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Abstract

Background: Temperature, rainfall and humidity have been widely associated with the dynamics
of malaria vector population and, therefore, with spread of the disease. However, at the local scale,
there is a lack of a systematic quantification of the effect of these factors on malaria transmission.
Further, most attempts to quantify this effect are based on proxy meteorological data acquired
from satellites or interpolated from a different scale. This has led to controversies about the
contribution of climate change to malaria transmission risk among others. Our study addresses the
original question of relating meteorological factors measured at the local scale with malaria
infection, using data collected at the same time and scale.

Methods: 676 children (6-59 months) were selected randomly from three ecologically different
sites (urban and rural). During weekly home visits between December |, 2003, and November 30,
2004, fieldworkers tested children with fever for clinical malaria. They also collected data on
possible confounders monthly. Digital meteorological stations measured ambient temperature,
humidity, and rainfall in each site. Logistic regression was used to estimate the risk of clinical malaria
given the previous month's meteorological conditions.

Results: The overall incidence of clinical malaria over the study period was 1.07 episodes per child.
Meteorological factors were associated with clinical malaria with mean temperature having the
largest effect.

Conclusion: Temperature was the best predictor for clinical malaria among children under five.
A systematic measurement of local temperature through ground stations and integration of such
data in the routine health information system could support assessment of malaria transmission risk
at the district level for well-targeted control efforts.
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Background

Meteorological factors are important drivers of malaria
transmission. Temperature, rainfall and humidity have
been associated with the dynamics of malaria vector pop-
ulation and, therefore; with spread of the disease. Ambi-
ent temperature plays a major role in the life cycle of the
malaria vector. The development of the parasite within
the mosquito (sporogonic cycle) is dependent on temper-
ature. The sporogonic cycle takes about 9 to 10 days at
temperatures of 28°C, but stops at temperatures below
16°C [1-3]. The daily survival of the vector is dependent
on temperature as well. At temperatures between 16°C
and 36°C, the daily survival is about 90%. This survival
drops rapidly at temperature above 36°C. The highest
proportion of vectors surviving the incubation period is
observed at temperatures between 28° and 32°C [4]. The
gonotrophic cycle, which is the time between two blood
meals of the vector, is short at higher temperatures
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because the digestion speed increases [5]. Therefore,
higher temperatures result in more frequent vector-host
contact.

Several field studies have reported the impact of ambient
temperature on malaria outcomes. [6-10]. In South Africa,
Craig and colleagues [8] identified a significant correla-
tion between temperature and the number of malaria
cases. Mean maximum daily temperatures from January to
October of the preceding season were positively associ-
ated with the incidence of clinical cases of malaria. In
Ethiopia, minimum temperature was associated with
malaria in a cold district (minimum temperature below
12°C); while in a hot district (minimum temperature
above 12°C) the effect was not significant [9].

Rainfall provides breeding sites for mosquitoes to lay their
eggs, and ensures a suitable relative humidity of at least 50
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to 60% to prolong mosquito survival. Relative humidity
below 60% shortens the life span of the mosquitoes. The
onset of the rainy season was associated with an increase
in vector abundance [11,12]. The 1958 malaria epidemic
in Ethiopia was associated with unusual high amounts of
rain. Similarly, in Nairobi, outbreaks of malaria occurred
in 1940 after heavy rains [13]. In the Ugandan highlands,
rainfall anomalies (differences from the mean) because of
El Nino were positively correlated with vector density one
month later, and this may have started the resulting epi-
demic [14].

Despite consistently reported evidence that meteorologi-
cal factors affect malaria transmission, conflicting opin-
ions persist about their relative importance. Shanks and
colleagues [15] could not find a link between ambient
temperature and malaria admissions over a 30-year
period in Kenya. Similarly, Hay and colleagues [16] attrib-
uted the increase in malaria morbidity at four sites in East
Africa to drug resistance, rather than changes in tempera-
ture. Patz argued that this discrepancy might arise from
methodological issues. In these studies, climate data were
obtained by interpolating broad-scale grid regional cli-
mate data, based on sparse historical meteorological sta-
tion data, which are unsuitable for individual village sites
[17]. This was described as an absence of evidence, rather
than evidence of absence of a climate effect. To assess cli-
mate factors and infectious disease outcomes, Kovats and
colleagues recommended that enough measurements on
each aspect should be performed for a specific study
region [18].

