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Abstract

Background: Infectious disease surveillance is a process the product of which reflects both actual disease trends and
public awareness of the disease. Decisions made by patients, health care providers, and public health professionals about
seeking and providing health care and about reporting cases to health authorities are all influenced by the information
environment, which changes constantly. Biases are therefore imbedded in surveillance systems; these biases need to be
characterized to provide better situational awareness for decision-making purposes. Our goal is to develop a statistical
framework to characterize influenza surveillance systems, particularly their correlation with the information environment.

Methods: We identified Hong Kong influenza surveillance data systems covering healthcare providers, laboratories,
daycare centers and residential care homes for the elderly. A Bayesian hierarchical statistical model was developed to
examine the statistical relationships between the influenza surveillance data and the information environment
represented by alerts from HealthMap and web queries from Google. Different models were fitted for non-pandemic
and pandemic periods and model goodness-of-fit was assessed using common model selection procedures.

Results: Some surveillance systems — especially ad hoc systems developed in response to the pandemic flu
outbreak — are more correlated with the information environment than others. General practitioner (percentage
of influenza-like-illness related patient visits among all patient visits) and laboratory (percentage of specimen
tested positive) seem to proportionally reflect the actual disease trends and are less representative of the information
environment. Surveillance systems using influenza-specific code for reporting tend to reflect biases of both healthcare
seekers and providers.

Conclusions: This study shows certain influenza surveillance systems are less correlated with the information
environment than others, and therefore, might represent more reliable indicators of disease activity in future outbreaks.
Although the patterns identified in this study might change in future outbreaks, the potential susceptibility of
surveillance data is likely to persist in the future, and should be considered when interpreting surveillance data.
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Background
The threat of pandemic influenza has led to extensive
efforts to strengthen the global influenza surveillance [1,2],
including the development of novel syndromic surveillance
systems intended to identify potential outbreaks and track
influenza in the population. Some focus on identifying
influenza-like-illness (ILI) in clinical and other settings,
while others search the Internet to identify disease
outbreaks that might not have been recognized by the
authorities [3,4]. Having found high correlations with
traditional surveillance systems and noting the benefits of
timeliness and low cost, Internet-based surveillance systems
have been widely recognized as important supplementary
data sources for influenza surveillance [5].
Infectious disease surveillance is a process; the data

available for analysis reflects not only disease status in
the population (the signal) but also other non-random
factors (the noise). Our research has shown that decisions
made by patients, healthcare providers, and public health
professionals about seeking and providing healthcare
and about reporting cases to health authorities are all
influenced by the information environment, which we
define as the information the population is exposed
to through media, the Internet, social networks, and so
forth. And since the information environment changes
constantly, surveillance data systems that depend on
decisions by patients and health professionals are
likely to be biased, possibly in different ways [6,7].
Epidemiologists and public health practitioners typically
recognize these potential biases qualitatively, and present
their analysis of the available data with appropriate
caveats. Public health practitioners and clinicians are
also aware of the surge in medical resource utilization
caused by the “worried well” in response to media
coverage of disease outbreaks [8]. Awareness of these
biases is often lost, however, at higher levels [9].
Some researchers assume that data on the information

environment — such as Google searches and Twitter
feeds — can be used as proxies that directly estimate
disease transmission in the population as long as the
“signal” can be separated from the “noise” (trends in
the data reflecting public awareness rather than disease
transmission per se) [3,10,11]. Others simply view infor-
mation environment data as a direct proxy for disease
transmission. Surveillance systems that are fast, inexpen-
sive, decentralized, automated, and utilize the power
of information technology seem to satisfy the need
for a magic bullet in the digital era. Whether such
systems work as expected, or are another example of
“big data hubris” [12], remains an open question.
To address this issue in a rigorous way, the objectives

of this study are to (1) develop a method to characterize
the relationship between surveillance data and the infor-
mation environment, (2) identify surveillance systems that
more closely reflect actual disease trends rather than the
information environment, therefore useful for tracking,
and (3) understand the implications of the fact that
some surveillance systems are more correlated with
the information environment. In particular, we developed
a Bayesian hierarchical statistical model that allows us to
examine the relationship between surveillance data and
information environment more formally than our previous
analyses [6,7]. This methodological paper is for public
health surveillance specialists to better understand and
improve the performance of data systems.
Our analysis uses influenza surveillance data and

information environment proxy data (e.g. Google
search and HealthMap) from Hong Kong during the
pre-pandemic (2007-2008) and pandemic (June – November
2009) periods. Rather than thinking of influenza-related
web queries and news being direct indicators of disease
transmission in the population, we view them as indicators
of the information environment. We built a Bayesian
hierarchical statistical model to estimate the correspondence
between individual surveillance data and the information
environment proxy data. Although not employed in
this analysis, the model has the potential to incorporate
epidemiological expertise through informed prior distribu-
tions. The findings have enabled us to understand how
each surveillance system is related to the information
environment and disease status, which should eventually
help public health practitioners interpret the influenza
surveillance data for situational awareness purposes, as well
as prioritizing resources to different surveillance systems
given the specific decision-making needs.

Methods
Data description
Influenza surveillance data
The local public health agency in Hong Kong – Centre for
Health Protection (CHP), conducts surveillance monitoring
influenza-like-illness among a network of over 40 private
general practitioners (GP) and 64 public sentinel general
out-patient clinics (GOPC). The out-patient ILI surveillance
network reports the proportion of outpatients with ILI
[Fever (>38°C, oral or equivalent) AND Cough or sore
throat] on weekly basis [13,14]. During the Influenza A
(H1N1)pdm09 virus infection (pH1N1) outbreak, eight
designated flu clinics (DFC) were operated from June 13th

