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Abstract

Background: Epidemiological studies in Malawi on child anaemia have neglected the community spatial effect to
childhood anaemia. Neglecting the community spatial effect in the model ignores the influence of unobserved or
unmeasured contextual variables, and at the same time the resultant model may under estimate model parameter
standard errors which can result in erroneous significance of covariates. We aimed at investigating risk factors of
childhood anaemia in Malawi with focus on geographical spatial effect.

Methods: We adopted a Bayesian random effect model for child anaemia with district as spatial effect using the
2010 Malawi demographic healthy survey data. We fitted the binary logistic model for the two categories outcome
(anaemia (Hb < 11), and no anaemia (Hb = 11)). Continuous covariates were modelled by the penalized splines and
spatial effects were smoothed by the two dimensional spline.

Results: Residual spatial patterns reveal Nsanje, Chikhwawa, Salima, Nkhota-kota, Mangochi and Machinga increasing
the risk of childhood anaemia. Karonga, Chitipa, Rumphi, Mzimba, Ntchisi, and Chiradzulu reduce the risk of childhood
anaemia. Known determinants such as maternal anaemia, child stunting, and child fever, have a positive effect on child
anaemia. Furthermore childhood anaemia decreases with child age. It also decreases with wealth index. There is
a U relationship between child anaemia and mother age.

Conclusion: Strategies in childhood anaemia control should be tailored to local conditions, taking into account

the specific etiology and prevalence of anaemia.
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Background

Childhood anaemia is a global public health problem.
According to World Health Organization (WHO)
current report on world prevalence of anaemia [1], the
global prevalence of anaemia is 24.8% with the highest
prevalence in preschool-age children (47.4%). Regional
WHO estimates of childhood anaemia shows sub-
Saharan Africa (SSA) having the highest prevalence,
about 67%, seconded by the South East Asia (65.5%).
The latest report though by [2] on world prevalence of
anaemia shows that world prevalence of anaemia for
preschool-age children has decreased from 47% to 43%
and that South Asia, Central and West Africa have the
highest prevalence. Malawi, part of the sub-Saharan Africa
and in Central Africa has 63% prevalence of childhood
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anaemia according to the 2010 Malawi Demographic
Health Survey (MDHS) report [3]. Consequences of the
childhood anaemia are poor cognitive development for
mild and moderate anaemia, and death for severe an-
aemia. Severe anaemia carries a significant risk of death by
profound hypoxia and congestive heart failure, or more
rarely, by cerebral malaria [4,5].

Epidemiology of childhood anaemia shows multi-
factorial risk factors. About 50% of all anaemia cases
are due to iron deficiency [6]. Other micronutrients,
such as vitamin A, vitamin C, and folate are important
in the pathophysiology of anaemia. Infections such as
malaria, HIV, bacteraemia caused by organisms such as
Steptococcus pneumoniae, non-typhi Salmonella species,
and Haemophilus influenzae type b, and helminth
infections caused by hookworm and Schistosoma hae-
matobium are also known to cause anaemia [7,8]. The
general mechanisms by which these infections lead to
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anaemia include blood loss, sequestration of red blood
cells by the spleen, haemolysis by antibodies, and an-
aemia of inflammation (via TNF-alpha and IL-6 pro-
duction). Previous studies have also shown that
socioeconomic factors such as low parental education
levels [9], low household incomes, and demographic
factors including age, sex [10], and family size [11]
affect anaemia. Sickle cell disease has also been recog-
nized as an important risk factor for anaemia in sub-
Saharan countries [12].

To our knowledge, studies on childhood anaemia in
Malawi have not assessed the geographical heterogeneity
in childhood anaemia causes [7,13]. The ignorance of
heterogeneity in models according to [14], may lead to
biased parameter estimates. But more importantly, geo-
graphical heterogeneity can be an effect of unmeasured
covariates which may include contextual factors. That is,
geographical differences in the causes of anaemia can be
partially explained by large-scale variability in environ-
mental drivers, particularly nutritional and infectious
causes. Malaria as an infectious cause of anaemia is
known to be associated with elevation and land surface
temperature. Similarly, nutritional iron deficiency and
anaemia-causing helminth infections are known to be
associated with the distance to a perennial water body,
land surface temperature and the normalized difference
vegetation index (NDVI). The environmental drivers of
anaemia tend to show a high degree of spatial depend-
ence (i.e. geographical clustering) [15,16]. There are
number of studies though outside Malawi [17-21], that
have taken into account the geographical heterogeneity
in modelling of anaemia, but all these studies have often
ignored the flexible approach of using bivariate splines
in modelling geographical heterogeneity.

