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Background: Congenital heart disease (CHD) is the most common type of major birth defects in Sichuan, the
most populous province in China. The detailed etiology of CHD is unknown but some environmental factors are
suspected as the cause of this disease. However, the geographical variations in CHD prevalence would be highly
valuable in providing a clue on the role of the environment in CHD etiology. Here, we investigate the spatial
patterns and geographic differences in CHD prevalence among 0- to 14-year-old children, discuss the possible
environmental risk factors that might be associated with CHD prevalence in Sichuan Basin from 2004 to 2009.

Methods: The hierarchical Bayesian model was used to estimate CHD prevalence at the township level. Spatial
autocorrelation statistics were performed, and a hot-spot analysis with different distance thresholds was used to
identify the spatial pattern of CHD prevalence. Distribution and clustering maps were drawn using geographic

Results: CHD prevalence was significantly clustered in Sichuan Basin in different spatial scale. Typical hot/cold
clusters were identified, and possible CHD causes were discussed. The association between selected hypothetical
environmental factors of maternal exposure and CHD prevalence was evaluated.

Conclusions: The largest hot-spot clustering phenomena and the CHD prevalence clustering trend among 0- to
14-year-old children in the study area showed a plausibly close similarity with those observed in the Tuojiang River
Basin. The high ecological risk of heavy metal(Cd, As, and Pb)sediments in the middle and lower streams of the
Tuojiang River watershed and ammonia-nitrogen pollution may have contribution to the high prevalence of CHD
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Background

Congenital heart disease(CHD) refers to a malformation
of the cardiovascular system and accounts for nearly
one-third of all major congenital anomalies [1]. Heart
malformations are the most common form of birth de-
fects, occurring in approximately 8 per 1000 live births
[2]. Surveillance data shows that CHD has the highest
prevalence among other birth defects in Sichuan Province
in recent years [3-6]. The proportion of birth defects
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related to infant mortality has recently increased, and
CHD is now the most common cause of infant mortality
and the leading cause of disability in young children [7],
thereby increasing healthcare costs each year [8,9].

The pathogenesis of CHD is complicated and its
underlying mechanism remains unknown. A group of
CHD lesions with unknown etiology follows a multifac-
torial inheritance model, approximately 90% CHD cases
are multifactorial [10-12], which implicates both genetic
and environmental factors in disease development. Ap-
proximately 80% CHD cases are multifactorial and arise
through various combinations of genetic and environ-
mental factors [1,13].
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Environmental factors contribute to 10% birth defects,
but most birth defects are presumed to be caused by the
combination or interaction of genetic and environmental
factors [14]. Epidemiological research has yet to focus
on the demographic, familial, social, genetic, and ethnic
factors associated with the prevalence of CHD.

From the spatial epidemiology perspective, significant
geographic differences occur in CHD prevalence [1]. Some
studies have focused on geographical variations in CHD
prevalence [1,15-19], and CHD prevalence has been dem-
onstrated to be closely related with elevation and latitude
[20-22]. In addition, there is a clear and seasonal variation
in CHD prevalence [23-27]. Maternal exposure to environ-
mental factors such as ambient air pollution [28-33], heavy
metals, and micronutrients are positively related to CHD
prevalence because elements in the soil, water, and air affect
human beings directly or indirectly [1,34-36]. The physical
environment such as solar radiation and magnetic fields
also have influence on CHD prevalence [37,38]. Further-
more, socio-economic and lifestyle habits affect CHD
prevalence. However, the extent of the contribution of these
factors to CHD prevalence in the study area is unknown.

The purpose of this study was to detect spatial pat-
terns of CHD prevalence at various geographical scales
and to explore the possible links between CHD and en-
vironmental changes.