2009 to May 23rd 2010 [15], while the general out-patient
clinics data were interrupted [16]. Hospital Authority, a
public-sector organization that oversees all public hospitals,
manages over 95% of the in-patient care [17]. The weekly
numbers of hospitalization with principle diagnosis of
pneumonia and influenza (P&I; ICD9 480‒487) and
influenza (ICD9 487) were obtained from the Hospital
Authority for age groups of 0-4,5-14,15-64 and ≥65 years.
Respiratory specimens from sentinel out-patient clinics,
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general practitioners are routinely submitted to the Public
Health Laboratory Centre (PHLC) of CHP for sentinel
surveillance purpose, while specimens from other out-
patient healthcare facilities and hospitals are routinely
submitted to the PHLC for diagnostic purposes [13].
Weekly data on numbers of specimen received, numbers
of specimen tested positive for influenza and proportion
of specimen tested positive were obtained from PHLC for
1997-2009. Reliable estimates of weekly incidence rate
of pH1N1 for age groups (5-14,15-19,20-29,30-39,40-
49, 50-59) were constructed based on serological data
and hospitalization data [18]. Summary of data sources
are provided in Table 1.
We used data from Hong Kong for this analysis

because of the following reasons. First, Hong Kong
has a population of high density and mobility. The
heterogeneity in the disease transmission dynamics
and the informational environment is less likely to be
attributable to the geographic variability. Therefore, the
influenza surveillance systems are presumably monitoring
a relatively homogenous population under the same
informational environment, which is an important
presumption for this modeling approach. Also, in addition
Table 1 Summary of Hong Kong Influenza surveillance data

Y Data Description

Y1 flu-HA Hospital admissions with principle diagnos

Y2 GOPC Weekly ILI consultations at sentinel genera
clinics per 1,000 consultations

Y3 CCC/KG Percentage of children at the sentinel chil
and kindergartens with fever

Y4 GP Weekly ILI consultations at sentinel physic
1,000 consultations

Y5 RHE Average number of elderly with fever per
elderly at the residential care homes

Y6 Lab(%pos) Percentage of confirmed influenza cases a
tested samples

Y7 P&I-HA Hospital admissions with principle diagnos
pneumonia and influenza

Y8 P&I-HA (0-15 yr) Hospital admissions with principle diagnos
and influenza for patient aged 0 to 15 yea

Y9 P&I-HA (65+ yr) Hospital admissions with principle diagnos
and influenza for patient aged over 65 yea

Y10 Lab(#spm) Number of specimens received for laborat

Y11 Lab(#pos) Number of specimens tested positive for i

Pandemic Only Data Series

Y12 DFC Number of ILI related patient visits at Desi
Clinics (8 clinics)

Y13 NID Number of confirmed influenza infection r
registered medical practitioners in HK

Xc Incidence rate (5-14 yr) Reliable estimate for incidence rate among
between 5 to 14 years old based on a sero

Xa Incidence rate (all age) Reliable estimate for incidence rate for all
based on a serological study
to the normal winter-spring peak, Hong Kong usually
experiences a summer peak in July to August [19], which
potentially doubles the data volume. Since 2004, the Hong
Kong Centre for Health Protection (CHP) has been
monitoring influenza activity using multiple surveillance
systems summarized in a weekly surveillance dashboard.
These include sentinel surveillance system based at
Accidents and Emergency Department of public hospitals,
private medical practitioners, general outpatient clinics,
traditional Chinese medicine practitioners, childcare
centres and kindergartens and residential care homes for
the elderly, as well as more traditional laboratory and
influenza-related hospitalization surveillance systems.
Given the variety of data types available, as well as the
availability of reliable estimate of incidence rate based on
serological study during pandemic period as gold
standard [18], Hong Kong is chosen for this project.

Information environment proxy data
Two data sources were identified as proxies for the infor-
mation environment: HealthMap and web queries using
Google search engine. HealthMap is an online information
aggregator and surveillance platform that identifies,
Type Period

is of influenza Count 1998 to 2011

l out-patient Percentage 1998 - 2011

d care centers Percentage 2007 to 2011

ians’ offices per Percentage 1998 - 2011

day per 1,000 Percentage 2007 to 2011

mong all the Percentage 1997 to 2009

is of Count 1998 to 2011

is of pneumonia
rs old.

Count 1998 to 2011

is of pneumonia
rs old.

Count 1998 to 2011

ory testing Count 1997 to 2009

nfluenza virus Count 1997 to 2009

gnated Flu Count June 13th 2009 – May 23rd 2010

eports from all Count April 27th 2009 – October 8th 2010

children
logical study

Percentage June 15th 2009 – November 22nd 2009

age group Percentage June 15th 2009 – November 22nd 2009



Figure 1 Selection flowcharts for Google search keywords.
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characterizes, and maps events of public health and med-
ical importance in real-time [20]. For this project, the first
author manually coded Chinese language feeds using data
filtered by disease category and geographic location. All
feeds in both English and Chinese categorized as respira-
tory illness and related to Hong Kong area were verified for
the correctness and completeness based on the original
sources. Among 4,695 feeds that were extracted from
the earliest date available, 2,166 feeds posted between
January 1st, 2007 and November 28th, 2009 were ex-
tracted and tabulated for this study. The inclusion
and exclusion criteria for HealthMap alerts data can
be found in Additional file 1: Table S1.
Given the bilingual cultural environment in Hong

Kong, we developed an original search matrix covering
the disease and behavior related indicators in both
English and Chinese. The “seed” for keywords are
first identified based on literature review [11]. Each
seed keyword is then assessed for correlated search terms
through the Google Correlates tool [21,22]. Additional
keywords are then identified through snowballing,
until no more new keywords are shown in the correlation
list. By using Google Insight for Search — now rebranded
as Google Trends ― the search volume index is retrieved
for each of the keyword individually for Hong Kong. The
search volume index, also called the “interest over time”
on the new Google Trends website, is the search volume
of the individual search term divided by its maximum
search volume during the user specified period [23] ―
starting from 2004 to the latest available data.
Among the 144 original keywords through Google

Correlate, 44 are in English and 100 are in Traditional
Chinese, among which 74 are not disease related. 18
keywords have no search results from Google Trends
due to the lack of search volume. Among the
remaining 52 keywords, 20 are available on weekly
basis and 32 are available on monthly basis. For keywords
that only have monthly data, weekly estimates are estimated
using the monthly value assuming the level stays the same
through the month (Figure 1).

