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Detection of influenza-like illness aberrations by
directly monitoring Pearson residuals of fitted
negative binomial regression models
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Abstract

Background: Emerging novel influenza outbreaks have increasingly been a threat to the public and a major
concern of public health departments. Real-time data in seamless surveillance systems such as health insurance
claims data for influenza-like illnesses (ILI) are ready for analysis, making it highly desirable to develop practical
techniques to analyze such readymade data for outbreak detection so that the public can receive timely influenza
epidemic warnings. This study proposes a simple and effective approach to analyze area-based health insurance
claims data including outpatient and emergency department (ED) visits for early detection of any aberrations of ILI.

Methods: The health insurance claims data during 2004-2009 from a national health insurance research database
were used for developing early detection methods. The proposed approach fitted the daily new ILI visits and
monitored the Pearson residuals directly for aberration detection. First, negative binomial regression was used for
both outpatient and ED visits to adjust for potentially influential factors such as holidays, weekends, seasons,
temporal dependence and temperature. Second, if the Pearson residuals exceeded 1.96, aberration signals were
issued. The empirical validation of the model was done in 2008 and 2009. In addition, we designed a simulation
study to compare the time of outbreak detection, non-detection probability and false alarm rate between the
proposed method and modified CUSUM.

Results: The model successfully detected the aberrations of 2009 pandemic (H1NT1) influenza virus in northern,
central and southern Taiwan. The proposed approach was more sensitive in identifying aberrations in ED visits than
those in outpatient visits. Simulation studies demonstrated that the proposed approach could detect the
aberrations earlier, and with lower non-detection probability and mean false alarm rate in detecting aberrations
compared to modified CUSUM methods.

Conclusions: The proposed simple approach was able to filter out temporal trends, adjust for temperature, and
issue warning signals for the first wave of the influenza epidemic in a timely and accurate manner.

Keywords: Influenza surveillance, Negative binomial model, CUSUM, Pearson residual, Outpatient, Emergency
department
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Background

Novel influenza viruses such as the 2009 pandemic
HIN1 influenza [1,2] and 2013 H7N9 influenza out-
breaks in China [3] have made the public aware of the
threat of influenza infection. In fact, seasonal influenza
epidemics have occurred annually and caused heavy dis-
ease burdens and high economic losses around the
world [4,5]. Although vaccination among children [6]
and the elderly [7] has been proven to be beneficial for
preventing some infections and reducing the severity of
influenza outbreaks, most adults are still exposed to the
threat of influenza, especially for novel influenzas [8]. In
order to perform public health intervention such as vac-
cination and health education, and to understand the
epidemic trends in communities, many types of trad-
itional public health surveillance such as sentinel phys-
ician surveillance [9] and virological surveillance [10]
have been implemented. After the September 11 attacks
in 2001, the United States began to develop emergency
department (ED)-based syndromic surveillance systems
for detecting any aberrations of syndromes and diseases
[11,12]. The timeliness and efficiency are improved over
the traditional surveillance systems.

The best approach to disease surveillance is to create a
seamless surveillance system without extra labor in-
volved in reporting. Symptom-based surveillance is one
example which automatically aggregates either specific
International Classification of Diseases (ICD) codes [13]
or chief complaints [14] from medical records. In
addition, health insurance claims data are the other im-
portant source recording patients’ diagnosis based on
the ICD codes. In Taiwan, the coverage rate of national
health insurance (NHI) was over 98% in 2010 [15]. It
would be a great advantage to utilize the daily series of
influenza-like illness (ILI) outpatient and ED visits in
communities for outbreak detection in local areas.