The study of geographical heterogeneity of a health
outcome can benefit from the multilevel or spatial mixed
model. For example [18,20,21], use a multilevel model
and [17,19] use a spatial mixed model. In multilevel
models geographical heterogeneity is modelled as a ran-
dom effect and geographical variation in the outcome
variable is assessed via variance partition coefficient
(VPC) or intra-class correlation coefficient (ICC). In
spatial mixed models, geographical heterogeneity of an
outcome is assessed by specifying a spatial correlation
structure for individual residuals. A comparison study of
a multilevel and a spatial mixed model for investigating
place effects on health outcomes by [22] showed a
smaller deviance for spatial mixed model than a multi-
level model, and that the Moran’s I statistic showed re-
sidual spatial autocorrelation unaccounted for by the
multilevel model.

Spatial mixed models have been widely used to asses
the geographical effect on an outcome ([17,19,23-26],
among others). In case of areal data, where individual
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information for areas is provided, spatial lattice models,
which usually consider correlation between adjacent
areas of a territory, are considered appropriate. If the
data has location coordinates (latitude and longitude or
centroids based on the map), then use of a geo-statistical
model proves appropriate. In this study for example,
there was no individual information for all districts, but
districts centroids based on the map could be got. Thus
a geo-statistical model either based on kriging or bivari-
ate spline was appropriate [22].

The contribution of this study would be the applica-
tion of the spatial mixed model in assessing the signifi-
cance of correlated geographic effect on childhood
anaemia which has not been extensively done by assum-
ing the flexible approach of bivariate splines. Further-
more the study would be the first ever to map childhood
anaemia in Malawi in terms of residual spatial effects.
The map would have important implications for target-
ing policy as well as the search for left-out variables that
might account for these residual spatial patterns.

Methods

Study area and data

The study focused on Malawi and used the standard and
nationally representative 2010 Malawi Demographic and
Health Survey (MDHS) data. The MDHS data was down-
loaded from the DHS website (http://www.measuredhs.
com/login.cfm) after being granted permission. The sam-
pling design was a two stage cluster design with stratifica-
tion. The primary sampling units were the enumeration
areas (EAs), and the secondary sampling units were the
households. EAs were stratified in terms of rural and
urban. A total of 849 EAs were sampled with 158 in urban
areas and 691 in rural areas. A representative total sample
of 27345 households was selected for the 2010 MDHS
survey. Data collection was by questionnaires. There were
three questionnaires, women, men and household ques-
tionnaire. Households that were successfully interviewed
were 24825, yielding a response rate of 98%. Eligible
women that were successfully interviewed were 23020,
yielding response rate of 97%. Eligible men that were suc-
cessfully interviewed were 7175, yielding a response rate
of 92%. The data set that was used in this study was child
record data set which was based on women and house-
hold questionnaire. The child record data set had a total
of 19967 children records. The following exclusion criteria
based on 2010 MDHS report [3] and MDHS guide to
statistics [27] was used to have the final sample for chil-
dren. Children whose mothers were not listed in the
household questionnaire were not included. All children
records where haemoglobin level was missing were
dropped. The missing covariate values were left unre-
moved. The final sample size of children was thus 4177.
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Data management in terms of extracting and gener-
ation of variables from child record data set was done in
STATA version 12. Data variables used in this study
were based on the variables used in previous studies on
childhood anaemia. Response variable in the extracted
data set was child anaemia status based on the
categorization of child altitude adjusted haemoglobin
level. Child anaemia status was a binary variable based
on the cut off point of 11Hb. Children whose haemoglo-
bin level was less than 11Hb were taken as anaemic and
not anaemic otherwise. The cut off point used in classi-
fying child anaemia into two categories was based on
2010 MDHS report. The covariates in the generated data
set were mother education level, family wealth index,
child cough, child fever, receiving vitamin A, mother
anaemia status, stunting, wasting, underweight, child
birth weight, child birth order, house hold size, child age
in months, mother age in years, whether child ate meat
in previous one month or not, breast feeding in months
and district of the child. Child age in months, mother
age in years and breast feeding in months were continu-
ous covariates. Stunting, wasting and underweight were
based on categorization of height for age, weight for
height, and weight for age z-scores respectively using
z-score —2 as cut off point. District of the child was la-
belled s;€e(1,2,3,..,S) where the label was correspond-
ing to label on the map.