Data preparation
All search index data are standardized. And for quality con-
trol purposes, the “Related terms” shown on the Google
Trends website for each search keyword is also examined
and documented, since some keywords are significantly
correlated with non-disease related terms. In Additional file
1: Table S2, all keywords are listed under seven categories.
For influenza surveillance data, some researchers be-

lieve the flu activity in tropical areas like Hong Kong is
present all year round [24]. To comply with the general
terminology of flu surveillance, we still use the terms
flu season and non-flu season, but define flu season as
the mostly likely time period when flu activity peaks
every year, based on literature review and official defin-
ition [19]. January to March and July to August are then de-
fined as flu season, while the remaining periods are referred
as non-flu season. The sole exception is the summer of
2007 when the flu activity in multiple data streams started
peaking before July; the flu season is therefore readjusted to
begin at week 25 instead of week 27 of 2007. The non-
pandemic period in this model is defined as the first
120 weeks starting from the first week of 2007 until the
16th week of 2009 (January 1st 2007 to April 19th 2009),
given the fact that the U.S. Centers for Disease Control and
Prevention (CDC) first announced the novel H1N1 virus
alert on April 21st, during the 17th week [25]. The pandemic
period starts at week 25 and ends at week 47 of 2009 (June
15th 2009 to November 22nd 2009), which is when the reli-
able estimates of incidence rate are available.

Statistical model
Bayesian hierarchical model
Bayesian hierarchical modelling framework allows for
decomposing complex problems into subset of simpler
problems governed by simple rules of probability [26].
Hierarchical modeling has many advantages such as allowing
for multiple sources of data and accounting for parameter
uncertainty; in particular, the Bayesian framework allows for
the ability to consider scientifically meaningful structures and
a priori knowledge regarding the model parameters.
Given the availability of reliable estimates of incidence

rate of influenza during the pandemic period, we applied
two models in this study.

Pandemic Model (P Model)
For pandemic period, a model is constructed based on the
hypothesis that, the values reported by each surveillance
system reflect both actual disease status and public
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awareness. The information environment input can
influence the level of actual disease trends being captured
through a multiplier θj,t, and the level of public awareness
imbedded in the surveillance systems φj,t for each surveil-
lance system j at time t.
For data as proportions in the pandemic model

(P model) model we have…
Data model:

Log Y j;t
� �eN μj;t ; σ

2
j

� �
ð1Þ

Process model:

μj;t ¼ θj;t⋅Xt þ φj;t ð2Þ

θj;t ¼ βj;t;1 þ
XM

l¼2
βj;t;l⋅k

p
l−1;θ;t ð3Þ

φj;t ¼ αj;t;1 þ
XN

r¼2
αj;t;r⋅k

p
r−1;φ;t ð4Þ

Parameter model:

αj;t;reN μα; σ
2
α

� �
; r ¼ 1;…:;N ð5Þ

βj;t;leN μβ; σ
2
β

� �
; l ¼ 1;…:;M ð6Þ

τ≡1=σ2
j e Gamma a; bð Þ ð7Þ

For data as counts in P model we have…
Data model:

Y j;te Pois λj;t
� � ð8Þ

Process model:

Log λj;t
� � ¼ θj;t⋅Xt þ φj;t ð9Þ

θj;t ¼ βj;t;1 þ
XM

l¼2
βj;t;l⋅k

p
l−1;θ;t ð10Þ

φj;t ¼ αj;t;1 þ
XN

r¼2
αj;t;r⋅k

p
r−1;φ;t ð11Þ

In P model, Xt denotes as the estimated influenza inci-
dence rate of the whole population; Yj,t refers to the data
from surveillance system j at time t. The log of Yj,t follows
a normal distribution with mean of μj,t and variance of σ2j .

μj,t has two components: θj,t ― denoted as “complete-
ness”, describes the component of actual disease
trends that surveillance system j captures at time t which
is further regressed on predictive variables of the informa-
tion environment proxy data (kpl−1;θ;t); φj,t ― denoted as “ex-

cess”, estimates the component in the surveillance data that
cannot be fully explained by the actual disease trends, and is
regressed on another set of information environment
predictors. βj,t,m and αj,t,n are the coefficients for the informa-
tion environment proxy data (kp) during the pandemic
period. The parameter model, as stated in equation (5) and
(6), apply to both models for data as counts and proportions.
Non-pandemic (NP) model
Due to the lack of estimated incidence rate during the
non-pandemic period, a different model is constructed
to assess the statistical relationship between surveillance
data and the information environment. A linear regression
model is fitted as follows:
Data model:

Log Y j;t
� �e N μj;t ; σ

2
j

� �
ð12Þ

Process model:

μj;t ¼ ρs;j;t;1 þ ρs;j;t;2⋅k
np
1;t þ ρs;j;t;3⋅k

np
2;t

þ ρs;j;t;4⋅k
np
3;t ð13Þ

Parameter model

ρs;j;t;le N μρ; σ
2
ρ

� �
ð14Þ

τ≡1=σ2
j e Gamma a; bð Þ ð15Þ

where Yj,t refers to the data from surveillance system j
at time t; s refers to either flu season or non-flu season;
and np denotes non-pandemic period. Log(Yj,t) follows a
normal distribution with mean μj,t and constant variant
σ2j . k

np
i;t (i = 1,2,3) are the three information environment

indices during non-pandemic period as described in
Table 2. ρs,j,t,i is the indicator of the correspondence be-
tween the expected values of the log of the surveillance
data μj,t and each of the k terms.
Non-informative priors were used for both pandemic

and non-pandemic models. A normal distribution with
mean of 0, variance of 100 (or precision of .01) was used
as prior distribution for αj,t,n, βj,t,m and ρs,j,t,i. A Gamma
distribution with mean 1 and variance of 10 or Gamma

(.01, .01) was used as prior for τ 1=σ2j
� �

.

We conducted variable selection using a commonly
used measure called the Deviance Information Criterion
(DIC) as our primary method [27]. To confirm the DIC
results, we also looked at other methods, such as singular
value decomposition (SVD) and root-mean-square error
(RMSE), which both agree with the DIC results. The
predictor variables selected for the final model are
listed in Table 2. Further information on model selection
is available in the Additional file 1: Table S4.
Exploratory data analysis was conducted using Stata

[28] and R (the Comprehensive R Archive Network)
[29]. Both NP and P model are implemented in
OpenBUGS [30], an open-source software package for
performing Bayesian inference using Gibbs sampling.
In OpenBUGS, precision τ (1/variance) is used to de-
fine the distributions; the posterior results are also the es-
timation for the precision.



