054
aN = 574. bN = 576. cN = 593. dN = 603. eN = 603. fN = 601. gN = 478. hN = 569. iN = 598. jN = 148. kN = 149. lN = 87. mN = 103. nN = 151
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Correlations of clinical chemistry results in 47 plasma
samples from the SRI CAL (2013) and those from serum
reported by the CRO (2002–2003) were high and statis-
tically significant [glucose (0.922), aspartate aminotrans-
ferase (0.993), alanine aminotransferase (0.997), total
bilirubin (0.960), albumin (0.702), and total cholesterol
(0.913), all p-values < 0.001] (Table 12 and Fig. 1). The
lower correlation for blood albumin may be due to the
two different matrices, the increased variance of some
albumin clinical chemistry analysis methods [34], or the
use of different methods in the clinical analyzers in the
two different clinical chemistry laboratories.
Mean (SD) DNA and RNA from ~1 M cells was 4.63

(1.63) ug, and 2.10 (0.62) ug, respectively. We sent four
DNA samples from Gentra Puregene extraction and 27
DNA samples from NORGEN extraction for Smoke-
screen Array genotyping at the Rutgers University Infin-
ite Biologics facility. All DNA samples had genotype
completion rates ≥ 97.5 % and passed the 97 % rate
threshold; the mean genotype completion rate was
99.4 %. Mean (SD) RNA Integrity (RIN) scores from 28
RNA samples analyzed were 6.4 (2.2); 68 % of RIN
scores were ≥ 6.0, a standard used in RNA sequence ana-
lysis [35]. There were no significant differences in sex,
race, smoking status, or total nicotine equivalents
between RNA samples with RIN ≥ 6.0 and < 6.0 (all
p-values > 0.12). Thus, from PBMC pellets frozen at
ultralow temperatures for over a decade, DNA quality and

genotyping results were excellent, while RNA quality was
good, but requires evaluation using transcriptome-wide
methods.
Finally, we assessed statistical power to detect a priori

genetic loci of interest from an example of a large-scale
(1000 s) candidate gene association scan, and an example
from a locus nominated by genome-wide association scans
(GWAS), with genome-wide significance (GWS) as the
statistical threshold. For self-identified non-Hispanic Black
current smokers, we selected rs11187065 as an example,
identified in the insulin-degrading enzyme gene as the
gene-centric SNP most significantly associated with serum
cotinine in the Coronary Artery Risk Development in
Young Adults (CARDIA) study by Hamidovic et al. [36].
The influence of rs11187065 on serum cotinine was sub-
stantial with a β of −85.1 ng/ml, with mean (SE) of 236.5
(8.1) ng/ml from 365 African American smokers [36].
Mean (SD) CPD in the CARDIA sample was 10.5 (7.4),
similar to that of the TES (Table 4). Using the sample size
of self-identified non-Hispanic Black smokers with banked
PBMCs in the TES (N = 340), there is 57 % power to de-
tect the locus at genome-wide significance (and 83 %
power to detect this locus at the original study’s Bonfer-
roni adjustment level of 2.3 × 10−6) using an additive
model, a one-sided test, the mean (SD) of serum cotinine
among self-identified non-Hispanic Black smokers
(Table 6), the rs11187065 minor allele frequency of 0.083
in the HapMap [37] African Americans in the Southwest

Table 8 TES non-Hispanic White laboratory-based BOE, by smoking status, and by banked biospecimen availability