Statistical analysis

Univariate logistic regression was performed in STATA
statistical software, version 12 to select potential factors
of childhood anaemia. Covariates that were associated
with anaemia at significance level of 20% were incorpo-
rated in the multiple regression models. The significant
level of 20% rather than 5% was used in selecting covari-
ates for multiple regression analysis so as to allow more
potential covariates to be selected. Two way cross tabu-
lation was then performed in STATA statistical software,
version 12 to find percentage distribution of childhood
anaemia per district and per covariate categories. Per-
centages were weighted using the sampling weight to en-
sure representative sample. The two way cross tabulation
with Pearson chi-square (X?) test was used to compare
groups of categorical variables.

Four multiple logistic models were then fitted using
R2BayesX package in software R using child anaemia
status as a response. More formally, considering child
anaemia status being binary, in this case child anaemia
status being distributed as Bernoulli (p;) where p;; is the
probability of child j being anaemic in location i, the fol-
lowing models were fitted.

Model 1: logit(p;)) = wly

Page 3 of 11

Model 2: logit(p;) = wl'y +f,(xin) + (%) 4.4, (ip)

Model 3: logit(p;) = ]y + f 0 (si)

Model 4: logit(p;) = w]y + f1(xa) +fy (%) + ... +f,,
(%ip) + £ spar (1)

Model 1 was a fixed effects variable model where all var-
iables, categorical and continuous were modelled as fixed
effects. In Model 2, categorical variables were modelled as
fixed effects and continuous variables were modelled non
parametrically by smooth function fs. In Model 3 all co-
variates were modelled as fixed effects and district of the
child was modelled as a spatial effect. Model 4 was an ex-
tension of Model 2 by including a spatial component. In
the models, the smooth functions f; were specified as
Bayesian splines. According to [28], this assumes approxi-
mating f; by polynomial splines of degree / defined at
equally spaced knots x_;”i” = Cjo, (j1y -+ Cjs = x7"** which
are within the domain of the covariate x;. The Bayesian
spline can be written as a linear combination of d=s+/
basis functions, B,,,, that is,

> EmBa() (1)

Now Bayesian estimation of the penalized spline (1)
is equivalent in estimating model parameters ¢; = (g1,
€2 ... »&,m) where first or second order random walk
priors for the regression coefficients are assigned. A first
order random walk prior for equidistant knots is given by:
Em=Em_1+U,, where m=2, 3, ..., d, and a second
order random walk prior for equidistant knots is given by:
& =281+ Em_2+ U, where m=3, 4, ..., d and
u;,~N (0, sz) are random errors. The spatial effect was

fj(xj)

modelled by the tensor product of two dimensional
spline defined as

fspat (xl’xZ) = ZfoBspat, ijBli(xl)BZj(x2) (2)

where (x1, x,) refers to the coordinates of the location of
the data point, latitude and longitude, or location cen-
troids based on the map. The prior for By, ;= (Bspar11s
Bipat,12) s Boparii) is based on spatial smoothness priors
common in spatial statistics (see [29]). The most com-
monly used prior specification based on the four nearest
neighbours is defined as:

Bsput., ij |~NN(Bsput,i—1j + Bsput,i+1 J + Bspat,i,j—l

.[.2

i
+Bsput,i,j+1’ Z)

for i,j=2,...,k-1 with appropriate changes for corners
and edges. Since model estimation was by empirical
Bayesian method, all variance parameters were treated
as unknown constants that were estimated by restricted
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maximum likelihood (REML) method and hence their
priors were not given. The fixed effects were assigned
diffuse priors. An advantage of the empirical Bayesian in-
ference over full Bayesian inference is that questions about
the convergence of MCMC samples or sensitivity on
hyper parameters do not arise [30]. Further more, a com-
parison of full Bayesian and empirical Bayesian approach
in a simulation study, has shown empirical Bayesian ap-
proach yielding somewhat better point estimates, especially
for Bernoulli distributed responses (see [31]).