Table 2 List of information environment indices used in pandemic and non-pandemic model

Parameter Coefficient Acronym

kp1;θ;t βj,t,2 Sea.flu Google search index for seasonal flu terms

kp2;θ;t βj,t,3 Symp Google search index for symptoms

kp3;θ;t βj,t,4 Med Google search index for medications

kp4;θ;t βj,t,5 Non-flu Google search index for non-flu terms

kp1;φ;t αj,t,2 Total HealthMap total number of alerts

kp2;φ;t αj,t,3 Unique HealthMap number of unique alerts

kp3;φ;t αj,t,4 HCF HealthMap number of healthcare facilities related alerts

kp4;φ;t αj,t,5 %RSV Lab surveillance% RSV tested positive

kp5;φ;t αj,t,6 Authority Google search index for authority

kp6;φ;t αj,t,7 Pan.flu Google search index for pandemic flu terms

knp1;t ρs,j,t,2 Non-flu Index
Avian influenza, bird flu, common cold, severe acute respiratory
syndrome (SARS), pneumococcus,% RSV

knp2;t ρs,j,t,3 Illness Index
body temp,% RSV, cough, fever, nasal congestion, cough relief
remedies, headache, common cold, pediatric, paediatric

knp3;t ρs,j,t,4 Public-awareness Index

CHP, Hospital Authority, Ministry of Health, disinfect, flu, influenza,
pandemic, epidemic, school closures, total number of HealthMap
alerts, number of healthcare facilities related alerts, number of
school related alerts, number of “breaking” alerts
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Model implementation includes the choice of priors, initial
values, sampling procedures, and so forth. Non-informative
priors were used for both pandemic and non-pandemic
model. A normal distribution with average of 0, variance of
100 was used as prior for αj,t,n, βj,t,m and ρs,j,t,i. A Gamma
distribution (.01, .01) which has mean 1 and variance 100
was used as prior for σ2j . Using Markov Chain Monte Carlo

(MCMC), we estimated the posterior distributions and
reported means and standard deviations as well as 95%
credible intervals (CIs) for each of the posterior distributions.
In order to make sure the algorithm is robust to the choice
of initial values and convergence is achieved, we used three
sets of initial values. It should be noted that OpenBUGS has
a feature to generate random initial values — it is advised
that the user chooses the initial values carefully, as randomly
generated initial values may result in epidemiologically
unreasonable prior densities or unreasonable collection of
values for the posterior or the likelihood function, or very
slow convergence for the algorithm. The initial values
used in the model, along with the OpenBUGS code, are
included in Additional file 2. For each parameter, 500,000
iterations are conducted; the posteriors are calculated after
the first 5,000 iterations are discarded. Three chains
converge quickly for both models ― usually stabilizing
after 500 iterations. 500,000 iterations with three initial
chains take about 3,000 seconds for the NP model and
15,000 for the P model. No thinning is applied in ei-
ther model because autocorrelation is negligible.
To present these results graphically with 95% credible

intervals (CIs), we estimate the posterior distribution of
each coefficient for the correspondence between individual
surveillance system and the information environment
proxy data. Following standard practice in the Bayesian
literature, we use the term “significant” when the 95% CI
does not include zero, indicating evidence of a statistical
correlation between the surveillance system and the
information environment proxy data. For instance, in
Figure 2A, flu-HA has a CI that is entirely above zero,
which suggests a positive correspondence with one of the
information environment proxy data streams — Google
search for seasonal flu term. On the other hand the data
for %ILI visits at general practitioners shows a lack of stat-
istical correspondence with seasonal flu term searches be-
cause the CI includes zero.
To examine the sensitivity of the model to the choice of

prior, models are run with three sets of hyper-parameters,
as listed in Additional file 1: Table S7. No evidence showing
sensitivity issues about the choice of hyper-parameters
was observed.

Results
Pandemic model (P Model)
In the pandemic model we characterized the relationship
between surveillance data and the information environment
proxy data by estimating the “completeness” and “excess”
in each surveillance data stream (Table 3). Figure 3
illustrates how biases can be introduced into the surveil-
lance systems by drawing in not only non-flu patients but
also increased numbers of flu patients, who otherwise might
not present themselves to any of the surveillance systems.
The proportion of the infected population captured by the
surveillance systems — defined as “completeness” — is



Figure 2 Posterior distributions of coefficient βj,t,m (m = 2,..,5; j = 1,…,11) in “completeness” parameter θj,t (multiplier for the estimated
incidence rate) as measure of correspondence between surveillance data and the information environment proxy data in the pandemic
model. A) Coefficient for Google search index for seasonal flu terms; B) Coefficient for Google search index for symptoms; C) Coefficient for
Google search index for flu medications; D) Coefficient for Google search index for non-flu terms.
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usually not constant but fluctuates. A surveillance system
might only capture a small proportion of the actual infected
population. However, as long as the ratio stays constant and
independent from the information environment, it can be a
useful for tracking disease in the population.
Out of eleven surveillance data streams, five — flu-HA,

percentage of ILI visits at designated flu clinics, notifiable
infectious disease reporting, number of specimen tested
positive, number of specimen received — have consistently
significant coefficients for all four k’s (Figure 2). In other
words, the proportion of actual infected cases being
captured by these surveillance systems is strongly affected
by the information environment. If the coefficient has a
positive CI such as Google search term for seasonal flu
term (Figure 2A), it suggests more infected patient
would be captured by the surveillance systems when
web searching for “flu” and “influenza” increases. When
the coefficient has a negative CI, such as Google search
terms for flu medications (Figure 2C), it suggests that web
searching related to flu medication is inversely correlated
with the portion of flu infected population being captured.
The category “medications” includes over-the-counter



Table 3 Summary of Pandemic and Non-pandemic Model

Data Model

❖ Data as counts Yj,t ∼ Pois(λj,t)