Currently, there are many available statistical methods
for detecting aberrations in influenza surveillance, in-
cluding the seasonal regression model [16], time series
[17], Bayesian model [18], modified cumulative sum
(CUSUM) [19], adaptive CUSUM (ACUSUM) [20], opti-
mal exponentially-weighted moving average (EWMA)
[21] and SaTScan space-time permutation model [22].
However, previous published systems have focused
mainly on the daily or weekly total ILI visits aggregated
in a large area, without considering repeat clinical visits
during the same infection course, which might mask the
true epidemic trend of ILI incidence. To account for this
situation, we first defined a relatively small study area in-
cluding a major district and several neighboring districts,
and proposed using only the first occurrence of influ-
enza clinical visits in the study area within 14 days for
the patients for further daily updating of the model.
Considering  geographical differences and various
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weather patterns in northern, central and southern
Taiwan, we select one study area from each of the three
regions. Since many environmental or systematic factors
such as temperature, relative humidity [23], national hol-
idays, and day of the week are believed to be associated
with influenza epidemics and clinical visits, we proposed
a simple and effective approach by first adjusting the ef-
fects of these deterministic and potentially confounding
factors from the daily series of medical visits in a study
area with a negative binomial regression model to take
account of over-dispersion, and then monitoring the
standardized Pearson residuals directly for aberration
detection. We evaluated the performance of the pro-
posed method by comparing the issued warning signals
with virological surveillance during the 2009 pandemic
(HIN1) influenza period in Taiwan. We also conducted
a simulation study to compare the performance between
the proposed approach and modified CUSUM method.

Methods

Study overview

The proposed approach for detecting the aberrations of
ILI outbreaks in a study area consists of two stages. In
the first stage, we used negative binomial regression
models to fit daily outpatient and ED ILI visits during
2004—-2007, and selected significant predictors for the
three study areas in northern, central and southern
Taiwan, separately. The residual of observed number of
visits on the last day of each observed series of visits was
further standardized. In the second stage, we monitored
these daily standardized Pearson residuals for any aber-
rations in 2008 and 2009. Then, we evaluated the per-
formance of the proposed approach by the empirical
health insurance claims data in 2009, when novel HIN1
pandemic flu outbreaks occurred. The detected aberra-
tions were compared with the weekly influenza virus iso-
lation rates. In addition, we compared the widely used
surveillance method, modified CUSUM methods applied
to both observed visits and Pearson residuals, with the
proposed approach using simulated data.

Data source

The three study areas selected in this study are shown
on the map (Figure 1). Each study area consists of sev-
eral populous districts surrounding a major weather sta-
tion. The registered residents of the three study areas in
northern, central and southern Taiwan in 2009 num-
bered 2,356,205, 1,330,913 and 1,120,944, respectively.
Daily ILI visits from 2004 to 2009 were obtained from
the NHI research database of the National Health
Research Institute. This study was approved by the insti-
tutional review board (IRB) of Academia Sinica (IRB#:
AS-IRB01-12117). The database we used was all stripped
of identifying information, and thus informed consent
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Figure 1 Three selected study areas in Taiwan.

was not needed. Daily meteorological data were down-
loaded from the Data Bank for Atmospheric Research
maintained by National Applied Research Laboratories
(http://dbar.ttfri.narl.org.tw). Weekly influenza virus iso-
lation rates were calculated from a laboratory surveil-
lance database maintained by Taiwan’s CDC.

ILI definition and the first occurrence of ILI cases
The NHI research database, also called the hospital-
based health insurance claims database, is publicly avail-
able to researchers in Taiwan. There are four major
levels of the health care system in Taiwan, including
medical centers (Level 4), regional hospitals (Level 3),
area hospitals (Level 2) and primary health care (ie.
clinics, Level 1). In order to focus on the influenza epi-
demics at the community level, we restrict the data of
outpatient and ED visits to the lower levels of the health
care system. For the outpatient visits, only area hospitals
and primary health care were included. For the ED visits,
only regional hospitals and area hospitals were included.
The ILI cases in this study were determined as those
diagnosed with 29 ILI-related ICD-9 codes, which were
the definition in the ESSENCE system (Electronic

Surveillance System for the Early Notification of
Community-based Epidemics, United States) [24,25]. In
this study, we proposed analyzing daily series of new ILI
cases. If a case had repeated ILI visits within 14 days,
only the first visit was counted. The daily series of new
ILI cases was easily created because, in the NHI research
database, each patient has a scrambled unique identifica-
tion code and dates of clinical visits. The reason for
using 14 days as an observational window was that the
influenza incubation period is about 1-4 days, and the
virus shedding occurs from the day before symptoms
begin through 5-10 days after illness onset [26]. The
sum of these two periods has a maximum of around
14 days. Therefore, we defined multiple ILI visits within
14 days as being in the same infection course, and
counted only the first occurrence.