Results

Descriptive results

Table 1 presents prevalence of childhood anaemia by
region. Northern region is generally less anaemic com-
pared to the central and southern region. Districts in the
central region with relatively higher prevalence of child-
hood anaemia are Salima and Nkhota-kota with about
80% and 74% prevalence respectively. In the south,
Chikhwawa, Nsanje, Balaka, Neno, Mangochi and
Machinga have relatively higher prevalence of childhood
anaemia. In the northern region, Nkhata-bay has rela-
tively high prevalence of childhood anaemia with preva-
lence of about 73%.

Table 2 shows the burden of childhood anaemia by
categorical covariates and group comparison by Pearson
chi-square tests. Males have almost the same prevalence
of childhood anaemia as females. Also children of rural
areas have higher prevalence of childhood anaemia com-
pared to those of the urban. Childhood anaemia preva-
lence decreases with wealth. Childhood anaemia
decrease from no education mothers to secondary
education mothers and then increase for the mothers
with higher education. Childhood anaemia prevalence
increases with cough and fever. Vitamin A is seen as
important in reducing childhood anaemia prevalence.
Childhood anaemia prevalence also increases with child-
hood under nutrition. The categorical variables associ-
ated with childhood anaemia at 0.05 significance level
without controlling for other factors are residence,
wealth, mother education, mother anaemia status,
underweight, stunting, wasting, cough, fever, and vitamin
A. All categorical covariates in Table 2 were included in
the multiple logistic models except the house hold size,
ate meat, and child birth order number because their
Pearson chi-square p-values are more than 0.2.

Empirical Bayesian results

Model selection

The choice of the better model is based on Alkaike
Information Creterion(AIC) and the Generalized Cross
Validation(GCV) as used by [32] when they used empir-
ical Bayesian method in estimation of the STAR model.
A model with the smallest AIC and GCV is considered
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Table 1 Prevalence of childhood anaemia by district

Region/district %Anaemic (total)

Northern region 58.71 (728)
Chitipa 5242 (189)
Karonga 5431 (179)
Nkhata-Bay 72.89 (117)
Rumphi 56.78 (113)
Mzimba 59.98 (130)
Central region 64.21 (1,560)
Kasungu 68.78 (198)
Nkhota-Kota 74.82 (1871)
Ntchisi 55.83 (177)
Dowa 6537 (187)
Salima 80.62 (139)
Lilongwe 5839 (211)
Mchiniji 61.19 (179)
Dedza 65.83 (125)
Ntcheu 60.01 (163)
Southern region 64.11 (1,889)
Mangochi 7340 (160)
Machinga 7524 (1471)
Zomba 62.75 (165)
Chiradzulu 4485 (116)
Blantyre 4768 (143)
Mwanza 64.83 (121)
Thyolo 54.42 (148)
Mulanje 60.96 (121)
Phalombe 60.65 (190)
Chikwawa 78.52 (150)
Nsanje 7229 (163)
Balaka 7039 (139)
Neno 72.76 (132)

Row % of child anaemia by district based on child data.
MDHS 2010 (weighted).

as a better model. The AIC and GCV (Table 3) favours
the geo-additive model, that is, Model 4, since it has the
smallest AIC and GCV. Discussion of the results will
therefore be based on Model 4, the geo-additive model.

Fixed effects

Fixed effects variables found to be significant to child-
hood anaemia (Table 3) are fever, wealth family of rich-
est category, stunting and mother anaemia status. The
coefficient for fever is positive which means children
who have fever have increased risk to childhood anaemia
compared to children who have no fever. Children of
richest family have reduced risk to childhood anaemia
than those who belong to poorest family, since the



Ngwira and Kazembe BMC Public Health (2015) 15:161

Table 2 Prevalence of childhood anaemia by categorical
covariates and bivariate Pearson chi-square test p-values

Variable %Anaemic (total) Pearson chi-square (P-value)
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Table 2 Prevalence of childhood anaemia by categorical
covariates and bivariate Pearson chi-square test p-values
(Continued)