All With Without t P

Among smokers

NE per ciga 0.86 (0.6) 0.88 (0.6) 0.82 (0.6) 2.4 .0166

NE mg/24 hrb 13.5 (8.1) 14.0 (8.1) 12.6 (8.1) 4.01 <.0001

Serum cotinine ng/mlc 187.1 (101.2) 188.1 (100.6) 184.9 (102.6) 0.75 .4545

Total NNAL ng/cigd 28.4 (22.4) 29.2 (22.4) 26.7 (22.1) 2.7 .0069

Total NNAL ng/24 hre 450.9 (314.2) 467.1 (315.6) 416.2 (308.5) 3.91 <.0001

COHb % saturationf 5.43 (2.3) 5.49 (2.3) 5.29 (2.4) 2.12 .0343

1-OHP ng/24 hrg 300.4 (362.3) 307.1 (361.0) 286.3 (364.7) 1.38 .1669

3-HPMA ug/24 hrh 2048 (1368) 2100 (1337) 1936 (1427) 2.89 .0039

4-ABP pg/g Hbi 45.2 (59.6) 45.7 (62.3) 44.1 (53.6) 0.6 .5475

MHBMA ug/24 hrj 3.78 (3.4) 3.76 (3.2) 3.82 (3.7) −0.39 .6985

DHBMA ug/24 hrk 541.6 (281.2) 548.3 (252.9) 527.4 (333.4) 1.63 .1029

Among non-smokers

COHb % saturationl 1.44 (0.5) 1.44 (0.5) 1.44 (0.4) 0.07 .9449

3-HPMA ug/24 hrm 463 (557.3) 480.2 (595) 429.3 (474.6) 1.35 .1791

4-ABP pg/g Hbn 15.1 (78.1) 13.1 (79.3) 18.7 (76.0) −0.83 .4085

MHBMA ug/24 hro 0.47 (1.0) 0.44 (0.7) 0.53 (1.5) −0.71 .4782

DHBMA ug/24 hrp 386.1 (170.6) 397.1 (180.1) 364.7 (148.5) 2.8 .0053
aN = 2680. bN = 2686. cN = 2635. dN = 2667. eN = 2673. fN = 2680. gN = 2683. hN = 2681. iN = 2119. jN = 2590. kN = 2684. lN = 846. mN = 837. nN = 589. oN = 484. pN = 848
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sample, and the effect size from Hamidovic et al. For
assessing power to detect a priori loci of interest
among self-identified non-Hispanic White current
smokers, we selected rs1051730 in the nicotinic acetyl-
choline receptor (nAChR) subunit gene cluster on
chromosome 15q25.1, associated with smoking inten-
sity and related phenotypes [38], including cotinine
level [39], as an example. In an analysis of 2932
smokers with serum or plasma cotinine estimates,
Munafo et al. estimated that each minor allele contrib-
uted to a mean increase in the unadjusted level of
cotinine in European ancestry samples of 138.72 nmol/
L [(95 % CI) 97.91 - 179.53 nmol/L, P = 2.7 × 10-11]

[39], or 24.42 ng/mL, although this was reduced 18 %
upon adjustment for self-reported CPD. Using the sam-
ple size of self-identified non-Hispanic White smokers
with banked PBMCs in the TES (N = 1840), there is
70–96 % power to detect this locus at a genome wide
significance level (5 × 10−8) using an additive model,
a one-sided test, the mean (SD) of serum cotinine
among self-identified non-Hispanic White smokers
(Table 7), the rs1051730 minor allele frequency of
0.385 in HapMap Utah Residents with Northern and
Western European Ancestry sample, and estimated
allele effect sizes of Munafo et al. (adjusted and
unadjusted for CPD).