Negative binomial regression model and application to
empirical data

For the daily counts of outpatient or ED ILI visits in a
study area, we proposed use of a negative binomial re-
gression model to better account for over-dispersion,
which was observed in our exploratory data analysis. We
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utilized the “glm.nb” function under open-source soft-
ware, an R [27] package named “MASS”, to implement
the negative binomial regression [28]. The regression
model for estimating expected visits of the last day of
the observed series was constructed by fitting the daily
series of visits and covariates observed in the three years
before the last day. In practice, the regression models
needed to be updated for each day and each study area.
To simplify evaluation of the method, we first used the
data of the years 2004—2007 in the three study areas to
identify influential covariates for the regression models.
The models with the selected covariates were then re-
peatedly fitted to daily ILI visits observed each day dur-
ing 2008-2009 and three years before that day.

During the variable selection stage, the significance
level was set at 0.05. The weather factor used here was
whether the temperature was equal to or below 14°C,
which is the official definition of a continental cold
air mass by the Central Weather Bureau in Taiwan
(http://www.cwb.gov.tw/V7e/knowledge/encyclopedia/
me003.htm). In addition, the temporal dependence
was also considered by including the new ILI cases ob-
served exactly one week earlier. Our exploratory data
analyses showed day of the week, Chinese New Year,
national holidays, typhoon days off, the day following
national holidays and typhoon days off may have influ-
ences on the observed visits. They are mainly related
to the closure of the hospitals and clinics. The season-
ality of influenza epidemic has often been modeled
with harmonic terms. We have found that these terms
of sine and cosine functions sometimes were not good
enough to capture the seasonal pattern. In this study,
we proposed an alternative seasonal term called mov-
ing month-of-the-year time-dependent variable, which
is the difference between medians of visits in the past
30 days and visits in the past 365 days for seasonal ad-
justment in the model. This time-dependent variable
is determined dynamically by the observed data. It can
be used for adjusting usual season outbreaks. If a
factor or variable was statistically significant in an
area, it was selected into the regression model as a
covariate. Chinese New Year and national holidays,
including national public holidays of Taiwan and
typhoon days off, were obtained from the Directorate-
General of Personnel Administration, Executive Yuan,
Taiwan (http://www.dgpa.gov.tw/). The days of the
week had clear effects on the clinic visits; for example,
there were very small numbers of outpatient visits on
Sundays, and more outpatient visits on Mondays and
ED visits on Saturdays and Sundays, while both outpatient
and ED visits were stable from Tuesday to Friday. Once
the covariates were fixed, we used the repeatedly fitted
negative binomial regression models to estimate the
expected visits for each day in 2008 and 2009 in each area.
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Specifically, for estimating expected number of visits
on day t, we have observed daily ILI outpatient or ED
visits and the vector of selected covariates, denoted by y;
and X; for i=t,t-1,...,t - Tp. We fixed Tp=365x 3 in
the real data analysis. The mean and variance of y; for
the negative binomial model are denoted as E(y,) = y;
and Var(y;) = u; + xu?, where the constant « is called a
dispersion parameter. The mean equation of the negative
binomial regression model is often given by u; = exp

(X! B), where B is a vector of coefficients. Let Bt and &,
be the estimated vector of coefficients and dispersion
parameter from the fitted model using the series of y;
and X; for i=t-1,...,t - Ty. The expected number of

visits for day ¢ is estimated by y, = exp (XtT /;’t) . The
variance of estimate is given by Var(y,) =73, + k57> .
The Pearson residuals were denoted as R, = (y,-7,)/
\/W for t=1,2,...,n, from the fitted negative

binomial regression models on 7 consecutive days.