Sex 245 (0.117)

Male 64.33 (2,092)

Female 62.83 (2,085)

Residence 17.50 (0.000%)
Urban 53.15 (402)

Rural 65.35 (3775)

Wealth 49.07 (0.000%)
Poorest 70.79 (829)

Poor 65.77 (964)

Rich 66.55 (973)

Richer 61.729 (813)

Richest 51.88 (598)

Mother education 20.31 (0.000%)
No education 67.07 (714)

Primary 64.17 (2917)

Secondary 56.1 (535)

higher 79.03 (11)

House hold size 0.68 (0.410)
<5 64.42 (1,892)

>5 62.81 (2,285)

Fever 60.31 (0.000%)
No fever 59.39 (2,738)

With fever 71.58 (1,431)

Ate meat 0.04 (0.845)
No 67.33 (2,666)

Yes 7145 (465)

Cough 9.68 (0.002%)
No cough 61.61 (2,974)

With cough 69.06 (1,171)

VitaminA 7.24 (0.007%)
No 66.46 (527)

Yes received 63.05 (3,643)

Stunting 2155 (0.000%)
No 60.5 (2,256)

Yes 67.02 (1,714)

Wasting 1663 ( 0.000%)
No 627 (3819)

Yes 7999 (152)

Underweight 1840 (0.000%)
No 61.85 (3,232)

yes 69.93 (738)

Mother anaemia 34.35 (0.000%)

No 62.09 (3,510)

Yes 73.11 (577)

Birth Order 1.84 (0.606)
1 64.25 (769)

2-3 62.84 (1,504)

4-5 62.49 (1,058)

6+ 65.72 (846)

The Pearson chi-square p-value with* indicate that the variable was significant
at 5% significance level.

coefficient for the richest family is negative. Coeftfi-
cient for stunting is positive, which means stunted
children have a higher risk of childhood anaemia com-
pared to children who are not stunted. Mother an-
aemia status has a positive effect to childhood
anaemia, that is, children of anaemic mothers have
their risk to childhood anaemia more than children
whose mothers are not anaemic.

Non linear effects

Months of breast feeding has an insignificant non linear
effect to childhood anaemia (Figure 1) since the variance
parameter for the effect of months of breast feeding is
zero (Table 3) which means assumption of non linearity
does not hold. As a matter of fact the effect of months
of breast feeding is linear with childhood anaemia de-
creasing as months of breast feeding increases.

Child age has somewhat significant non linear effect to
childhood anaemia (Figure 2) since the variance param-
eter for the effect of child age is not zero (Table 3). As
child age increases, its effect on child anaemia decreases,
that is, older children are less likely to have childhood
anaemia. The chance of having anaemia is much higher
in children aged about 6 months to about 20 months
and decreases there after.

Mother age has a significant non linear effect to child-
hood anaemia (Figure 3) since the variance parameter
for its effect is not zero (Table 3). There is a U func-
tional relationship between childhood anaemia and
mother age. Young mothers are more likely to have chil-
dren who are anaemic; in particular mothers aged
15 years to about 25 years. The risk to childhood
anaemia remains reduced for mothers aged 22 to about
40 years. Childhood anaemia risk then rises for mothers
who are aged 40 years and above.

Spatial effects

Spatial effects are surrogates of unknown influences, for
example climatic and environmental factors, access to
good transport system, and access to good child health
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Table 3 Summary of four binary logistic models
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Variable Model 1 Model 2 Model 3 Model 4
Coeffecient Coeffecient Coeffecient Coeffecient
(95% ClI) (95% ClI) (95% ClI) (95% ClI)
Constant 2236 (1.730 2.742) 0.781" (0454 1.107) 2081 (1,495 2.666) 0.597" (0.164 1.030)
Residence
Rural _ _ _ _
Urban —0.206 (—0.465 0.053) —0.193 (-0.453 0.068) —0.118 (-0.395 0.158) —0.104 (-0.381 0.173)
Child sex
Female _ _ _ _
Male 0.068 (—0.075 0.211) 0.066 (—0.077 0.209) 0.085 (—0.061 0.228) 0.080 (—0.065 0.224)