❖ Data as a proportion Log Yj;t
� �

∼N μj;t ; σ
2
j

� �
Process Model

❖ Pandemic Model

▪ Data as counts μj,t = θj,t ⋅ Xt + φj,t

▪ Data as a proportion Log(λj,t) = θj,t ⋅ Xt + φj,t

▪ “Completeness” θj;t ¼ βj;t;1 þ
XM
l¼2

βj;t;l⋅k
p
l−1;θ;t

▪ “Excess” φj;t ¼ aj;t;1 þ
XN
r¼2

aj;t;r⋅k
p
r−1;φ;t

❖ Non-pandemic Model

▪ Data as counts and as a proportion Log Yj;t
� �

∼N μj;t ; σ
2
j

� �
μj;t ¼ Ps;j;t;1 þ Ps;j;t;2⋅k

np
1;t þ Ps;j;t;3⋅k

np
2;t þ Ps;j;t;4⋅k

np
3;t

Parameter Model: non-informative priors

❖ Pandemic Model aj;t;r∼N μa; σ2a
� �

; r ¼ 1; ::::;N

βj;t;l∼N μβ; σ2β
� �

; r ¼ 1; ::::;M

τ≡1=σ2j ∼Gamma a; bð Þ
❖ Non-pandemic Model Ps;j;t;n∼N μp; σ2p

� �
; n ¼ 1; 2; 3

τ ∼ Gamma(a, b)
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medications for ILI, which can be an indicator of
self-diagnosis and self-treatment. Self-treatment behavior
might be related to the decision of not seeking medical
attention from healthcare practitioners, and therefore
inversely correlated to the flu hospitalization, general
practitioner patient visits, and so forth.
The remaining six surveillance data series — percentage

of ILI visits at general practitioners, fever surveillance at resi-
dential homes for the elderly, P&I-HA, P&I-HA(0-15 yr),
Figure 3 Conceptual model for biases in influenza surveillance data.
P&I-HA(65+ yr), and the percentage of specimen tested
positive — have more than one insignificant coefficient for
the correspondence with the information environment
proxy data (Figure 4). When the coefficient is insignificant,
such as Google search term for seasonal flu (Figure 2A),
only general practitioners, residential homes for the elderly
and P&I-HA(65+ yr) data series have coefficients that are
insignificant, that is, are tracking the actual disease trends at
a constant rate unrelated to the information environment.



Figure 4 Posterior distributions of “Completeness” coefficient βj,t,m (m = 2,..,5; j = 4,…,9) in “completeness” parameter θj,t (multiplier for
the estimated incidence rate) as measure of correspondence between surveillance and the information environment proxy data for
surveillance systems that are less correlated with the information environment during the pandemic period. β2 is the coefficient for
Google search index of seasonal flu terms; β3 is the coefficient for Google search index for symptoms; β4 is the coefficient for Google search
index of medications; β5 is the coefficient for Google search index of non-flu terms.

Zhang et al. BMC Public Health 2014, 14:850 Page 9 of 18
http://www.biomedcentral.com/1471-2458/14/850
“Excess,” parameterized as φj,t, is meant to account
for the variability in the surveillance data that cannot
be explained by incidence rate only. In the original
conceptual model, φj,t describes the non-flu cases captured
in the surveillance systems. However, since the model itself
does not have any mechanism to distinguish flu cases from
non-flu cases, φj,t is then interpreted as the overall biases in
the surveillance systems due to public awareness of the dis-
ease. The parameters αj,t,2 to αj,t,7, which can be interpreted
as reflecting excess reported cases, are mostly significant
for %ILI visits at designated flu clinics, notifiable infectious
diseases reporting, the number of specimens received, and
the number of specimens tested positive. In other words,
these surveillance data streams are more likely to show an
increase parallel to the information environment. On the
other hand, general practitioners and residential homes for
the elderly data series (Figures 5 and 6) are less likely to
reflect excess cases. Among the hospitalization data series,
P&I-HA(65+ yr) has insignificant coefficients for total
number of alerts, number of unique alerts, and number of
healthcare facilities alerts on HealthMap as well as Google
search terms for pandemic influenza, suggesting that
they are unrelated to the information environment.
On the other hand, flu-HA has significant coefficients
for almost all k’s (Figure 6). Posterior distributions for
all coefficients can be found in Additional file 1: Table S8.

Non-pandemic model (NP Model)
During the flu season all surveillance data streams except
the P&I HA (65+ yr) and residential homes for the elderly
have significant coefficients for the public awareness index
(Figure 7C), or in other words, are highly correlated with
the public awareness of respiratory diseases. For sentinel
surveillance systems at general out-patient clinics and
general practitioner and children-specific surveillance sys-
tems at kindergarten/daycare centres and hospitals (P&I-
HA (0-15 yr)), the differences between flu season and
non-flu season are significant, which suggests these sur-
veillance systems behave differently with respect to public
awareness in the flu and non-flu seasons. The non-flu
index coefficient is significant for flu hospitalization, num-
ber of lab tested positive specimens, percentage of speci-
mens tested positive and percentage of ILI-visits at
general practitioners during the non-flu season, which
suggests these surveillance data streams are influ-
enced by the information environment related to other
diseases such as common cold when flu activity is low.
During the flu season, however, the coefficient for non-
flu index is insignificant for all surveillance systems
(Figure 7A), which suggests none of the surveillance data
streams is influenced by non-flu related information
environment.
When the non-pandemic period data is divided into

2007 and 2008, and the model fit separately for each
period, two sets of posteriors ― 2007 (week 1-52) and
2008 (week 53-104) are compared. For public awareness
index coefficient, the heterogeneity between 2007 and
2008 is less obvious during the flu season as compared to
non-flu season (Figure 8B). In other words, the correspond-
ence between the surveillance data streams and public



Figure 5 Posterior distributions of αj,t,m (m = 2,..,7; j = 1,…,11) in “excess” parameter φj,t as measure of correspondence between
surveillance and the information environment proxy data during the pandemic period. α2 is the coefficient for total number of alerts at
HealthMap; α3 is the coefficient for the total number of unique alerts at HealthMap; α4 is the coefficient for number of healthcare facilities related
alerts at HealthMap; α5 is the coefficient for %RSV from virological surveillance; α6 is the coefficient for Google search index of authority; α7 is the
coefficient for Google search index of pandemic influenza terms.
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awareness is relatively stable from year 2007 to 2008 when
flu transmission is active. For the non-flu index (Figure 8A),
during the flu season, P&I-HA, P&I-HA(0-15 yr) and lab
(#spm) have significantly different coefficients, which
suggests when the flu activity is high, the increased
reports of P&I-HA and pediatric P&I-HA, plus the
Figure 6 Posterior distributions of αj,t,m (m = 2,..,7; j = 4,5,6) in “excess
surveillance and the information environment proxy data for surveilla
environment during the pandemic period. α2 is the coefficient for total
number of unique alerts at HealthMap; α4 is the coefficient for number of
%RSV from virological surveillance; α6 is the coefficient for Google search i
pandemic influenza terms.
number of specimens sent to the lab is correlated with the
information environment related to non-flu respiratory
diseases. As shown in Figure 9, when comparing the four
hospitalization data streams side by side, flu-HA looks
more similar to P&I-HA(0-15 yr), and P&I-HA is more
similar to P&I-HA(65+ yr).
” parameter φj,t as measure of correspondence between
nce systems that are less correlated with the information
number of alerts at HealthMap; α3 is the coefficient for the total
healthcare facilities related alerts at HealthMap; α5 is the coefficient for
ndex of authority; α7 is the coefficient for Google search index of