Methods
Study design
In this study, we mapped the prevalence of CHD among
0- to 14-year-old children at the township level in our
study area firstly. In order to eliminate the dependence of
the sampling variance on population size and the CHD
prevalence, the hierarchical Bayesian model(HB) was
employed to address the problem of a small population
during explorative mapping of prevalence and to stabilize
local estimates of CHD prevalence. Subsequently, global
Moran’s I statistic and local indicator of spatial association
(LISA) statistic [39] were used to detect regions with high
prevalence of CHD and the local Getis'sG; method [40]
was used to draw a prevalence map of CHD using the geo-
graphic information system(GIS). Finally, we try to explore
the association between the high-prevalence clustering
pattern of CHD and potential environmental risk factors.
All data analysis, including data processing, mapping,
and spatial statistics were conducted using the ArcGIS and
GeoDa 0.9.5-i software. The hierarchical Bayesian model
and the publically available Winbugs 1.4 software [41] were
used along with the Markov Chain Monte Carlo method.

Study area
The study area is situated in the eastern part of Sichuan
Province in southwestern China, located in the Sichuan
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Basin with distinct geographic environment. The study
area includes 13 municipalities comprising of 105 coun-
ties and 685 townships, due to its relative flatness and
fertile ground, it’'s the most populous region in China
with a population of near 70 million, and the population
density is approximately 500-700 persons/km?.

Sichuan Basin is bordered by mountains and consists
of low hills and alluvial plains with an elevation of 250—
700 m. The Yangtze River passes through the southern
part of the basin. Several major rivers such as the
Minjiang River in central Sichuan and the Jialing River
are tributaries of the upper Yangtze River.

Due to the unique prominent geology, geomorphology,
and climatic characteristics, the study area is mostly cov-
ered by farms and cities. The basin with high population
density and the cultivated land in the basin account for
85% of the total cultivated land in Sichuan Province. The
basin is the central distribution of Chinese Mesozoic con-
tinental red beds, with plentiful mineral resources, various
land use types, and well-developed industries, which gen-
erates a peculiar basin environment [42]. A map of the
study area with the major cities, highways, rivers, and
township boundaries is shown in Figure 1.

The basic geographical data, such as township boundar-
ies, rivers, highways of the study area were provided in the
form of shapefile by the State Key Laboratory of Resources
and Environmental Information Systems (LREIS) of the
Institute of Geographic Sciences and Natural Resources
Research (IGSNRR), Chinese Academy of Sciences.

Data sources and data process

From 2004 to 2009, 2365 CHD cases among 0- to
14-year-old children have been reported in the Sichuan
Province birth defect register system of Sichuan prov-
ince, including 1,224 boys and 1,141 girls, most of the
cases are belonging Han Chinese. The informed consent
was obtained from CHD cases’ parents or guardians.
The study protocol conforms to the ethical guidelines of
the 1975 Declaration of Helsinki and was approved by
the Ethics Committee of the National Research Institute
for Family Planning.

Each CHD case was classified and coded according to
the International Classification of Diseases version 10
and belonged to the code range from Q20 to Q24.9. The
classification showed that there were more thanl0O types
of defects in our study area.

The CHD cases were distributed in 673 townships and
were identified to the village level using Google Earth.
Each CHD case was expressed as a point object and
each point belongs to a particular township which
expressed as a polygon object. The CHD cases in each
township added together to calculated the CHD preva-
lence. The CHD cases with demographical and epidemio-
logical information were also geocoded. Population data
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Figure 1 Study Area Location Map.

among the 0- to 14-year-old children every year since
2000 for each township in our study area were retrieved
from the National Bureau of Statistics of China.

HB Model

The HB model [43] is simply an extension of traditional
Bayesian models in which prior distributions have some
form of conditional dependence. The following simple
probabilistic model was postulated. It is assumed that O
(i) denotes the number of CHD cases in towhship i
which is independent and identically Poisson distrib-
uted with the intensity parameter A(i) = E(i) x r(i), where
E(i) denotes the expected number of CHD cases in
township i, which is proportional to the corresponding
population #;. r(i) is the positive township-specific rela-
tive risk of CHD prevalence in township i. O(i) ~ P(E
(i) x r(0)), r(i) is assigned a log-normal prior distribution,
log[r(i)|~N (i, %), where the expectation and variance
are defined by a linear function of a common value, «,
and two independent random effects. a heterogeneous
component e(i), which does not depend on the geo-
graphical location of townships and an autocorrela-
ted component, v(i), which reflects the local spatial

structure by incorporating the influence of neighboring
townships. The model is

log(r(i)) = a + v(i) + e(i) (1)

Prior distributions are then assigned to these linear
terms and consequent hyperprior distributions are
assigned to the variance terms; thus, creating a hierarch-
ical model as follows:

v(i)|k,a,b~N(0,x%), e(i)|o,c,d~N(0,0?),
V(i) viy):jeai)ai(d) w @/ i)

where Aj(i) denotes neighborhood i, w(ij) is a weight
matrix element, and w*(i,j) is the standardized form of
the weight matrix that defines the relationship between
the township i and its neighbor township j. The weight
is defined simply as w(i,j) = 1 if two townships are adja-
cent(means two townships’ boundries share a common
border or vertex) and w(ij) = 0 otherwise.