Mother education
No education
Primary
Secondary
Higher
Wealth index
Poorest

Poor

Rich

Richer

Richest

Fever

No

Yes

Cough

No

Yes

Vitamin A

No

Yes

Stunting

No

Yes
Underweight
No

Yes

Wasting

No

Yes

Mother anaemia
No

Yes

Child age
Months of breast feeding
Mother age

—0.275" (—0.486 —0.065)
-0372" (-0667 —0.076)
0.258 (—1.124 1.640)

—0.154 (~0.380 0.071)
—0.137 (~0.364 0.090)
—0223 (-0459 0.014)
—0475" (-0.753 —0.197)

0454" (0286 0.621)

—0.013 (-0.187 0.161)

—0.154 (=0.377 0.069)
0.265 (0.107 0.422)

0.108 (-0.103 0.318)

0.331 (-0.107 0.768)

0681" (0461 0.901)
~0034" (~0.040 —0.029)
~0.012 (~0.025 0.000)
—0.004 (0,015 0.008)

—0.275" (—0.485 —0.065)
—-0.369" (0666 —0.072)
0.254 (—1.135 1.642)

—0.147 (~0373 0.079)
—0.139 (~0.366 0.089)
~0215 (~0452 0.021)
—0468" (-0.747 —0.189)

0449 (0281 0617)

—0.019 (-0.194 0.156)

—0.117 (=0.341 0.107)
0.288" (0.129 0.446)

0.100 (-0.110 0.310)

0.324 (-0.116 0.764)

0686 (0466 0.906)

—0.116 (-0.334 0.101)
—0.190 (-0.493 0.113)
0453 (-0.910 1.817)

—0.153 (-0.382 0.076)
—0.122 (<0353 0.110)
~0.207 (~0.449 0.035)
~0489" (-0.775 —0.203)

0448 (0.277 0.620)

0.035 (-0.143 0.213)

—0.118 (=0.346 0.110)
0.291" (0.131 0.450)

0.102 (=0.111 0.315)

0.315 (=0.128 0.759)

0.601" (0377 0.824)
~0035" (~0.041 ~0.029)
—0.013 (0025 —0.001)
—0.003 (-0.015 0.008)

—0.118 (-=0.335 0.099)
—0.192 (-0.497 0.112)
0.436 (—-0.936 1.808)

—0.148 (-0.377 0.082)
—0.122 (-0.355 0.110)
~0.199 (~0.442 0.043)
~0481" (-0.768 —0.194)

0442" (0270 0.614)

0.028 (-0.151 0.207)

—0.082 (—0.311 0.147)
0314 (0.153 0.474)

0.098 (-0.1150.311)

0.309 (-0.136 0.755)

0.605 (0382 0.828)
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Table 3 Summary of four binary logistic models (Continued)
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Variance Components
Spatial effect

Non-linear effects

Child age 72 0.115
Mother age 12, 0.128
Breast Feeding 13 0.000
Model fit

AlC 4461.33 4443 66
GCV 1.20699 1.20258

0.6348 2.275
0.119
0.147
0.000

440242 4386.81

1.18882 1.18489

Model 1(fixed effects), Model 2(fixed plus non linear effects), Model 3(fixed and spatial effects), and Model 4(geo-additive). _ means reference category, and "

means significant at 5% significance level.

care services. These unknown factors may have a local-
ized effect or global effect. Figure 4 presents total
residual spatial effects to childhood anaemia. There is
evidence of residual spatial effects to childhood an-
aemia in Malawi with Chikwawa, Nkhota-kota and Sal-
ima showing significant positive effects while Karonga
and Chiradzulu show negative effects with regard to
the 95% posterior credible intervals map (Figure 5). For
the 80% posterior credible intervals map, Nkhota-kota,
Salima, Chikhwawa, Nsanje, Mangochi and Machinga
have significant positive effects while Karonga, Chitipa,
Rumphi, Mzimba, Ntchisi, and Chiradzulu have signifi-
cant negative effects (Figure 6).