Figure 7 Posterior distributions for the public awareness index and non-flu index coefficient as measure of correspondence between
surveillance and the information environment proxy data during the non-pandemic model. A) ρ2: coeffcieint for non-flu index in the NP
model; B) ρ3: coefficient for illness index in NP model; C) ρ4: coeffcieint for public awareness index in the NP model.
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Posterior distributions for all coefficients in NP model
can be found in Additional file 1: Table S10.

Discussion
In their efforts to develop new methods for influenza
surveillance, researchers have considered many differ-
ent data sources, most of which already exist in
electronic form. Some derive from traditional surveil-
lance approaches while using influenza-like-illness
(ILI) and other data that do not require laboratory
diagnosis. Others, such as the Global Public Health
Intelligence Network (GPHIN) and HealthMap, search
results from the Internet and other media sources via
automated algorithms to identify disease outbreaks



Figure 8 Comparison of posterior distributions for the public awareness index and non-flu index coefficient as measure of correspondence
between surveillance and the information environment proxy data in 2007 and 2008. A) ρ2: coeffcieint for non-flu index in the NP model;
B) ρ3: coeffcieint for public awareness index in the NP model.
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that might not have been recognized by the
authorities [3,4]. Google Flu Trends uses influenza-
related search queries to model flu activity [31], while
some other studies try to capture ILI through micro-
blogging platforms such as Twitter [32]. New terms
such as “Internet-based surveillance”, “digital disease
detection”, and “inforveillance” have been introduced
to describe such public health surveillance practices
[20,10].
Recent studies have found a high correlation be-
tween syndromic surveillance and traditional influenza
surveillance data [33-38]. Internet-based surveillance
such as Healthmap and Google Flu Trends have
claimed success in capturing pandemic flu outbreak
[3,4] and tracking flu activity [11] days to weeks
ahead of standard Centers for Disease Control and
Preventions (CDC) systems. With its advantages of
timeliness and low cost, Internet-based surveillance



Figure 9 Comparison of posterior distributions for non-flu index, illness index and public awareness index as measure of correspondence
between surveillance and the information environment proxy data for hospitalization data series during the non-pandemic period.
A) flu-HA; B) P&I-HA; C) P&I-HA(0-15 yr); D) P&I-HA(65+ yr).ρ2 is the coefficient for non-flu index, ρ3 is the coefficient for illness index, and ρ4 is the
coefficient for public awareness index.
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systems have been widely recognized as important
supplementary data sources and widely used as the
baseline standard for evaluating new influenza surveil-
lance systems [5,39-41].
Internet-based surveillance data, however, reflects both

a “signal” reflecting actual disease trends and “noise”
caused by changes in public awareness. How to accur-
ately and effectively separate the “signal” from the
“noise” becomes one of the biggest challenges in analys-
ing internet-based surveillance data. Some researchers
have developed natural language processing algorithms
to classify this information automatically [34,42],
some use crowd-sourcing platforms to engage Inter-
net users in tagging data manually [43], and some use
both [44]. The curated data, which is thought of as
reflecting actual disease status, is then compared to
the traditional surveillance data and tested for corre-
lations [31,32,34,35]. This approach, however, does
not prove the validity of the new surveillance method
since both data streams may reflect the same infor-
mation environment, therefore be biased in the same
way. For instance, Google Flu Trends, which had been
performing well in tracking CDC surveillance data,
dramatically over-estimated the flu activity in the
United States in 2012-13 flu season [37]. The over-
estimation might be due to the extensive media
coverage of flu during the winter holiday season [45],
but raises the question of how well Internet-based
surveillance systems reflect flu activity per se, rather
than other factors such as public awareness.
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Our analysis uses a Bayesian hierarchical statistical
model to estimate the correspondence between indi-
vidual surveillance data and the information environ-
ment proxy data. The model structure is developed
based on an understanding of disease surveillance be-
ing a process rather than a direct reflection of disease
status per se. The statistical model does not directly
describe disease transmission dynamics, and the goal
is not to estimate parameters or flu activity level. Ra-
ther, as a characterization tool, this analysis reveals
how surveillance systems “behave” differently under
changing information environments. Similarly, the
purpose of model fitting is not to identify the perfect
model with the best fit for the data. Rather, the goal
is to find a model that captures the relationship be-
tween the surveillance systems and the information
environment that is consistent with epidemiological
expertise and practitioners’ understanding of the ac-
tual disease process, and thus one that is likely to be
applicable in the future.
Among all the influenza surveillance data that we

studied, we found some surveillance systems that
more consistently corresponded to the information
environment proxy data than others. The level of
correspondence with the information environment is
associated with certain characteristics of the surveil-
lance data. General practitioner (%ILI-visit) and la-
boratory (%positive) seem to proportionally reflect the
actual disease trends and are less representative of
the information environment. Surveillance systems
using influenza-specific code for reporting tend to re-
flect biases of both healthcare seekers and providers.
This pattern is what we would expect to see if the in-
formation environment were influencing the observ-
able data.