(@ )v(),

1/1*~Gamma(a, b),1/0*~Gammal(c, d)

where a and c are shape parameters, b and d are inverse
scale parameters. Which is the convolution Gaussian
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model originally proposed by Besag and Newell [44],
where the random effect associated with spatial autocor-
relation, v(i) is defined according to the conditional
auto-regressive model(CAR) [45], the hyperprior distri-
butions for 1/x* and 1/0* were specified at Gamma(0.5,
0.0005) in this study.

Following the Bayesian inference technique, the observed
number of cases in each township was treated as a bino-
mial random variable with parameter P; in our analysis [7].
P; is the probability of a live birth with CHD in town-
ship i. The standard prevalence is the maximum likeli-
hood estimation of P;. As the environment are similar,
P; is assumed to be constant within the same township.
P; is modeled through a logit transformation, logit(P;),
expressed as:

logit(P;) = log[P;/1.0-P| =a+v; +¢ (2)

where « is the intercept term(mean) used to calculate
CHD prevalence, v; is the spatially structured autoregres-
sion, and ¢; is the spatially unstructured random effect.
A single chain sampler with number i of 4000 iterations
were run, followed by 1000 iterations during which
values were stored in the form of P;.

Spatial cluster test
The first law of geography is summarized as: “Everything is
related to everything else, but near things are more related
than distant things” [46]. Spatial autocorrelation statistics
analyzes the degree of dependency among observations in
a geographical space. The fundamental goal of spatial ana-
lysis is to identify patterns in spatial data that lead to iden-
tifying a spatial autocorrelation or association and identify
peculiarities in the data set in one or more regions [47].

Global spatial autocorrelation was used to test spatial
correlation in the entire study area by assuming that the
spatial process was the same everywhere. Spatial auto-
correlation indicates that adjacent observations of the
same phenomenon are correlated. Moran’s I statistic
[48] is one of the most commonly used test for areal
cluster analysis.

The Global Moran’s I statistic is a measure of spatial
autocorrelation developed by Patrick Moran [8], the
goal of which is to identify statistically significant hot-

Table 1 Prevalence of CHD before and after adjusted by
HB model

Statistics 0-14 year-old CHD prevalence CHD prevalence
populations before-adjusted (%) after-adjusted (%)

Max 263866 1.304 05

Min 1064 0.021 0.062

Mean 24583.89 0018 0.170

STD 2308747 0.013 0.058
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spots or clusters in data presented in spatial objects
on two-dimensional surfaces. Moran’s I statistics were
applied to explore the spatial clustering pattern of the
birth prevalence of CHD in a quantitative way, help-
ing researchers gain a deeper understanding of the
phenomena of high CHD prevalence. The formula for
global Moran’s I statistic is:

DD wilx-x) (%)

n =1 j=1

I =
So &

(3)
=1
Where w(i,j) is the weight between observations i and j,

n n
and S is the sum of all w;;, So = Z Z Wi
=1 j=1

The values of Moran’s Index range from -1 to +1. A
Moran’s Index value near +1.0 indicates clustering,
whereas an index value near -1.0 indicates dispersion. A
zero values indicates a random spatial pattern, Negative
(positive) values indicate negative (positive) spatial auto-
correlation. In general, Moran’s I values can be trans-
formed to Z-scores in which values >1.96 or<-1.96
indicate spatial autocorrelation significant at the 95% con-
fidence level. The Z-score is used to evaluate the signifi-
cance of the index value and is a measure of the standard
deviation associated with a standard normal distribution.