Discussion
This study employed the use of geo-additive logistic
model to study the relationship between childhood

0.2
|

0.0

effect of months of breast feeding

0 10 20 30 40 50
breast feeding in months

Figure 1 Non linear effect of months of breast feeding to
childhood anaemia. Green band (80% Cl), and red (95% Cl).

anaemia and its risk factors. The geo-additive model
allowed the mapping of residual spatial effects to child-
hood anaemia while accounting for non-linear covariate
effects under the assumption of additiviness. Modelling
of metrical continuous covariates non linearly revealed
their subtle influences that could not be observed when
modelled linearly. The incorporation of spatial effect in
the models made some covariates not to be significant
anymore. For example, mother education primary and
secondary level coefficients were found to be signifi-
cant in Model 1 and Model 2 (Table 3) where there was
no spatial effect, but were not significant in Model 3
and Model 4 (Table 3) when the spatial effect was in-
cluded in the models. Actually, the spatial component
in Model 3 and Model 4 according to [28] helped to
avoid underestimate model parameter standard errors
which could result in significance of the covariates.

15

1.0

effect of child age

-0.5
|

-1.0

10 20 30 40 50 60
child age in months

Figure 2 Non linear effect of child age to childhood anaemia.
Green band (80% Cl), and red (95% Cl).




Ngwira and Kazembe BMC Public Health (2015) 15:161

Page 8 of 11

0.4

effect of mother age
0.2

-0.2
|

15 20 25 30 35 40 45 50
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Figure 3 Non linear effect of mother age to childhood
anaemia. Green band (80% Cl), and red (95% Cl).
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The observed residual spatial pattern in childhood an-
aemia shows most districts in the north reducing child
anaemia, and the districts that increased risk of anaemia
were all close to water bodies. The observed spatial het-
erogeneity may be due to unobserved factors not cap-
tured by the covariates in the models, and it is a matter
of conjecture to identify them. Geographical difference
in anaemia-causing infections, like malaria, hook worms
and helminths could be one cause of such spatial vari-
ation. Malaria is common in places close to water bodies
and where temperatures are high (above 21%). Accord-
ing to [33], the optimum temperature for mosquitoes
development is between 22 and 32°C. Similarly, soil
moisture and relative atmospheric humidity are also
known to influence the development and survival of ova
and larvae for hookworms and helminths, where higher
humidity is associated with faster development of ova
[34,35]. Salima, Nkhota-kota, Mangochi, Machinga
showed positive spatial effect to anaemia at 20% signifi-
cance level probably due to lake Malawi, Lake Malombe,
Lake Chiuta and Lake Chilwa, and Shire River which en-
hance the development of mosquitoes, hookworms and
helminths. Transmission of hookworms and helminths
along such water bodies would also be facilitated by
open faecal disposal according to [36], since along these
water bodies, open faecal disposal is common particu-
larly by fisher men. Similarly, Nsanje and Chikhwawa
districts had a positive effect to child anaemia probably
because they are characterised by permanent wetlands
(Ndindi and Elephant marsh) with large stretches of
stagnant water, and that their temperatures are above
21°C which provide the best ground for the mosquitoes
to breed, resulting in increased malarial transmission
and let alone malaria anaemia.

-0.5215 0 0.7601

Figure 4 Residual spatial effects to childhood anaemia.
. J

Altitude difference is another possible cause of spatial
heterogeneity in anaemia. According to [27], people res-
iding at higher altitudes (greater than 1,000 meters
(3,300 feet)) have higher Hb levels than those residing at
sea level. This variation is due to the lower oxygen par-
tial pressure at higher altitudes, a reduction in oxygen
saturation of blood, and a compensatory increase in red
blood cell production to ensure adequate oxygen supply
to the tissues. Highland areas also have lower tempera-
tures and thus are associated with less risk to malaria
anaemia. Most areas in the north like Rumphi, Mzimba,
Chitipa and part of Karonga are at high altitude, and this
may explain their negative effect to anaemia. The effect
of altitude on geographical variation of anaemia in this
study may however be due to malaria-altitude relation-
ship and not altitude-Hb level relationship as the later
was accounted for by adjusting child Hb level for alti-
tude according to DHS guide to statistics (see [27]).
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Figure 5 The 95% posterior credible intervals map. Green

(negative effect), gray (insignificant effect) and red (positive effect).
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Figure 6 The 80% posterior credible intervals map. Green
(negative effect),gray (insignificant effect) and red (positive effect).