The purpose of the current study was to estimate the
effects of temperature, rainfall, and relative humidity on
the incidence of clinical malaria, by examining data on
these meteorological factors and laboratory-confirmed
cases of clinical malaria. A binary-response logistic regres-
sion model with fractional polynomial (FP) transforma-
tions was used to assess these effects. The FP approach
allowed us to explore better the nature of the relationships
between these meteorological parameters and the risk of
clinical malaria. This is because presumed linearity of
these relationships is not justified [1-3].

Methods

Study site

The study was conducted in the town of Nouna and the
villages of Cissé and Goni. These three sites are part of the
Nouna Demographic Surveillance Systems (DSS) area
[19], which is located in Kossi province in the north-west-
ern part of Burkina Faso (Figure 1).

Study population
Children were selected at each site by cluster sampling of
households, using a sampling frame produced from the
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Figure 2
Meteorological station (a) and datalogger (b) in one of the
study sites.

DSS database. The sample size was set to detect inter-site
differences in clinical malaria incidence of at least 10%,
with 80% power and 95% confidence, and accounting for
15% loss to follow up. Children were involved after get-
ting informed consent from their parents. In total, 676
children (Cissé: 171, Goni: 240 and Nouna: 265), aged 6
to 59 months, took part in the study. The Nouna ethical
committee approved the study.

Clinical malaria detection

Three trained interviewers, one based at each site, visited
each child at home every week. At each visit, they meas-
ured the child's axillary temperature and collected a blood
film (by finger prick) from any child who was febrile (axil-
lary temperature > = 37.5 C). In addition, interviewers col-
lected information on bed net use and housing
conditions. Blood films were read in the Laboratory of the
Nouna Health Research Centre. Details on the clinical
malaria detection procedure are provided elsewhere [20].
The outcome measure was clinical malaria episode,
defined as being febrile with parasiteamia.

For purposes of this study, incidence was defined as the
number of clinical malaria episodes detected per 1000
units of person time bearing in mind that some illness
episodes which occurred between visits may have been
missed.

For ethical reasons, children with fever were treated pre-
sumptively with cholorquine (CQ) according to the then
national treatment guidelines for malaria. When fever per-
sisted for two days or other symptoms surfaced, the inter-
viewers immediately referred the child to the nearest
health centre. The project covered all related costs.

Meteorological data

Rainfall, temperature, and humidity were measured on
the ground using meteorological units installed at each of
the three sites. Each meteorological unit consisted of a
Digital Datalogger (THIES Datalogger, MeteoLOG TDL
14), to which three sensors (temperature, humidity, and
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rainfall) were connected (Figure 2). Following standard
meteorological conventions, the temperature and humid-
ity sensors were set at a height of 2.5 metres and the rain-
fall sensor 1.5 metres above the ground. The Dataloggers
were set for 10-second measurement cycles and 10-
minute recording cycles. Every month, a meteorological
supervisor visited each site, downloaded the data from the
Datalogger into a memory card, and transferred them into
a meteorological database. Daily minimum, mean, and
maximum temperatures, relative humidity, and total rain-
fall were then calculated.

Statistical Analysis

A conventional binary outcome logistic regression model
was used to assess the effects of mean, minimum, and
maximum temperatures (T°C), relative humidity (RH),
and amount of rainfall (Pmm) of the previous month on
clinical malaria rates among study participants. The inter-
action terms (T°C*RH', 'T°C* Pmm' and 'RH*Pmm')
were included in the model to control for the high corre-
lation of the three individual variables. Other covariates
included in the model were site of the study; sex; age; use
of bed net; type of house; presence of a well; presence of a
farm (presence of any farming; which included cereal and
vegetable farms); presence of animals; and presence of a
mosquito breeding site within a 30-metre radius of a par-
ticipant's house. As the temperature, rainfall and relative
humidity are continuous variables and their relationships
with clinical malaria might not be linear, multivariate FP
procedures [21,22] were used to determine the best-fitting
relationship they had with clinical malaria. The fitting
procedure involves transforming a continuous variable,
using a class of eight possible functions to identify the one
that provides the best fit. These functions are H, (X) = X7,
where p takes eight possible values: -2, -1, -0.5, 0, 0.5, 1,
2, 3. The linear model is represented by X!, and X0 repre-
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sents the logarithm of X. The transformation can be either
first or second-degree [21,22].