Local spatial autocorrelation statistics provide estimates
disaggregated to the level of spatial analysis units, allowing
an assessment of the dependency relationship across
space. Local clustering statistics are used to test the statis-
tical significance of local clusters and map the extent of
the clusters of the feature. The local indicators of spatial
association (LISA) statistic, which is usually applied when
studying local spatial clustering, is interpreted as an indi-
cator of pockets of nonstationarity and is also used to as-
sess the influence of individual locations on the magnitude
of the global statistic as well as to identify “outliers” [39].
The LISA statistic is used to evaluate clustering of individ-
ual units by calculating the local Moran’s I statistic for
each spatial unit and evaluating the statistical significance.
The equation can be written as follows:

Z;
I, =— WiiZ; 4
i ij:ZI g= ( )

2
my = z;\;zi ,and [ = XZ:%, where N is the number
of observations(units).

The Getis'sG; statistic [40], developed by Getis and
Ord, is used as a method for detecting hot-spots that

measure the overall spatial association of values falling
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Figure 2 CHD Prevalence Map Before and After Adjustment by HB. (a) is the map of CHD prevalence before adjusted by HB model, (b) is
the map of CHD prevalence after adjusted by HB model.
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within a critical distance of each other. It can be expressed
as follows:

. Z:Wij (d)y~W;y
Gf = (5)

! nS;-W;
NEET

where S is the standard variance of CHD prevalence and
w; is the spatial distance weight matrix between townships
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i and j. When the distance from township j to i is within
distance d, w;; (d) = 1; otherwise w;; (d) = 0, and S7,, W7.
Results

CHD Prevalence mapping

Because CHD is a low probability event, the number of
CHD cases among 0- to 14-year-old children from 2004
to 2009 was geocoded and aggregated by geographical
units at the township level. CHD prevalence before and

Liv;- &
EOIXS
HOALR

v

Figure 3 LISA map of CHD Prevalence. (a) is the LISA cluster map of CHD prevalence, (b) is the LISA significance map of CHD prevalence.
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after adjusted by HB model among 0- to 14-year-old
children were calculated.

Table 1 presents the statistical characteristics of the
CHD proportion estimates in the 673 townships.

The prevalence Themerange map of CHD in the 673
townships was drawn and shown in Figure 2, which
illustrates the distribution of CHD prevalence before
adjustment by the HB model and the CHD prevalence
estimates after adjustment by the HB model in the study
area respectively.
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Spatial autocorrelation

We constructed a first-order queen polygon contiguity
weight matrix file of the 673 townships based on con-
nectivity of the smallest administrative units. The global
spatial autocorrelation statistic and corresponding p-values
were estimated by Moran’s [ statistic to HB model smoothed
CHD prevalence. The computation was implemented using
the Geoda0.9.5-i software. The level of spatial autocorrel-
ation was 0.3746 (p =0.001), suggesting non-randomness
in the overall spatial pattern. The positive value indicates
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Figure 4 HotspotsDetected by Getis'sG; . It is the hotspots map of CHD prevalence detected by Getis'sG; statistics at different distance thresholds.
(a) distance threshold = 3.71 km, (b) distance threshold = 12.27 km, (c) distance threshold = 22.70 km, (d) distance threshold = 35.49 km.
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that the prevalence of CHD in our study area had a signifi-
cant clustering pattern at the township level.

The township scale LISA statistics based on the ad-
justed CHD prevalence using queen’s case adjacency
weight matrix were calculated, and the significant clus-
ters (HH, LL, HL, and LH) are illustrated in Figure 3.

The results of this analysis yielded to five categories of
spatial units. These categories were defined as “high-high
(HH),” “low-low (LL),” “high-low (HL),” “low-high (LH),”
and “not significant (NS)”. The HH category indicates
clustering of high adjusted CHD prevalence, whereas the
LL category indicates clustering of low adjusted CHD
prevalence. Three HH areas and two LL spot areas were
detected. The largest HH area was detected in the central
portion of NeiJiang City, and the two smaller hot-spots
were found in YaAn and MianYang. Two LL areas were
observed in or just east of ChengDu city and south of
LuZhou and YiBin. These outcomes were equivalent to a
positive spatial autocorrelation.