Aberration detection rule

Since the sample size Tj is often large, the standardized
Pearson residuals could be assumed to be approximately
distributed normally with mean 0 and variance 1. There-
fore, we proposed a simple rule by directly monitoring
the series of Pearson residuals. When a Pearson residual
was larger than the 100(1 - a)h percentile of the stand-
ard normal distribution, denoted by z; _,, a signal was
issued for the day to report a possible aberrant outbreak.
We suggest choosing a = 0.025, that is, set the threshold
Zo.975 = 1.96 for simplicity. If the series of visits were well
fitted by the negative binomial models, the false alarm
rate would be around 2.5%. In practice, we should
expect a false alarm rate slightly larger than 2.5% be-
cause the fitted models were usually not perfect. We
may choose a smaller « if a false alarm rate is a major
concern. However, the identification of an epidemic may
be delayed or even undetected. For comparison with the
CUSUM method in this study, we name our proposed
approach SPR due to use of Standardized Pearson Residuals
R, as the deviation statistic for outbreak detection and
threshold z; _ .

Simulation study

After applying the proposed approach to the empirical
data, the performance of the approach was still hard to
evaluate due to the unknown daily virus isolation in a
small area. Thus, we designed a simulation study to
mimic outbreaks and compared the performance of the
proposed SPR approach with the popular modified
CUSUM. First, time series of counts on 7' =760 calendar
days, denoted by wy, ..., wz; were generated from nega-
tive binomial distributions with mean py;=exp(5+
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0.2x1; + x5;) and dispersion parameter x; = 0.2/4; so that
variance of w; equals 1.2y, for the i™ day. The covariates
x1; and x,; were generated to represent the seasonal pat-
tern and day-of-the-week profile, respectively. The con-
secutive sets of 30 elements (assumed to be 30 days per
month) x;; were generated from normal distributions with
means of 2, 2, 2, 1, 0, -1, -2, -2,-2, -1, 0, and 1 for the
12 months, and standard deviation 0.1, to reflect more
visits in winter and fewer visits in summer. The 7 ele-
ments of x,; were generated from normal distributions
with means 0.1, 2, 1.5, 1.5, 1.5, 1.5, and 1 and standard de-
viation 0.1 for each week repeatedly to mimic the much
fewer visits on Sunday and more on Monday observed
from the empirical data.

We then assumed there is an epidemic period starting
on day 601 and lasting for 40 days. The daily new cases

(i-621)*
1- 400 }

were determined by o; = 6 x sd(w;) x exp[
for the epidemic period, where 6 is a fixed parameter of
signal-to-noise ratio, and sd(w;) = /1.2y, is the stand-
ard deviation of w;. The final number of visits y; is w;
plus the integer part of o; for the epidemic period, and
w; for the other regular days.

We considered three signal-to-noise ratios 6=1,3,5.
To get an insight of how strong the signals appear in the
generated data, we give three daily series of visits simu-
lated from the models with the three signal-to-noise
ratios in Additional file 1, Additional file 2, Additional
file 3. The patterns of the simulated daily visits look like
what we might observe in the real world. The signals
were hardly seen in the series of counts with weak
signal-to-noise ratio 6 = 1 but were very clear with 6=5.
We then used the models to simulate 1000 data sets for
each 0 value. For each data set, negative binomial regres-
sion models were fitted to a series of Ty =360 days before
each day starting from the 361" to the 760™ day. The
model included an intercept and 11 dummy variables
representing months 2 to 12 and 6 dummy variables for
Monday to Saturday as covariates. Note that we have
simply used 11 dummy variables for describing sea-
sonal pattern, which are not the true seasonal pattern
used for generating the observations. This is to mimic
the fact that we often don’t have perfect models in
practice. We considered two thresholds with a = 0.025
and a =0.005 in the simulation study with expectation
of false alarm rates a little higher than 2.5% and 0.5%,
respectively. For performance evaluation, we defined a
measure of days to detection as the outbreak issuing
day during the outbreak period minus 601, the true
outbreak day. If no outbreak warning was issued during
the epidemic period, event undetected is counted once.
False alarm rate is defined as the percentage of signals
issued on the remaining 360 regular days. We summa-
rized the three performance measures from the 1000
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simulations in the following. The mean days to detec-
tion is calculated by the average of days to detection on
those simulated data for which all methods had suc-
cessfully issued an alarm during the epidemic period.
The probability of the epidemic going undetected is the
number of times the epidemic was undetected divided
by 1000. The mean false alarm rate is the average of
the 1000 false alarm rates for each method.