For the simplest model, the one with one continuous var-
iable (e.g. temperature) and one binary variable (e.g. bed
net use, Yes or No), the logistic regression model using the
first-degree FP is

logit(m;,) = a + BiH (X)) + /W,

... Where n;, is the predicted probability of a child testing
positive for clinical malaria at a temperature i, and for bed
net use b (yes or no); H, (X) is the functional form to
which the co-variable X is transformed; £, its coefficient;
and v is the coefficient of the co-variable; W, the use of a
bed net. The rate ratio for the first-degree PF transforma-
tion is given by the formula:

RR =exp (B* (H (X;) - Hi(X p)))

Second-degree transformation uses a combination of two
powers from the list of eight. In total, 36 combinations are
n!
ki(n—k)!’
where n is the number of possible powers (8), and k the
number each combination (2);

possible. This is calculated as follows: Cj; =

of powers in
!

_ 8 =28. In addition, the eight combi-

21(8-2)!

nations with the same power are added. The eight powers

and the 36 combinations are tested consecutively. For the

first-degree FP, the differences in deviance of each model

from the linear one are calculated and compared with the

then Cg =

chi-square distribution, with one degree of freedom at a. =
0.05. For the second-degree FP, the differences in deviance

Table I: Study population characteristics at the beginning of the study

Sites
All (%) Cissé Goni (%) Nouna (%) *y2 test
n 676 171 240 265
Household 350 74 125 151
Children per household 1.9 23 1.9 1.8
Gender p value = 0.420
Female 357 (52.8) 103 (60.2) 116 (48.3) 138 (52.1)
Male 319 (47.2) 68 (39.8) 124 (51.7) 127 (47.9)
Age in months p value = 0.929
<12 65 (09.6) 14 08.2) 19 (07.9) 32 (12.1)
12-23 157 (23.2) 39 (22.8) 57 (23.8) 6l (23.0)
24-35 159 (23.5) 36 (VAN)) 59 (24.6) 64 (24.2)
3647 161 (23.8) 40 (23.4) 58 (24.2) 63 (23.8)
48-59 134 (19.8) 42 (24.6) 47 (19.6) 45 (17.0)
* Mantel-Haenszel chi-square analysis used to detect inter- site differences.
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of each model from the best fitting first-degree FP are cal-
culated and compared with the chi-square distribution
with two degrees of freedom. The model with the largest
significant deviance difference compared to the best first-
degree FP is selected as the best second-degree FP. The sec-
ond-degree FP is therefore implicitly a better fit than
either the linear model or the first-degree FP. Using the
same example as in the first-degree FP; the second-degree
FP model is defined mathematically as follows:

logit(my) = a + piH, (X)) + BiH (X)) + /W,

.where, H,(X) and H,(X) are the respective functions to
which co-variable X is transformed.

The rate ratio for the second-degree FP is given by the for-
mula:

RR=exp (f; * (H,(Xy) - Hi(Xp)) + B, * (Hy(X;) - Hy(X,)))

All the models were run and fit using STATA ® software
[23]. The output of each model (coefficients and trans-
formed variables) was used to calculate rate ratios (RR),
only including variables with a significant effect on the
risk of clinical malaria. These are mean temperature, rain-
fall, and relative humidity. Other variables, including
minimum and maximum temperature, were removed
from the final model by an in-built backward elimination
procedure in the FP algorithm. For each variable, reference
points (x,) were defined. These are mean temperature =
27°C, the value at which clinical malaria risk peaked;
rainfall = 164 mm, the highest value observed; and rela-
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Monthly rainfall, mean temperature and relative humidity for
Goni.

tive humidity = 60%, the minimum value required for
malaria vector survival.