Table 9 TES participant BOPH, by banked biospecimen availability

Analyte With Without N t P

8-epi-prostaglandin-F2α
a 1745 (1000) 1657 (1056) 4557 2.74 .006

Total bilirubinb 0.48 (0.3) 0.49 (0.3) 4420 −0.92 .36

Hematocrit (%) 43.2 (4.1) 42.9 (4.1) 4560 2.61 .01

Hemoglobinc 14.7 (1.52) 14.6 (1.50) 4572 2.74 .003

Platelets (103/uL) 275.2 (70.2) 277.9 (71.0) 4527 −1.25 .21

WBC (103/uL) 7.68 (2.3) 7.61 (2.2) 4572 0.99 .32

Microalbumin (mg/24 h) 43.7 (338.3) 31.6 (188.4) 3235 1.31 .19

11-dehydrothromboxane-B2
1 1343.0 (931) 1277.2 (1027) 4286 2.05 .04

hs-CRP (mg/L) 4.45 (7.0) 4.25 (6.4) 4433 0.92 .36

Fibrinogenb 323.8 (75.8) 320.1 (77.7) 4498 1.56 .12

von Willebrand Factor (%) 102.8 (46.1) 100.9 (48.6) 4601 1.26 .21

Serum creatinineb 0.82 (0.2) 0.81 (0.2) 4640 0.32 .75

Blood urea nitrogenb 13.5 (4.4) 13.1 (4.5) 4640 2.39 .02

Total cholesterolb 196.8 (40.9) 194.6 (42.3) 4639 1.68 .09

HDLb 52.2 (16.3) 52.6 (16.2) 4590 −0.95 .34

LDLb 115.3 (35.0) 113.5 (37.4) 4428 1.60 .11

Triglyceridesb 153.9 (125) 148.9 (125) 4639 1.29 .19

Alkaline phosphatased 74.9 (25.3) 74.9 (26.1) 4637 −0.02 .99

Alanine aminotransferased 26.1 (24.7) 26.5 (24.1) 4617 −0.45 .65

Aspartate aminotransferased 24.8 (19.0) 25.4 (21.1) 4561 −0.96 .34

Lactate dehydrogenased 154.8 (32.8) 153.1 (32.2) 4482 1.63 .10

FEV1 (% of predicted) 85.1 (21.7) 84.7 (20.9) 4539 0.48 .63

FVC (% of predicted) 94.4 (25.1) 91.8 (22.0) 4541 3.52 .0004

Serum albuminc 4.31 (0.4) 4.30 (0.3) 4629 0.27 .79

Serum glucoseb 96.8 (30.7) 97.1 (29.8) 4626 −0.29 .77

Uric acidb 5.28 (1.5) 5.26 (1.4) 4640 0.40 .69

Diastolic BP (mmHg), Visit 1 77.0 (10.7) 76.5 (10.3) 4659 1.26 .21

Diastolic BP (mmHg), Visit 2 76.5 (10.3) 76.5 (10.2) 4660 −0.05 .96

Systolic BP (mmHg), Visit 1 123.5 (16.6) 122.6 (16.0) 4659 1.78 .07

Systolic BP (mmHg), Visit 2 121.5 (15.9) 120.8 (15.5) 4660 1.32 .19

Heart rate (bpm), Visit 1 72.7 (10.2) 72.8 (10.2) 4656 −0.12 .90

Heart rate (bpm), Visit 2 73.4 (10.3) 72.9 (10.4) 4659 1.44 .15
ang/24 hrs. bmg/dL. cg/dL. dU/L
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Table 10 TES participant usual cigarette brand, by self-identified race/ethnicity and by banked biospecimen availability

Usual cigarette brand identification All With [N, %] Without [N, %]