Characterization of surveillance systems using the
pandemic model
When looking at “completeness” only, three types of
surveillance systems show a certain level of stability in the
changing information environment. Surveillance data in
percentages such as percentage of specimen tested positive,
percentage of ILI visits at general practitioners and percent-
age of fever at residential homes for the elderly tend to have
insignificant CIs for “completeness.” Surveillance systems
that use less specific diagnostic and reporting codes such as
“pneumonia and influenza hospitalization” and “fever at
residential homes for the elderly” are also less likely to be
influenced by the search index and the media coverage.
Surveillance systems monitoring the elderly tend to
be less susceptible to the information environment as
compared to those monitoring children, which can be
observed by the comparison between P&I-HA(0-
15 yr) and P&I-HA(65+ yr) (Figures 4 and 5). For
surveillance systems that meet more than one criter-
ion, the correlation with the information environment
is weaker than those only meet one.
Surveillance data represented as percentages seem to

be less correlated with the information environment,
perhaps because the nominator and denominator change
in the same direction in response to the information
environment. Reflecting general practitioners’ role as the
gatekeeper of the healthcare system, general practitioner
visits are predominantly influenced by only one layer of
decision-making ― patients seeking medical attention.
Since patients usually do not have the ability to distinguish
influenza from other viral respiratory infections themselves,
flu and non-flu infections may be just as likely to be
presented to general practitioners. This pattern might
not hold during the early stage of a pandemic, when
the spread of novel influenza virus may not keep up with
the spread of awareness, possibly leading to a negative
correlation between the percentage of ILI-related general
practitioner visits and the information environment.
However, due to insufficient data volume, the model
failed to run when segmenting the pandemic period
into the early (summer) and late (fall) stage.
Percentage of specimen tested positive, on the other

hand, is often used as the “gold standard” for influenza
surveillance. As a surveillance system with a specific
case definition based on confirmed virological testing, as
well as being in a percentage format, the percentage
of specimens tested positive is likely to provide the
most reliable estimates of flu activity. However, an indi-
vidual case has to go through at least two layers of
decision-making ― patient’s decision on healthcare seek-
ing and physician’s decision on sampling and diagnosis.
Thus, it is possible that when the physicians are “sensi-
tized” by the media and official guidelines, they may ac-
tively look for cases that fit the clinical definition of
influenza and sample them for laboratory testing. This ef-
fect is more obvious in the count data for flu-HA, but
may also influence the percentage of specimen tested
positive as shown in Figures 2, 4 and 5.
Another pattern is the difference between influenza

specific and non-specific surveillance systems. Flu
hospitalization data seem be more correlated with the
information environment as compared to pneumonia
and influenza together. As discussed above, once sensi-
tized, physicians are more likely to take samples from
patients, and to use diagnostic codes that are specific
for influenza, especially in the subpopulations that are
considered to be more vulnerable to the pH1N1 virus
during the flu pandemic. During the early stage of
the pandemic, children and young adults were consid-
ered to be more susceptible to the novel influenza
virus, which might contribute to the observation in
our study that the pediatric P&I-HA tends to be
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more correlated with the information environment com-
pared to the elderly.
We also observed a difference in the level of correspond-

ence to the information environment between surveillance
systems that monitor elderly versus other age groups. One
possible explanation is disparities in information literacy
and access to computers and the Internet among different
age groups. Google searches are likely to be driven by
subpopulations of specific demographic characteristics
and socio-economic status, such as young and middle-
aged people who have easy access to digital devices as an
information portal, as compared to the elderly who live in
residential homes. Although children may have limited
information literacy and access, their parents are likely to
take immediate action in response to the information
related to children’s health.
As for the “excess” parameter, φj,t, ILI visits at general

practitioners, percentage of specimen tested positive and
percentage of fever at the residential homes for the elderly
show the least significant correlation with the information
environment proxy data, including the number of total
HealthMap alerts, unique alerts, healthcare facilities
related alerts, lab(%RSV), search index for authorities
and pandemic flu terms (Figure 6). The lack of significant
correlation might be due to the percentage format of these
data streams, since data in counts usually have significant
CIs. The coefficients for the search terms for pandemic
influenza are all positive for the surveillance systems
represented as counts, which suggests a positive correlation
between the biases in those surveillance systems and public
awareness of pH1N1.
In general, the fewer layers of decision-making, the less

correlated the surveillance system is with the information
environment. The traditional “gold standard” surveillance
systems, such as hospitalization and virologic surveil-
lance, are subject to the biases introduced by healthcare
professionals. The more specific and ad hoc the diagnostic
and reporting codes are, the more likely it is influenced
by the information environment. Surveillance data in
percentage format tends to capture actual disease
trends in constant ratio, less influenced by the information
environment than data in counts.

Characterization of surveillance systems using the
non-pandemic model
For the non-pandemic period we developed three indices
to describe the relations between surveillance data and
information environment proxy data — an actual disease
status indicator (illness index) plus public awareness
of both influenza and other viral respiratory diseases
(public awareness index and non-flu index). Since we
are most interested in the correspondence between the
surveillance data and the public awareness index, the pos-
terior distribution of the public awareness index coefficient
is compared among different surveillance data streams,
segmented by flu/non-flu season and year.
The public awareness index used in the NP model is a

collection of search keywords and categories of HealthMap
alerts that are most likely to be associated with public
awareness of influenza outbreaks, such as search
volume for influenza outbreaks and the number of
alerts of school-based outbreaks. Surveillance systems
are in general more correlated with public awareness
during the flu season as compared to the non-flu sea-
son. When observing increasing flu activity in the
community or from news media, one may get sensi-
tized and tend to seek medical attention when feeling
sick. The exceptions are two surveillance systems that
monitor predominantly the elderly ― flu surveillance at
residential homes for the elderly and P&I-HA (65+ yr)
(Figure 7B). These two surveillance systems are relatively
less correlated with the public awareness in most cases,
and show more stability from year to year (Figure 8B).
During the non-flu season, the majority of surveillance
systems seem not to be influenced by public awareness
except for the flu associated hospitalization, number
of specimens tested positive, percentage of specimens
tested positive, and P&I-HA(0-15 yr) (Figure 7B),
which can also be observed in the year to year com-
parison graph (Figure 8B).
Beyond comparing the correlation between surveillance

and information environment proxy data individually,
we also made an exploratory effort to assess the similarity
among different surveillance systems by using the char-
acterization tool and the identified evidence of potential
biases in clinical practice. When comparing the four
hospitalization data streams side by side, we observed
that flu-HA looks more similar to P&I-HA(0-15 yr)
(Figures 9A and C), while P&I-HA is more similar to
P&I-HA(65+ yr) (Figures 9B and D). The patterns are
consistent in flu and non-flu season and in different
years (Figures 8 and 9), and correspondent to the pan-
demic model.
In the pandemic model, we observed that flu-HA is