Results

Study population

Characteristics

Table 1 provides a summary of the study population char-
acteristics at the beginning of the observation period. In
total, 676 children distributed in 350 households took
part in the study. The average number of children per
household was 1.9. Overall, females were more (52.8%)
than males, but the sex distribution was not significantly
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Figure 5
Monthly rainfall, mean temperature and relative humidity for
Nouna.
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different across the sites (p = 0.420). Similarly, the age dis-
tribution did not differ between sites (p = 0.938).

Follow up status

During the one-year follow up, 20 children (3.0% of 676)
left the cohort, either because of death (11) or migration
out of the study sites (9). Although 52 home visits were
planned for each child, on average, each child was seen for
45.4 times, because children were not always present at
each visit. In total 594.9 person-years (PYs) were
observed.

Meteorological conditions

The three sites presented a similar pattern of meteorolog-
ical conditions (Figure 3, 4, 5). Rainfall was observed in
all sites from May to November; the highest amounts were
observed in August, September, and October. The total
amount of rainfall was higher in Nouna (508. 3 mm in 68
days) than in Cissé (334 mm in 49 days) or Goni (408.5
mm in 54 days). The pattern of relative humidity followed
the one of rainfall. At all sites, relative humidity was low
during the first six months of the year, and then increased
with the onset of the rains. The average relative humidity
over the study period was higher in Goni (48.5%; range
10.2-89.8%; SD: 22.8) compared to Cissé (43.7%; range:
9.5-89.6%; SD: 23.1) and Nouna (44.0%; range: 10.4-
89.4%; SD: 23.8). The mean temperature was similar
across all sites. With the onset of the rains, temperatures
decreased to 26.6°C in Cissé and Nouna and 26.5°C in
Goni between August and September. From September
on, the temperature rose again; and then started to
decrease in December, the coldest month. The average
mean temperature for the whole period was lower in
Goni, though with large variance (27.9°C; range: 20.8-
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35.9; SD: 3.8) compared to Cissé (29.1°C; range 22.8-
35.9; SD: 3.1) and Nouna (29.6°C; range 20.6-35.4; SD
2.9).

The mean daily temperature variation in a month,
expressed by standard deviation, was high in March for all
sites (Cissé: 3.1; Goni: 2.9; and Nouna: 2.9). From March
onwards, at all sites, this variation decreased in all sites to
achieve its smallest value in December, which was 0.7 and
1.1 in Goni and Nouna, respectively. An unusual small
variation was observed in Cissé in October (0.1).

Clinical malaria incidence

Over the study period, 1274 episodes of fever were
observed; thus, an incidence of 2.1 episodes per PY (1274
episodes/594.9 PYs), which was similar in all sites (Cissé
= 2.1, Goni = 2.3, and Nouna = 2.0). Out of 1274 fever
episodes, 635 had parasiteamia and were therefore con-
sidered as cases of clinical malaria, giving an incidence of
1.1 episodes per PY. Nouna had the lowest incidence of
0.8 per PY. In Cissé and Goni, the incidence was 1.2 and
1.3 per PY, respectively.

Table 2 presents the monthly distribution of clinical
malaria incidence which varied strongly between months.
The lowest incidence rates per 1000 person months (PM)
were in May and June (Cissé: 8.1, 7.7; Goni: 37.7, 35.3
and Nouna: 26.7, 15.1, respectively) in all sites. The over-
all monthly incidences for May and June were 26.2 and
20.8 per 1000 PM, respectively. In contrast, the highest
incidence was observed in different months; in Cissé, inci-
dence peaked in August (326.5 per 1000 PM) versus Sep-
tember for Goni (331.3 per 1000 PM) and Nouna (130.6
per 1000 PM) (Table 2).