Self-identified non-Hispanic Black smokersa

Newport KFMHP 263101 101 51 50.5 50 49.5

Newport 100’s 100FMHP 64 35 54.7 29 43.5

Carlton menthol KFMSP 26 17 65.4 9 34.6

Newport KFMSP 278012 23 12 52.2 11 47.8

Carlton 100’s 100FHP 20 10 50.0 10 50.0

Carlton 100’s 100FSP 18 9 50.0 9 50.0

Newport 100’s 100FMSP 17 7 41.2 10 58.8

Carlton 100’s menthol 100FMSP 16 12 75.0 4 25.0

Carlton 100’s menthol 100 FMSP 15 9 60.0 6 40.0

Carlton KFSP 12 8 66.7 4 33.3

Benson & Hedges 100’s menthol 100FMSP 11 9 81.8 2 18.2

Kool filter kings KFMHP 11 7 63.6 4 36.4

Merit ultra lights KFHP 11 4 36.4 7 63.6

Kool filter king KFMSP 9 6 66.7 3 33.3

Kool super longs 100’s 100 FMHP 9 4 44.4 5 55.6

Kool super longs 100’s 100FMSP 9 5 55.6 4 44.4

Merit ultima 100’s 100FHP 8 5 62.5 3 37.5

Now 100 s menthol 100 FMSP 8 5 62.5 3 37.5

Carlton KFHP 6 4 66.7 2 33.3

Doral full flavor 100’s menthol 100FMSP 6 3 50.0 3 50.0

Total 400 222 55.5 178 44.5

Self-identified non-Hispanic White smokersb

Marlboro lights KFHP 227 160 70.5 67 29.5

Marlboro ultra lights KFHP 186 124 66.7 62 33.3

Marlboro KFHP 147 103 70.1 44 29.9

Marlboro ultra lights 100’s 100FHP 106 70 66.0 36 34.0

Marlboro lights 100’s 100FHP 90 68 75.6 22 24.4

Camel Turkish lights KFHP 81 55 67.9 26 32.1

Carlton 100’s 100FHP 67 46 68.7 21 31.3

Marlboro 100’s 100FHP 61 42 68.9 19 31.1

Carlton 100’s 100FSP 47 28 59.6 19 40.3

Camel filters KFHP 41 26 63.4 15 36.6

Carlton KFSP 35 26 74.3 9 25.7

Newport KFMHP 263101 33 25 75.8 8 24.2

Now 100 s 100FSP 31 24 77.4 7 22.6

Doral ultra lights 100’s 100FHP 30 19 63.3 11 36.7

Virginia slims ultra lights menthol 100FMHP 29 19 65.5 10 34.5

Benson & Hedges deluxe ultra lights 100’s 100FHP 26 12 46.2 14 53.9

Now 100 s menthol 100FMSP 26 21 80.8 5 19.2

Carlton 100’s menthol 100FMSP 25 20 80.0 5 20.0
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Discussion
TES research opportunities
TES data and banked biospecimens, together with
current biotechnologies, offer opportunities for the
tobacco research community to identify behavioral, clin-
ical, environmental and molecular factors that may influ-
ence cigarette smoke exposures (susceptibility model)
and identify molecular factors that may be modulated by
cigarette smoke exposures (response model). In particu-
lar, the TES can provide existing BOE and BOPH data
from a large sample of generally healthy individuals, as
well as banked biospecimens for the generation of novel
BOE and BOPH. We will conduct biomarker research in
the context of an Analysis Consortium that will enhance
the TES by adding novel biomarkers and biomarker ana-
lyses to elucidate relationships between cigarette smoke
exposures and health effects. We will share data with
other collaborations engaged in the analyses and meta-
analyses of susceptibility and response models. We will
deposit data with the repositories designed for genome-
wide data per Federal guidance or journal practice and
conditional on Human Subjects Committee approval.
Specifically, GWAS using TES PBMC DNA may con-

tribute to the elucidation of relationships between germ-
line variation and self-report and laboratory measures of
exposures [38, 39], including genetic loci influencing the
non-nicotine tobacco-specific BOE NNAL. Analyses of
TES PBMC mitochondrial DNA (mtDNA) via copy
number and deletion analysis [40] may enhance know-
ledge of the factors that influence mtDNA damage [41,
42]. Analysis of PBMC DNA and RNA will provide add-
itional data to examine the effects of cigarette smoking
on the PBMC epigenome [43, 44] and transcriptome
[45]. Analyses of the plasma and urine proteome [46, 47]
and metabolome [48–50], may make a contribution to
the developing literature of the impact of tobacco and
other exposures defining the exposome, an integrated ap-
proach to biomarker discovery for exposure and disease
paradigms [51]. Validation, integration and extension of
these susceptibility and response models can be con-
ducted in independent datasets and in meta-analyses,
and may contribute to the development of biomarker
panels for diagnostic, prognostic and therapeutic re-
search in tobacco-attributable disease.
There are a number of differences in the landscape of

smoking behaviors, tobacco/nicotine products and tobacco
control between the time in which the TES was conducted