The modified CUSUM method implemented in the
Early Aberration Reporting System (EARS) is given by
the following formula [29]. The deviation statistic is
calculated on the observed counts and is denoted

s 7

-2
by Cs(t) =) max[0,Cy(i)-1], where Cy(i) =27
i=t

i—k=2
the sample mean ¥y :%Zyj, and sample variance
j=i-3

# =k

k-2 )
=) Z <yj—)7) for some k<(£-3). We chose
=3

L

j —
k=7 as suggested in EARS. It signals on day ¢ when
the deviation statistic Cs(¢) is larger than a threshold,
the value of which is often difficult to determine. It
has been suggested that deviation statistic Cs(t) was
better calculated on model-based residuals. For a fair
comparison in the simulation study, we also consid-
ered replacing original observations y; with the Pear-
son residuals R; from the same fitted negative
binomial regression models in the above C3 algorithm.
For the simulation study, thresholds of 1.28 and 2.88
were chosen for the CUSUM methods applied to
observations and Pearson residuals, respectively, to
keep the false alarm rates higher than those of the
proposed SPR methods.

Results

Simulation data

The deviation statistic of SPR and CUSUM from days
361 to 760 are plotted along with three simulated data
in the Additional file 1, Additional file 2, Additional file
3. From the plots, we can see the deviation statistics dur-
ing the epidemic periods went up to cross the thresholds
quickly when the signals were strong. We have also seen
several false alarms issued on the regular days. The re-
sults of proposed SPR and CUSUM methods applied to
three groups of 1000 simulated data sets with signal-to-
noise ratios 1, 3 and 5 are summarized in Table 1. The
proposed SPR with threshold z; _»5 had the best per-
formance in terms of early outbreak detection and very
small probabilities of unsuccessful detection. The mean
false alarm rate is about 3.6%, which is larger than the
expected 2.5%, and smaller than the roughly 5% of the
CUSUM methods. The SPR with threshold z;_gq05
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Signal to noise Evaluation measure Methods
SPR with threshold SPR with threshold CUSUM with CUSUM with
Z1_0.025 Z1-0.005 pearson residuals observations
6=>5 Mean days to detection 0.5 08 1.9 6.1
Non-detection probability 00 0.0 0013 0.082
Mean false alarm rate 34% 1.0% 52% 52%
6=3 Mean days to detection 13 2.7 4.7 11.7
Non-detection probability 00 0.0 0.105 0.158
Mean false alarm rate 3.6% 1.1% 5.2% 52%
6=1 Mean days to detection 6.6 126 11.9 19.2
Non-detection probability 0.004 0.120 0373 0.178
Mean false alarm rate 3.9% 1.2% 5.1% 5.3%

could reduce the mean false alarm rate to about 1.1%,
which is larger than the expected 0.5%. The cost of redu-
cing the false alarm rate by about 2.5% was a long delay
in early detection when the signal is weak. The results of
CUSUM methods show that using Pearson residuals was
indeed better than using the original observations in
terms of detection power when the signals were not
weak. When the signals were weak during the epidemic
period, the CUSUM methods had very high probability
of being unable to detect the epidemic, 0.37 and 0.18 for
using residuals and observations, respectively, while the
SPR method with threshold using z; o025 had a prob-
ability only 0.004 of failing to issue an alarm during the
epidemic period. This simulation study demonstrated
that the proposed SPR with a threshold of z; (o5 or
around 1.96 is a promising alternative approach in aber-
ration detection.

Empirical data
From the fitted regression models on the daily series of
ILI medical visits and covariates of the years 2004—2007,
we determined the final covariates in three areas of
Taiwan, listed in Table 2, for the regression models to be
used for prediction in 2008 and 2009. In summary, out-
patient ILI visits were high on Mondays and low on
Sundays, Chinese New Year, other national holidays and
typhoon days. In northern Taiwan and central Taiwan,
cold temperature (<14°C) was statistically significant
(p <0.05) and had positive correlation to ILI outpatient
visits. The moving month-of-the-year variable and ILI
visits on the day of the previous week were all slightly
correlated with ILI visits in both ED and outpatient. In
contrast, Saturdays, Sundays, Chinese New Year and
other national holidays all positively correlated with ED
ILI visits. Cold temperature was only statistically signifi-
cant (p < 0.05) in northern Taiwan.