Table 2: Monthly under-five incidence of clinical malaria in the three study sites

Sites
Cissé Goni Nouna All
Month PM CE IR PM CE IR PM CE IR PM CE IR
December 2003 149.8 29 193.6 221.4 27 122.0 185.0 20 108.1 556.2 76 136.6
January 2004 139.5 6 43.0 215.8 8 37.1 208.4 7 336 563.7 21 373
February 2004 139.8 19 135.9 213.3 8 375 211.6 12 56.7 564.7 39 69.1
March 2004 145.9 18 123.4 210.8 18 85.4 212.6 Il 51.7 569.3 47 82.6
April 2004 139.3 2 14.4 205.8 12 583 210.5 26 123.5 555.6 40 72.0
May 2004 123.2 I 8.1 185.6 7 37.7 187.3 5 26.7 496.1 13 26.2
June 2004 130.7 | 77 198.1 7 353 198.3 3 15.1 527.1 I 20.9
July 2004 142.6 2 14.0 209.5 23 109.8 199.5 7 35.1 551.6 32 58.0
August 2004 131.7 43 326.5 197.5 53 268.4 197.7 20 101.2 526.9 116 220.2
September 2004 125.6 25 199.0 181.1 60 331.3 176.1 23 130.6 482.8 108 223.7
October 2004 140.9 18 127.8 207.9 41 197.2 208.6 26 124.6 557.4 85 152.5
November 2004 139.8 12 85.8 207.2 23 111.0 208.1 12 57.7 555.1 47 84.7
Total 150.9 176 1166.3 224.4 287 1279.0 219.6 152 692.2 594.9 635 1067.4
PM: Person months, CE: Clinical malaria cases, IR: Incidence Rate per 000 PM (per PY for the total)
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Table 3: Meteorological variables, their transformation powers and functional forms used in deriving estimates for the association with

clinical malaria risk

Variables (degree) Variables Transformation functions
(power)
T —2
Average temperature (Second degree) Tmean_|I (-2) mean ) —0.1201
10
T 0.5
Tmean_2 (0.5) Limean —-0.1699
10
Pmm +0.3000 Y
Rainfall (Second degree) Pmm_I (2) Lmm+0.5000 1 _ 0.1261
100
2
Pmm_2 (2) Pmm+0.3000 Y In Pmm +0.3000 +0.1306
100 100
—1
Relative humidity (Second degree) RH_I (-1) E *1n E —~0.3332
10 10
—1
RH_2 () RE in| R 0.3332
10 10
—1
Rainfall and humidity (first degree) PmmRH (-1) PmmRH +2.46999741 ~3.971
10000
Temperature and humidity (first degree) TRH (1) TRH - 1305
Temperature and rainfall (first degree) TPmm (1) TPmm - 989.7

Effect of meteorological parameters on incidence of
clinical malaria episodes

Fractional polynomial transformation algorithm

Table 3 shows the transformation functions for each vari-
able. The relationships between meteorological parame-

Table 4: Model estimates and confidence intervals for the
meteorological variables

Variables Pestimates 95% CI
Tmean_| -86.9789 (-113.4057 ; -60.5521)
Tmean_2 -29.7873 (-38.7457 ; -20.8288)
Pmm_| 3.7666 (1.5279 ; 6.0053)
Pmm_2 -3.4380 (-5.3612; -1.5147)
RH_I -8.9203 (-14.807 ; -3.0337)
RH_2 -23.2151 (-36.7151 ; -9.7152)
PmmRH -0.0003 (-0.0004 ; -0.0002)
TRH -0.0035 (-0.0058 ; -0.0012)
TPmm -0.0012 (-0.0021 ; -0.0004)
Intercept -3.8180 (-4.18581 ; -3.4502)

Log pseudo-likelihood = -2920.2374, Wald chi square = 282,
Deviance: 5840.466

ters and clinical malaria incidence were not linear since
none of the functions had the power of +1. Minimum and
maximum temperatures, which were included in the ini-
tial model, were removed by backward elimination. Only
the interaction terms of 'temperature and humidity', and
‘temperature and rainfall' had a linear relationship with
first-degree transformation. The best fit for mean temper-
ature, rainfall and relative humidity alone were obtained
with second-degree transformations. For the interaction
term 'rainfall and humidity’, the first-degree transforma-
tion with a power of -1 yielded the best fit.