and the present day [52]. These differences include: 1) the
prevalence of cigarette use in U.S. adults has declined from
~21 to ~18 %; 2) the regular use of electronic cigarettes
has increased in prevalence from 0 to almost 3 %; 3) the
annual spending on advertising of tobacco products in the
U.S. has declined from an all-time high of $15.4 billion in
2003 to $9.6 billion in 2012; 4) there has been a substantial
increase in restrictions on smoking in public places due to
increased recognition of harm associated with exposure to
second and third-hand smoke; and 5) the passage in 2009
of the Family Smoking Prevention and Tobacco Control
Act which prohibited the use of terms in advertising re-
lated to “light” cigarettes and created a regulatory frame-
work by which the FDA can evaluate new tobacco
products prior to their marketing to the public. Even with
these temporal differences, there are several similarities
concerning the cigarettes themselves that are of most rele-
vance to the present investigation of cigarette smoking and
its impact on BOE and BOPH. These include: 1) despite
various changes in cigarette design over the past 12 years,
there is no evidence that any of these have resulted in a
“safer” cigarette; 2) the amount of tar and nicotine in ciga-
rettes has remained relatively stable since 1993; 3) the most
popular brands of cigarettes smoked (see Table 10) remain
the same (Marlboro, Camel, and Newport); 4) the effects
of exposure to combustible tobacco products both with
respect to BOE and BOPH remain the same; and 5) the
health consequences of exposure to cigarette smoke
(either mainstream or sidestream) including cancer,
cardiovascular disease, and respiratory disease remain
the same. Since the primary focus of the present inves-
tigation is on BOE and BOPH that reside within path-
ways resulting in negative health outcomes, the TES
remains as relevant today as in 2003.
TES biospecimens provide a sample of current smokers

powered at GWS to identify the chr15q25.1 nAChR loci
associated with BOE (cotinine levels [39, 53, 54], and
NNAL [55]). These biospecimens may provide data for
future meta-analyses of BOE in both European ances-
try and African ancestry samples. TES participants
who are current smokers, have smoking topography
data, BOE and banked biospecimens are suitable subjects
for pharmacogenetic or pharmacometabolic research, e.g.,
to identify drug metabolizing enzyme and transporter
gene associations with existing tobacco-specific BOE, or
with as yet undetermined metabolic profiles in 24-h urine.
TES biospecimens and data can be used to identify or

Table 10 TES participant usual cigarette brand, by self-identified race/ethnicity and by banked biospecimen availability (Continued)

Marlboro KFSP 24 17 70.8 7 29.2

Virginia slims ultra lights 100FHP 24 18 75.0 6 25.0

Total 1336 923 69.1 413 30.9
aχ219d.f. = 13.85, P = .79. bχ219d.f. = 18.34, P = .50
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replicate novel susceptibility or response models, espe-
cially in collaborative meta-analyses. Such results may be
validated in larger datasets focused on the analysis of to-
bacco exposures, such as the Population Assessment of
Tobacco and Health (PATH) study [56].

Limitations to the resource
The TES was a multi-site, cross-sectional study with col-
lection sites distributed across the U.S. The sample has
limited numbers of individuals with self-identified race
other than Black or White, and has limited numbers of
individuals with self-identified ethnicity of Hispanic. The
diversity in geographical collection is an opportunity to
evaluate region as a covariate in both cigarette smoke
exposure susceptibility and response-to-tobacco models,
e.g., comparing BOE by region or state. However, re-
gional diversity also represents a challenge for future
analyses due to potential confounding. Some potential
confounders can be measured at a molecular level and
used as a covariate in analyses, e.g., principal compo-
nents of population genetic variation [57] can be evalu-
ated by region or by state.
TES participants with banked biospecimens exhibit

small statistically significant differences in demographics
and biomarkers compared to TES participants without
banked biospecimens. With respect to differences in
demographics, participants with banked biospecimens
were significantly older and more likely to self-identify
as White. The smaller proportion of Black TES partici-
pants with banked biospecimens compared to White
TES participants with banked biospecimens is consistent

Table 11 Multivariate model of banked biospecimen
availability, self-identified non-Hispanic black and non-Hispanic
white smokers