The seasonal influenza epidemic in 2008 was mild and
had no pandemic influenza outbreak. Thus, we evaluated

the performance of the proposed approach in aberration
detection only for 2009 in the following. In Figure 2 and
Figure 3, the aberrations of seasonal influenza epidemic
in February 2009 were detected in both outpatient and
ED visits in northern Taiwan with our approach. How-
ever, the pandemic HIN1 influenza outbreaks in August
2009 were only detected in ED visits. The modified
CUSUM method applied to the same Pearson residuals
with a threshold 2.88 issued many false alarms in both
outpatient and ED visits.

In Figure 4, Figure 5, Figure 6, Figure 7, the seasonal
influenza epidemics and the pandemic outbreaks were
all detected in central and southern Taiwan with our
approach. The intensities of the aberrations were high
in ED visits, and earlier aberrations were also found in
ED visits. However, the modified CUSUM method ap-
plied to Pearson residuals still caused many false alarms
(Figure 5 and Figure 7).

In the first temporal clustering period, the three areas
consistently had intensive aberration signals before and
after Chinese New Year, when there was also a high
virus isolation rate of influenza A/H1 and A/H3 from
nationwide virological surveillance (Figure 8). In the sec-
ond temporal clustering period, there were some single
aberrations in early August, before the peak of pandemic
HINI influenza isolations in the end of August. In the
third temporal clustering period (from the end of October
to early November), sporadic aberrations in the three areas
were detected, and a similar trend was also found in isola-
tion rates (week 46 — week 48). With our proposed SPR
method, the first wave of the influenza epidemic, such as
before the Chinese New Year or during the pandemic
HINT1 influenza outbreak, could be detected by our pro-
posed method and with a lower false alarm rate.

Discussion
In this study, we proposed using Pearson residuals from
fitted negative binomial regression models for aberration
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Table 2 Selected explanatory variables for modeling
influenza-like illness visits in different areas of Taiwan
using daily visits in 2004 - 2007

Outpatient Emergency department
Northern Taiwan

Selected Variables B p-value p-value
Monday 0.14 <0.01 0.12 <0.01
Saturday - - 0.23 <0.01
Sunday -0.59 <0.01 0.95 <0.01
Chinese New Year -1.66 <0.01 132 <0.01
Other national holidays —0.35 <0.01 0.58 <0.01
Typhoon day —-0.89 <001 048 <001
After day off 0.17 0.01 - -
Seasonal term 10x107° <001 007 <001
Temp. drop (£14°C) 012 0.01 0.1 0.03
Visits a week ago 15x107° <001 0.05 <0.01
Central Taiwan

Monday 0.16 <001 - -
Saturday - - 023 <001
Sunday —-0.62 <0.01 0.67 <0.01
Chinese New Year -1.29 <001 1.12 <0.01
Other national holidays —0.24 <001 016 0.02
Typhoon day -0.66 <001 - -
Seasonal term 07x107 001 0.04 <0.01
Temp. drop (£14°C) 013 0.02

Visits a week ago 14x107° <001 004 <001
Southern Taiwan

Monday 0.19 <0.01 0.08 <0.01
Saturday - - 0.21 <0.01
Sunday -0.73 <0.01 0.86 <0.01
Chinese New Year -1.18 <0.01 1.39 <0.01
Other national holidays —0.32 <001 044 <0.01
Typhoon day -0.83 <001 032 0.04
Seasonal term 22x107° <001 013 <0.01
Visits a week ago 10x107° <001 0.05 <0.01