Model estimates of coefficients and confidence limits

Although other variables were included in the model for
adjustment purposes, their estimates are not shown in
Table 4, because the focus was on meteorological param-
eters. For each power of transformation, an estimate is
given. All variables, individually or combined, had a sig-
nificant effect on clinical malaria rates. The highest effect
was observed with mean temperature. The combined
effects of rainfall-humidity, temperature-humidity, and
temperature-rainfall, although significant, were small.
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The effects of meteorological parameters on clinical
malaria expressed in rate ratios (RR) are presented in Fig-
ure 6, 7 and 8. For each parameter, vertical and horizontal
lines show the reference point.

Mean temperature ranged from 21°C to 34°C. The rela-
tionship between mean temperature and clinical malaria
incidence displayed a bell-shape curve (Figure 6). The risk
of clinical malaria increased with an increase in mean
temperature up to 27°C. At 23°C, the risk for clinical
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Figure 7

Effect of total rainfall on clinical malaria risk (RR = rate ratio)
among study children. Horizontal and vertical red lines indi-
cate the reference point (RR = I, RH = 60%).

malaria was 53% of the risk at 27 ° C. Temperatures above
27°C led to a significant decrease in clinical malaria risk.
The risk was therefore least at the lower and higher
extremes of the temperature range.

The effect of rainfall on clinical malaria risk was observed
only for values above 100 mm (Figure 7). Below that
level, the risk reduction compared to 164 mm was almost
100%. There was no difference in risk between the rainfall
levels of 60 mm and 90-mm. Above 100 mm, the risk
increased significantly for each increase of 10 mm of rain.
For example, the RR at 150 mm was 0.3 compared to 0.7
at 160 mm.

Relative humidity observed in the field ranged between
15% and 80%. The clinical malaria risk increased with an
increase in relative humidity, but not linearly (Figure 8).
Below 60% humidity, there was low risk. For example at
55% relative humidity, the risk was 25% lower than at
60% relative humidity. The risk of clinical malaria
increased exponentially at relative humidity exceeding
60%.

Discussion

The individual effects of temperature, rainfall, and relative
humidity of the preceding month on clinical malaria risk
among children under age five were explored. The results
confirmed that all meteorological factors are predictors
for malaria risk. However, mean temperature was the best
predictor.

Mean temperature alone was a strong predictor of clinical

malaria rates among the children in our sample. Its rela-
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tionship with clinical malaria was bell-shaped such that
the risk was lowest at low and high temperatures. The
infection risk was highest at temperatures around 27°C.
There is no direct biological link between human infec-
tion and ambient temperature. However, the tempera-
ture-dependence of the Anopheles gambiae (the primary
malaria vector in this region) life cycle could explain these
results. Indeed, the sporogonic cycle (the development of
the parasite within the vector) is shorter (9-10 days) at
28°C and longer (about 100 days) at temperatures below
20°C [1,24]. Therefore, a short incubation period allows
the vector to live long enough to become infectious. The
lifespan of the Anopheles gambiae is about 21 days. At high
temperatures, vector survival decreases and temperatures
of 40° C will result in zero vector survival. Craig and col-
leagues [4] reported that the proportion of vectors surviv-
ing the incubation period is high at temperatures between
28°C and 32°C. This explains the high-risk of clinical
malaria observed in this range of temperature. In addi-
tion, temperatures above 27°C increase the feeding fre-
quency of the vector to every two days, as the blood
digestion rate increases. This results in more frequent vec-
tor-human contact. These findings agree with those from
several other studies [25,26,7,9].