Regional nutritional disparities may also explain the
spatial heterogeneity of childhood anaemia in Malawi.
The cause of regional nutritional differences can be nat-
ural disasters like floods, and varying climatic condi-
tions. Most valleys in Malawi, notably those of the Shire
and Kasitu Rivers, and the southern end of Lake Malawi,
are in rain shadows. Thus high risk of child anaemia in
Chikhwawa, and Nsanje district may also be explained
by floods from Shire River which annually destroys crops
there by affecting the general nutrition of the area. Fur-
thermore, these districts are in the Shire River basin
which is a rain shadow area.

The fixed effects factors of childhood anaemia signifi-
cant in this study are fever, wealth family of richest cat-
egory, stunting and mother anaemia status. The finding
of fixed effects factors generally confirm with what is
known in the literature. The finding of fever agrees with
that of [37] where fever had a positive effect. According

to [37], fever is a common symptom of acute and
chronic inflammatory diseases, mostly infections, which
have been associated with lower Hb levels. Existing an-
aemia is aggravated by underlying inflammation, which
leads to alterations in iron homeostasis, impaired
erythrocyte proliferation, blunted erythropoietin re-
sponse, and decreased erythrocyte half-life. Moreover,
several pro-inflammatory cytokines have been implicated
in chronic inflammation anaemia, including interleukin-
(IL-) 1b, tumour necrosis factor-a (TNF-a), and IL-6.
Child age has been found to have non linear effect.
Younger children are at higher risk of childhood anaemia
compared to older children. This may be explained by the
high demand for iron to ensure accelerated physical
growth during the first year of life, and by the difficulty
mothers and guardians have ensuring adequate iron con-
sumption after the sixth month of life, when stored iron is
depleted and iron needs must be met through feeding.
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Children of richest family have been found to have a
reduced risk to childhood anaemia compared to the
poorest children. This is probably due to good nutritious
food the family affords, resulting into non anaemia.
Mothers who are anaemic are also prone to have an-
aemic children. This finding is consistent with that of
[10]. The association between child’s haemoglobin level
and maternal haemoglobin level may have multiple path-
ways. For example, maternal anaemia during pregnancy
contributes to low birth weight and premature birth,
both of which increase the risk of childhood anaemia.
Low birth weight has been found to be risk factor of
childhood anaemia by [13]. Severe maternal anaemia
may also reduce breast milk iron content which can re-
sult in childhood anaemia.

Stunting positive effect on child anaemia can be due
to chronic food shortage which results in reduced
haemoglobin levels. Ngnie-Teta et al. [21] found a simi-
lar positive effect of stunting on childhood moderate to
severe anaemia in Benin and Mali. Breast feeding had a
linear effect which is consistent with most studies like
that of [11]. Less months of breast feeding is associated
with slightly high risk of anaemia and more months of
breast feeding with less risk. Breast milk basically is said
to have iron which is used in blood formation. Mother
age had a non linear effect. Increased childhood anaemia
for young mothers is probably due to young mothers re-
quiring more iron for their growth there by affecting
child haemoglobin level, and also elder mothers need
more iron due to old age which can also affect child
haemoglobin levels.

The study was not without weaknesses. The primary
limitation of this study was its cross-sectional design. Des-
pite the robustness of the analyses, control for the princi-
pal confounders, and the consistency of the main results
with those of other studies on anaemia, no causal infer-
ence can be made. Moreover, because the analysis was
based on an existing data set, we were limited to the use
of variables found in the MDHS 2010. For instance, our
study did not take into account the effect of early umbil-
ical cord clamping after birth, which several studies have
considered an important anaemia determinant [38].

Conclusion

In summary, there is evidence of residual spatial effect
to childhood anaemia in Malawi. While government and
non governmental organizations concerned with child
health should be geared in treating childhood anaemia
by focusing on known measurable factors like mother
anaemia status, child age, mother age, family wealth,
child fever and stunting which have been found to be
significant in this study, attention should also be put to
effects of unknown or unmeasured factors to childhood
anaemia present at community level. Special attention to
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these unknown factors to childhood anaemia should be
put to districts like, Nkhota-kota, Salima, Chikhwawa,
Nsanje, Mangochi and Machinga that have shown sig-
nificant positive spatial effects.
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