more correlated with the information environment than
P&I-HA, while pediatric P&I-HA also seems to be more
correlated with the information environment than
the P&I-HA for the elderly. Also, when replaced the
incidence rate of all-age with 5-14 yr, data fits better
for flu-HA, general practitioner ILI-visits, notifiable
infectious disease reporting and P&I-HA(0-15 yr)
(Additional file 1: Table S9). During the pandemic flu
outbreak, since the children and young adults were
considered to be at higher risk than the elderly, physicians
may tend to order more laboratory testing for pediatric
patients [7]. During the non-pandemic period, the same
clinical practice might still prevail. Since pediatric
mortality is a reportable condition, clinicians are more
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likely to order laboratory tests and use a specific diagnostic
code if the test results are positive. The elderly patients,
however, who usually have non-specific clinical manifest-
ation for respiratory diseases and lower viral loads [46], are
less likely to be sampled, less likely to have a positive result
if tested, and usually given a less specific diagnostic code
such as “pneumonia and influenza”.
It is worth noting that the data volume for flu-HA and

pediatric P&I-HA are both relatively low during the
non-pandemic period, which might also contribute to
the similarity between the two data streams. Also, there is
a much lower Google search volume and fewer
HealthMap alerts in 2007 compared to 2008, possibly due
to the introduction of smartphone and rapid growth of
the Internet itself from 2007 and onwards [47].
Before the 2009 pandemic flu outbreak, the age-stratified

flu-HA was not collected in Hong Kong, therefore it is diffi-
cult to test our hypothesis of the biases in clinical practice.
The implications of this finding are (1) flu hospitalization
might not be representative for all age groups, and (2) it is
important to collect age-stratified flu hospitalization data,
not only for monitoring the susceptibility of the subpopula-
tion, but also for assessing potential biases in practice.

Re-evaluating the usage of information environment data
This study also has implications for the use of information
environment data for disease surveillance. Advances in
information technology have made a wide range of data
available to public health researchers and practitioners,
offering the promise of improving current surveillance
systems, generating more sensitive and timely warnings of
disease outbreak or providing more accurate estimates of
disease transmission. For this potential to be realized,
however, the characteristics of these new data sources
must be understood before they are used in sophisticated
statistical models. Olson and colleagues have suggested,
for instance, that Google Flu Trends’ impressive
retrospective correlation with ILI surveillance data
may be a product of over-fitting by “fishing” through
numerous search term combinations as part of data
mining. Moreover, Google Flu Trends’ tendency to miss
the beginning of an outbreak and its poor accuracy at the
local level also limits its application in providing early
warning and situational awareness [37]. The importance of
understanding the nature of the data and the environment
in which the data is generated may be overshadowed by
researchers’ and practitioners’ enthusiasm for data availability
(i.e. “big data”) and purely statistical patterns (often ignoring
confounding variables or underlying processes).

Limitations
The approach we used in this study is limited by availability
of data, which influenced how we evaluate the model
and interpret the results. Since the reliable incidence
rate estimate is not available before the 2009 pH1N1 out-
break, we developed different model for non-pandemic
period, the results of which are, to some extent, consistent
with what have been found in the pandemic model.
Google search volume for some keywords in Hong
Kong is not large enough to generate a search index;
or sometimes is not of the same time resolution as
the weekly surveillance data. More than half of the
search keywords, for instance, are only available on
monthly basis. Also, we have not exhausted all the
possible combinations for keywords, HealthMap alerts
count, and different time lag.
Given the noisy data and the lack of disease transmis-

sion mechanism, our search for the best fitting model
might have led to over-fitting. The selection and aggrega-
tion of predictors, therefore, is guided by both practical
knowledge and model performance comparison, in
order to achieve a balanced model version that is of
relatively good fit and meaningful for practitioners to
interpret. For instance, the predictors are grouped in
a relatively arbitrary manner, but the selection process
for the pandemic model was blinded from the results
of posteriors for each parameter before the final model
version was selected.

Conclusions
In this study, we estimated the correspondence of multiple
influenza surveillance data streams with indicators of the
information environment, and the results suggest that
most influenza surveillance data, to some degree, reflect
public awareness as well as actual disease status. For
instance, individuals who are aware of the on-going trans-
mission of influenza are likely to search for information
for prevention and self-diagnosis purposes, and may tend
to seek medical attention once feeling sick. Thus, although
it has not been recognized and studied systemically, many
influenza surveillance systems may reflect changes in the
information environment as well as actual disease trends.
And although the data we analysed are all from Hong
Kong, the underlying mechanisms are not specific to that
region, so the problem may be widespread. Indeed, Zhang
and colleagues and Stoto found similar patterns using less
formal methods in the United States [6,7].
Some surveillance systems seem to represent public

awareness more than actual disease status. In particular,
ad hoc surveillance systems set up during the early
ascertainment of pH1N1 outbreak — such as the
walk-in clinics for ILI, making pH1N1 as a new condition
for notifiable infectious disease — are more correlated with
the information environment than other surveillance
systems that we identified in Hong Kong. Such results
help us better understand and characterize influenza
surveillance systems, which can be used in data interpret-
ation, resources allocation, new surveillance systems design
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and implementation in order to capture a more accurate
picture of disease transmission.
The study findings discussed above are consistent with

our practical knowledge that traditional and syndromic
surveillance systems can be influenced by the public
awareness of the disease. Other than Google searches,
correlation between social media (e.g. Twitter) and similar
data with traditional flu surveillance data may only indicate
that both are reflecting the same information environment,
rather the social media data reflecting actual disease status.
Often times they are not clearly distinguished; and,
people readily jump to the conclusion that the information
environment data can be used as a proxy for disease status.
As shown in our study, such an approach has its
limitations. Information environment data such as
web queries and tweets in fact have dual usage, (1) as
proxy for direct estimate for disease, and (2) as covariates
to control the model for public awareness biases. When
researchers promote the idea of using the Internet
data for disease surveillance among practitioners, the
differentiation was not made clearly, and sometimes is
lost when being communicated to the general public. Our
study provides a framework to understand how the
information environment data is related to the traditional
surveillance data, which will help to fine tune the usage of
information environment data.
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