Cumulative rainfall from the previous month had a posi-
tive effect on clinical malaria rates as well. Several other
studies reported similar results [26,6,9,10]. The relation-
ship was 'J-shaped', suggesting that the relationship is
non-linear, contrary to the results reported by Teklehie-
manot and colleagues [9]. In addition, a minimum
amount of rainfall is necessary for transmission to take
place. In our study, a minimum of 100 mm was necessary
before any case of clinical malaria could be observed. This
could be explained by the hot and dry climate of the study
area leading to high evaporation and water infiltration
into the soil. Small amounts of rainfall will evaporate or
infiltrate over a shorter time. Conversely, with higher
amounts of rainfall, some water remains long enough for
the vector to complete its development cycle. At higher
amounts of rainfall, further increases may have little effect
on clinical malaria risk, suggesting that a saturation level
exists, as reported by Teklehiemanot and colleagues [9].
However, because of the relatively low amount of maxi-
mum rainfall (160 mm), the model could not capture this
saturation phenomenon. As with temperature, the effect
of rainfall is not directly related to human infection; but
rainfall influences vector population abundance by pro-
viding open surface water for breeding. A positive effect of
rainfall on malaria transmission has been reported widely
in the literature, even though some studies have shown a
converse or negligible effect [27-30,7]. This might be
explained by the overwhelming effect of temperature. For
rainfall to have a positive effect on malaria incidence, the
temperature must be warm enough to support mosquito
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and parasite development [31]. This explains the low rate
of malaria transmission in highlands, where rainfall is
abundant, but temperatures are relatively low (below
20°C).

The individual effect of relative humidity on risk of clini-
cal malaria, compared to temperature and rainfall, has
been reported less often in the literature. Mean relative
humidity of the previous month had a positive effect on
malaria incidence. The effect was greater than that of rain-
fall. This is in line with the findings of Bi and colleagues
[32]. To account for the strong correlation between rain-
fall and relative humidity an interaction term was
included in the model. Thus, the estimate represents the
individual effect of relative humidity on clinical malaria
risk. The relative humidity observed ranged from 15% to
80%, with an average of 50%, mainly driven by rainfall
and temperature. At a relative humidity below 60%, there
was a decline in the risk of clinical malaria. This could be
explained by a decrease in vector lifespan under these con-
ditions, therefore, reducing the proportion of vector sur-
vival [33]. In contrast, at relative humidity above 60%, the
infection rate increases substantially as humidity
increases. The risk at 80% humidity is twice the risk at
60%. Again, this can be explained by improved vector sur-
vival.

The study was performed only for one year; thus, it cannot
claim to be representative of all years. In fact, rainfall and
humidity were both below the average of the last 10 years
(data from the national meteorological station), but aver-
age temperatures were similar. Clinical data from several
years (at least three years) of observation would have been
ideal; but this was not feasible, given the costs involved in
collecting the malaria infection data. In addition, the
reported malaria incidence was not significantly different
from that reported in a study conducted in the preceding
year. Without a catastrophic event (like flooding or
drought), the effect of meteorological variables on
malaria infection should not change much from one year
to another.

In such a semi-immune population, malaria may be tran-
sient. Therefore, weekly visits may not be sensitive enough
to capture all the episodes. Infection acquired between
visits could have been treated and cured and therefore
missed. Indeed, Snow and colleagues reported a sensitiv-
ity of 74% of weekly visits in capturing clinical malaria
episodes compared to daily visits [34]. In this setting, we
expect a slightly higher sensitivity than the 74% because
the most commonly used drug at the time was chloro-
quine which was reported to have a treatment failure of
36% [35]. Also, unless the child was severely ill, parents
preferred to wait for the next visit of the interviewer
because treatment of study participants was free. It should

Page 9 of 11

(page number not for citation purposes)



BMC Public Health 2007, 7:101

also be noted that Snow and colleagues did not find sta-
tistically significant differences in the risk of detecting
malaria episodes when comparing daily visits to weekly
ones [34]. Considering the cost and logistics involved in
daily visits, the more cost-effective alternative was the
weekly visits. The probable underestimation of the clini-
cal malaria episodes notwithstanding, we do not expect
the nature of the relationships with meteorological
parameters to differ greatly from our findings.

Conclusion

The findings of this study confirm that meteorological
conditions have a significant influence on clinical malaria
rates among children under-five years old. Although sev-
eral individual meteorological parameters have an impact
on clinical malaria incidence, mean temperature is the
best predictor and the main driving force, at least in the
region. This is also observed in other regions. For example
in the highlands region the preventing factor for malaria
transmission is the low temperature because of the high
altitude. Changes in ecological settings because of climate
change are to be expected in this sub-Saharan region,
especially the rain patterns. These changes may modify
local mosquito microhabitats and affect transmission
widely. A health information system including systematic
monitoring of temperature and rainfall could yield an
early warning system to support malaria control efforts at
district level.
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