β SE t P FMIa

Sex 0.191 0.123 1.550 0.121 0.009

BMIb 0.015 0.008 1.860 0.063 0.010

Self-identified race −0.598 0.125 −4.780 0.000 0.006

Education (HS/some College) 0.001 0.146 0.010 0.993 0.011

Education (≥Bachelors) −0.129 0.173 −0.740 0.457 0.010

Age 0.057 0.020 2.800 0.005 0.003

Age squared −0.001 0.000 −2.930 0.003 0.003

Smoking duration 0.007 0.006 1.280 0.201 0.031

11–20 CPD 0.101 0.114 0.890 0.374 0.009

21–30 CPD 0.143 0.162 0.880 0.379 0.010

>30 CPD 0.215 0.243 0.880 0.377 0.020

CPDb 0.001 0.009 0.070 0.944 0.011

FTC tar −0.002 0.008 −0.300 0.767 0.004

Nicotine equivalents/cigarette −0.085 0.162 −0.530 0.599 0.042

Nicotine equivalents/24 h 0.034 0.015 2.350 0.019 0.028

Serum cotinine −0.001 0.001 −2.070 0.038 0.027

Total NNAL/cigarette 0.006 0.005 1.220 0.224 0.034

Total NNAL/24 h 0.000 0.000 −0.190 0.849 0.025

Carboxyhemoglobin −0.019 0.027 −0.700 0.486 0.007

1-OHP 0.000 0.000 0.000 0.999 0.005

3-HPMA 0.000 0.000 0.010 0.990 0.010

4-ABP 0.001 0.001 0.840 0.400 0.317

MHBMA −0.030 0.015 −1.980 0.048 0.069

DHBMA 0.000 0.000 −0.820 0.410 0.006

8-epi-prostaglandin-F2α
b 0.000 0.000 −0.630 0.527 0.010

Total bilirubin −0.147 0.177 −0.830 0.406 0.051

Hematocrit 0.018 0.026 0.680 0.495 0.027

Hemoglobin −0.071 0.077 −0.930 0.351 0.024

Platelets −0.001 0.001 −1.280 0.200 0.051

WBC −0.007 0.020 −0.370 0.715 0.026

Microalbumin 0.000 0.000 0.960 0.341 0.409

11-dehydrothromboxane-B2 0.000 0.000 0.720 0.472 0.108

hs-CRP 0.007 0.007 1.020 0.306 0.072

Fibrinogen 0.000 0.001 0.560 0.575 0.052

von Willebrand factor 0.000 0.001 0.260 0.798 0.019

Serum creatinine 0.220 0.259 0.850 0.396 0.021

Blood urea nitrogen −0.004 0.011 −0.360 0.720 0.005

Total cholesterol 0.021 0.138 0.160 0.877 0.030

HDL −0.019 0.138 −0.140 0.890 0.030

LDL −0.022 0.138 −0.160 0.872 0.030

Triglycerides −0.004 0.028 −0.150 0.882 0.031

Alkaline phosphatase −0.001 0.002 −0.840 0.401 0.009

Table 11 Multivariate model of banked biospecimen
availability, self-identified non-Hispanic black and non-Hispanic
white smokers (Continued)

Alanine aminotransferase 0.001 0.003 0.380 0.700 0.012

Aspartate aminotransferase −0.006 0.004 −1.580 0.113 0.022

Lactate dehydrogenase 0.003 0.001 1.880 0.060 0.041

FEV1 excluding extreme valuesb −0.003 0.003 −0.930 0.352 0.002

FVC excluding extreme valuesb 0.010 0.003 4.030 0.000 0.003

Serum albumin 0.178 0.141 1.260 0.206 0.022

Serum glucose −0.003 0.001 −1.850 0.065 0.019

Uric acid −0.027 0.037 −0.730 0.464 0.004

Diastolic BP, Visit 1 0.005 0.006 0.830 0.405 0.003

Diastolic BP, Visit 2 −0.005 0.006 −0.760 0.446 0.002

Systolic BP, Visit 1 0.000 0.004 0.100 0.919 0.003

Systolic BP, Visit 2 0.003 0.004 0.680 0.498 0.002

Heart rate, Visit 1 −0.007 0.005 −1.500 0.134 0.003

Heart rate, Visit 2 0.003 0.005 0.580 0.563 0.003

Constant −2.243 0.988 −2.270 0.023 0.006
aProportion of variability in the SE due to multiple imputation. blmputation
truncated at observed values
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with contemporaneous observations in epidemiologic
cohorts of reduced willingness to provide consent for fu-
ture genetic testing in the National Health and Nutrition
Examination Survey of 1999–2000 [58], and reduced
willingness to provide consent for storage of DNA for
future genetic testing in the Baltimore Epidemiological
Catchment Area study of 2004–2005 [59], even though
the TES was not a representative population-based survey
based on national or local sampling. With respect to dif-
ferences in exposure, smokers with banked biospecimens
had increased NE per 24 h and reduced serum cotinine,
consistent with the differences observed in demographic
characteristics. Despite these small statistically signifi-
cant differences in demographics and exposure between
TES participants with and without biospecimens, TES par-
ticipants with banked biospecimens can be selected by
specific clinical and laboratory criteria to create defined
datasets for molecular analyses.