detection. The effects of major deterministic and con-
founding factors associated with ILI epidemics such as
temperature, seasons, holidays, the day of the week and
temporal dependence were first removed through the
regression models. The relatively stationary Pearson
residuals of predicted values for current days were
then used for aberration detection. This was quite dif-
ferent from the previous studies which monitored ILI
visits directly rather than the standardized prediction
errors [19]. The approach we proposed in the first
stage was like the detrending approach in time series
[30]. However, our approach not only removed tem-
poral trends and special events but also adjusted the
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temperature, which would affect the beginning time
and the duration of an ILI epidemic [31]. The varia-
tions of residuals of the daily fitted models were often
not constant over time. Hence, monitoring residuals
for the identification of any aberrations in ILI visits
tended to either produce many false alarms, miss true
outbreaks, or detect them too late. The Pearson residuals
standardized the residuals to make the series more station-
ary over time. Therefore, the threshold could be fixed at
1.96 for monitoring Pearson residuals for aberration
identification with an expected false alarm rate a little
higher than 2.5%. The performance is therefore deter-
mined mainly by the noise and signal in the observed
counts. As demonstrated in the simulation study, when
the signal-to-noise ratios were high during influenza
season, our method was able to issue warnings in a
timely manner after an outbreak. The use of negative
binomial models and Pearson residuals for improving
the performance of aberration detection has been also
considered in the literature [20,21]. These methods are
built on cumulative deviations in a traditional frame-
work of control chart for monitoring aberration. Al-
though these methods had great performance in some
situations, they may be too technical and complex to be
implemented into routine surveillance by general readers.
In contrast, the proposed alternative method by monitor-
ing the Pearson residuals directly is simple and relatively
easy to use.

The other unique approach used in this study was
the definition of ILI cases. We used three criteria to in-
clude the cases. The first one was the clinical definition
of ILI cases. Although the definition was adopted from
ESSENCE [25], it was also effective for our inclusion
criteria of ILI cases. Secondly, the first occurrence of
ILI cases within 14 days was calculated to avoid count-
ing multiple clinical visits during the same infection
course for the same patients. Thirdly, the levels of hos-
pitals which the patients visited were restricted for both
outpatient and ED visits. The local living perimeters
were the better warning spatial units. Therefore, the
outpatient visits were limited to clinics and area hospi-
tals. The ED visits were limited to regional hospitals
and area hospitals. In this way, we could keep the data
for analysis more representative for the designated
study area.

The validation data used for ILI aberration detection
were available for much larger regions on a weekly basis
for 2009. The daily and small-area virus isolation data
were not feasible and were too expensive for the surveil-
lance purpose. The gold standard of exact ILI epidemic
time was difficult to obtain. Therefore, we could only
use weekly nationwide virus isolation data for external
comparison. The exact initial wave of influenza virus iso-
lation in three different areas may have varied. This was
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Figure 2 Daily observed influenza-like illness outpatient visits in northern Taiwan in 2009 (A), and results of aberration detection by
proposed method (B), by modified CUSUM applied to the Pearson residuals (C). *Note: Detected aberration signals are marked with a red x
at the top. The time period between the two dashed lines was August 2009.
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Figure 3 Daily observed influenza-like illness emergency department visits in northern Taiwan in 2009 (A), and results of aberration
detection by proposed method (B), by modified CUSUM applied to the Pearson residuals (C). *Note: Detected aberration signals are
marked with a red x at the top. The time period between the two dashed lines was August 2009.
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Figure 4 Daily observed influenza-like illness outpatient visits in central Taiwan in 2009 (A), and results of aberration detection by
proposed method (B), by modified CUSUM applied to the Pearson residuals (C). *Note: Detected aberration signals are marked with a red x
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Figure 5 Daily observed influenza-like illness emergency department visits in central Taiwan in 2009 (A), and results of aberration
detection by proposed method (B), by modified CUSUM applied to the Pearson residuals (C). *Note: Detected aberration signals are
marked with a red x at the top. The time period between the two dashed lines was August 2009.
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Figure 6 Daily observed influenza-like illness outpatient visits in southern Taiwan in 2009 (A), and results of aberration detection by
proposed method (B), by modified CUSUM applied to the Pearson residuals (C). *Note: Detected aberration signals are marked with a red x
at the top. The time period between the two dashed lines was August 2009.
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Figure 7 Daily observed influenza-like illness emergency department visits in southern Taiwan in 2009 (A), and results of aberration
detection by proposed method (B), by modified CUSUM applied to the Pearson residuals (C). *Note: Detected aberration signals are
marked with a red x at the top. The time period between the two dashed lines was August 2009.
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a limitation of the present study, so we designed the
simulation for evaluating the model’s performance. In
2009, the novel HIN1 influenza began to be isolated in
late July 2009. The overall isolation rate surged starting
from the first week of August 2009, and reached a peak
isolation number in the last week of August 2009. During
the same period, the aberrations in both outpatient and
ED ILI visits also caused many alerts in early August 2009,
which indicated the initial stage of the epidemic. The aber-
ration signals in central and southern Taiwan did not per-
sist too long in August 2009; however, the aberrations of
ED ILI visits in northern Taiwan persisted for three weeks.