Use and availability of TES data and biospecimens
The principal intended result of any analysis of the TES
is the generation of knowledge related to smoking and
health that is shared with the public health community
and in the scientific peer-reviewed literature. SRI and
the VTHRR agreed on the following principles regarding
use of TES data and biospecimens. First, maintain the
integrity of the data and samples, i.e., establish infra-
structure to track and make the data and biospecimens
secure. Second, ensure that potential users of the TES
data and/or biospecimens are scientific researchers or
organizations focused on the intended analysis goals of
the TES, as assessed by education, experience, or by
publication track record. Third, include terms in Mater-
ial Transfer Agreements requiring recipients of data
and/or samples to make reasonable efforts to publish the
results of studies approved after scientific advisory com-
mittee review in the peer-reviewed scientific literature.
Under data-sharing guidance for researchers using Federal
(e.g., NIH) funds [60–62] and an Office of Science and
Technology Policy memorandum [63], scientists who
generate molecular data, using array-based or high-
throughput genomic technologies are obligated to

Table 12 Comparison of six circulating analytes in TES
participant plasma and serum

SRI CAL analyte values, plasma CRO analyte values, serum

GLUa ASTb ALTc TBId ALBe CHOf GLU AST ALT TBI ALB CHO

89 455 495 1.8 4.4 223 82 381 403 1.19 4.2 192

117 20 18 1.4 4.0 213 114 17 18 1.05 4.0 202

173 22 42 0.4 4.7 238 161 21 37 0.28 4.5 234

84 45 50 0.5 4.2 184 83 37 37 0.23 3.9 167

86 30 29 0.4 4.3 202 83 31 27 0.28 4.4 185

119 27 22 0.6 4.6 142 115 20 19 0.41 4.6 142

65 22 22 0.5 4.5 207 68 22 21 0.38 4.4 203

85 31 36 0.6 4.5 237 85 27 38 0.36 4.6 234

70 32 45 0.2 4.4 163 69 26 39 0.18 4.4 148

113 16 10 0.2 4.1 176 115 13 11 0.16 4.0 165

85 22 22 0.8 4.7 304 74 22 20 0.60 4.8 288

80 38 57 0.3 4.7 160 79 34 52 0.24 4.6 164

94 17 12 0.4 4.6 148 93 14 11 0.27 4.3 136

94 24 21 0.3 5.0 231 91 28 22 0.22 4.9 213

93 18 25 0.3 4.0 238 92 17 27 0.27 4.2 230

103 21 27 0.3 4.1 173 98 18 23 0.29 4.2 167

93 27 28 0.8 4.3 145 93 20 24 0.55 4.0 138

79 23 22 0.6 4.2 217 79 19 19 0.48 4.7 218

83 19 16 0.5 4.6 174 82 15 13 0.33 4.3 166

93 22 15 0.4 4.8 149 86 16 14 0.24 4.3 130

85 26 24 0.6 5.0 262 79 19 18 0.29 4.6 239

93 25 30 0.4 4.4 176 75 21 31 0.23 4.2 167

81 15 14 0.7 4.8 214 50 28 21 0.47 4.9 229

91 18 10 0.3 4.4 211 81 18 10 0.18 4.3 200

90 26 25 0.5 4.6 177 84 22 21 0.33 4.4 174

92 36 56 0.4 3.9 228 91 30 50 0.21 4.0 221

84 13 11 0.4 4.1 232 79 42 25 0.26 4.2 230

90 16 16 4.8 123 86 17 13 0.15 4.6 116

82 21 10 0.3 3.8 196 57 39 7 0.25 4.2 190

82 25 20 0.5 3.9 159 85 20 17 0.29 3.7 142

74 48 29 0.9 4.8 181 68 44 24 0.40 4.4 161

107 42 70 0.7 4.9 200 102 37 60 0.51 4.8 187

88 22 25 0.5 3.8 167 85 21 20 0.34 3.9 164

90 25 27 0.5 4.4 183 88 25 27 0.34 4.6 183

98 27 18 0.4 4.5 207 98 25 18 0.27 4.3 192

94 44 47 0.2 4.1 163 89 39 44 0.16 4.1 162

89 20 17 0.3 4.3 139 92 15 10 0.30 4.3 165

93 32 51 0.4 4.8 225 82 26 42 0.24 4.5 203

81 15 16 0.5 4.3 181 75 12 12 0.26 4.2 153

81 53 47 0.6 4.5 153 73 48 41 0.39 4.3 153

45 15 17 0.3 4.3 120 17 18 16 0.16 4.4 121

89 23 23 0.5 4.9 168 77 18 18 0.32 4.4 144

Table 12 Comparison of six circulating analytes in TES
participant plasma and serum (Continued)

86 33 30 0.3 4.4 267 82 30 23 0.16 4.4 257

101 16 16 0.2 4.4 239 85 16 15 0.13 4.3 218

90 33 40 0.4 4.3 177 83 27 34 0.27 4.3 166

84 26 24 0.4 4.3 175 80 27 23 0.25 4.3 169

88 14 12 0.2 4.1 153 92 28 27 0.18 4.7 230
aGlucose (mg/dL). bAspartate aminotransferase (U/L). cAlanine aminotransferase
(U/L). dTotal bilirubin (mg/dL). eAlbumin (g/dL). fTotal cholesterol (mg/dL)
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submit both phenotype and molecular data to qualify-
ing databases.
This is the first time that TES data and biospecimens

will be made available to independent scientists in any
life sciences area. There is a need for careful, objective
scientific analysis of the resource. Consistent with the
2012 recommendation of the U.S. Institute of Medicine
to incorporate an independent Tobacco Research Gov-
ernance Entity [64], SRI has engaged leading experts to
form a TES Scientific Advisory Board. This board will
provide oversight, review and adjudication of research
applications to use the TES data and biorepository
resources.
Due to the large size of the TES research resource and

the possibilities for integrative analyses, we emphasize
our interest in collaborating with individual or groups of

investigators, institutions and/or sponsors. Analysis of
multiple domains of molecular signatures from TES
biospecimens will elucidate the contribution of the gen-
ome to exposure susceptibility and the subsequent re-
sponse of multiple –omic domains to cigarette smoke
exposure. Investigators interested in collaborative or in-
dependent investigations using the TES data and biospe-
cimens are encouraged to contact the SRI authors.

Conclusions
The TES research resource represents a sample of 4662
current cigarette smokers and tobacco product and nico-
tine non-users and includes: behavioral and demographic
data; cigarette product characteristics; self-reported clin-
ical data and laboratory-based BOE and BOPH; and
banked biospecimens suitable for molecular analyses from

Fig. 1 Comparison of six circulating analytes in TES plasma (CAL) and serum (CRO)
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>3000 participants. We identified small but statistically
significantly greater self-reported measures of cigarette
consumption and NE in participants who had consented
to contribute biospecimens for banking and future ana-
lysis, primarily in self-identified non-Hispanic White
smokers, compared to those not contributing biospeci-
mens. The sample of TES participants with biospecimens
is statistically powered to provide information on existing
susceptibility biomarkers in self-identified Blacks and in
self-identified Whites, and represents a well-powered re-
source to identify novel biomarkers of susceptibility and
response to cigarette smoke exposures. The TESAC will
seek support to enable research efforts to generate and
contribute –omic data to research consortia and to public
databases, and findings to the peer-reviewed literature.
Such findings will contribute to the understanding of the
relationship between cigarette smoke exposures and at-
tributable disease.
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Additional file 1: Total Exposure Study inclusion and exclusion
criteria. (PDF 75 kb)

Additional file 2: Table S1. Biomarkers of exposure in the Total
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Additional file 3: Table S2. Biomarkers of potential harm in the Total
Exposure Study. (PDF 191 kb)
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