The data streams in outpatient and ED ILI visits were
complementary. The aberration signals were not consist-
ent in the two settings. In some periods, only one setting
had the aberration signals; in other periods, both settings
had the aberrations together. The example in August
2009 showed that the aberrations were detected a few
days earlier in outpatient visits in central Taiwan than in
ED visits. However, ED ILI visits were more sensitive for
both seasonal and pandemic influenza epidemics than
outpatient ILI visits. Previous studies have shown that
many countries [32-36] have adopted new, syndromic
surveillance systems with data mainly from ED visits.
From the viewpoint of a complete surveillance system,
we suggest that outpatient visits could also be included
for routine ILI surveillance.

Cold temperature had different effects in different
areas. Cold and humidity were the two major weather
factors correlated to ILI epidemics [23]. However, the
temperature was a more significant predictor for ILI
visits than relative humidity in this study. A similar ob-
servation was also found in another influenza-associated

morbidity study [37]. Although Taiwan is located be-
tween tropical and sub-tropical areas, the temperature
change had different effects on clinic visits for the resi-
dents living in the north and the south. Thus, northern
Taiwan was especially sensitive to cold temperature. The
systematic variables like holidays and weekends were
mainly related to outpatients having days off work or
school, which caused patients to shift to ED visits. In
addition, there were also abnormal surges in medical
visits immediately after holidays and weekends. We have
found that various covariates had different effects on ILI
visits in the three study areas. For applications of the
proposed approach to a specific study area, we need to
update regression models all the time.

Conclusions

The seamless surveillance and high coverage rate of
health insurance claims data can provide more timely
and accurate data than traditional sentinel physician sur-
veillance. By directly monitoring Pearson residuals of fitted
negative binomial models to health insurance claims data,
near real-time ILI aberration detection in communities is
attainable. The successful detection of the 2009 HIN1 pan-
demic flu in different regions of Taiwan reflected different
waves of transmission in August 2009. The complementary
signals in both outpatient and ED visits were able to make
ILI surveillance more comprehensive. The temporal win-
dow for influenza surveillance needs to be adjusted in influ-
enza and non-influenza seasons. Application of the
approach to local health insurance claims data can improve
the accuracy of outbreak detection in small-area-based ILI
surveillance.
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Additional files

Additional file 1: Simulated daily counts from negative binomial
models with a few additional counts added generated with
signal-to-noise ratio equal to 1 on days 601 - 640 (top) and deviation
values for monitoring outbreaks for two methods (bottom). The
deviation values of SPR are the Pearson residuals. The deviation values of
CUSUM are C3 calculated using the Pearson residuals. The horizontal
lines are the threshold of z; _ 25 for SPR and the threshold of 2.88 for
the CUSUM.

Additional file 2: Simulated daily counts from negative binomial
models with a few additional counts added generated with
signal-to-noise ratio equal to 3 on days 601 - 640 (top) and deviation
values for monitoring outbreaks for two methods (bottom). The
deviation values of SPR are the Pearson residuals. The deviation values of
CUSUM are (3 calculated using the Pearson residuals. The horizontal lines
are the threshold of z; _ g5 for SPR and the threshold of 2.88 for the
CUSUM.

Additional file 3: Simulated daily counts from negative binomial
models with a few additional counts added generated with
signal-to-noise ratio equal to 5 on days 601 - 640 (top) and deviation
values for monitoring outbreaks for two methods (bottom). The
deviation values of SPR are the Pearson residuals. The deviation values of
CUSUM are C3 calculated using the Pearson residuals. The horizontal lines
are the threshold of z; _ g5 for SPR and the threshold of 2.88 for the
CUSUM.
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