In addition, the HL category indicates that high CHD
prevalence values were adjacent to low values, whereas
the LH category indicates that low values were adjacent
to high values of adjusted CHD prevalence. These out-
comes are equivalent to a negative spatial autocorrel-
ation. Lastly, the NS category indicates that there is no
statistically significant spatial autocorrelation.

Cluster pattern

The distance value is a critical threshold of Getis'sG; statis-
tics. The phenomena of hot-spot distribution with different
distance thresholds (The average distance between town-
ships is 12.27 km, the shortest distance between countries
is 3.71 km, the average distance between countries is
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22.70 km and the shortest distance between 13 cities at
prefectural level is 35.49 km in our study area) are shown
in Figure 4, and the hot-spot number at different distance
thresholds among 1- to 35-km is shown in Table 2.

The largest hot-spot area was located on the left side
of the Yangtze River and downstreams of the Tuojiang
River watershed, including the NeiJiang, ZiGong,
MeiShan, and LeShan areas. One of the cold-spot areas
was located on the right side of the Yangtze River and
was symmetrically distributed with the largest hot-spot
area. Within the distance from 1 km to 9 km, the varia-
tions in the hot-spot cluster did not change. The hot-
spot cluster’s aggregate began at the distance threshold
value of 10 km. The center of the hot-spot area was lo-
cated in Neiliang city, and the standard deviation ellipse
statistics showed that the hot-spot region extended along
the flow direction of the TuoJiang River and was present
as a zonal distribution trend, which is shown in Figure 5.

Discussion

CHD is the most frequent group of congenital anomalies
and is the leading cause of infant death due to congeni-
tal anomalies and is associated with a considerable bur-
den on public and private resources [13].

In this study, the HB model was used to adjust the
prevalence of CHD. The geographical distribution of
CHD prevalence at the township level was investigated
and mapped, both global and local spatial clustering
methods were used to quantify the spatial pattern of
CHD prevalence. Moran’s I statistic was used as a meas-
ure of global clustering and was assessed by testing the
null hypothesis that the spatial pattern of these data were
random. LISA is an indicator of local spatial association

Table 2 Hot/Cold spot number of CHD prevalence with different distance thresholds

Hot spot number

Cold spot number

Distance threshold P value <0.01

0.01 <P value<0.05 0.05<P value<0.1

0.1 >P value>0.05 0.05>P value>0.01 P value<0.01

TKM 15 9
4KM 15 9
7KM 14 1
9KM 16 10
10KM 18 13
12KM 21 9
14KM 29 16
16KM 36 9
18KM 42 14
20KM 46 16
25KM 59 20
30KM 65 29
35KM 80 21

5 0 0
9 0 0
10 0 0
10 0 0
14 0 0
16 3 0
15 7 0
30 14 0
29 23 2
31 34 5
27 46 21
27 33 43
36 40 54
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Figure 5 Standard Deviation Ellipse of the CHD Prevalence Hotspot. It is the standard deviation ellipse of the CHD prevalence hotspots
detected by Getis'sG;" at different distance thresholds. (a) distance threshold = 14 km, (b) distance threshold = 20 km, (c) distance threshold = 30 km,

that measures whether CHD prevalence for a particular
spatial unit at the township scale is closer to the values of
a neighboring unit or to the average of the study area.

We found significant spatial variability in the prevalence
of CHD in 0- to 14-year-old children in Sichuan Basin. In
addition, the significant positive spatial autocorrelation and
the significant local clusters confirmed the spatial variances
of CHD prevalence. The spatial pattern and clustering of
events provide important information for developing and

refining geographical-and population-specific prevention
programs to reduce CHD risk. In addition, this information
will be useful to healthy planners because many current
policies and health initiatives are principally based on as-
sumptions of spatial homogeneity.

Explanatory phenomena
Identifying CHD clusters provides clues to causality. The
largest CHD hot-spot region was located in the TuoJiang
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Figure 6 Hot-Spot of CHD Prevalence in TuoJiang River Watershed. (a) Hot-Spot map where distance threshold = 25 km, (b) Hot-Spot map
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River watershed, as shown in Figure 6. Thus, a stronger
relationship was observed between CHD prevalence and
the environment around the TuoJiang River.

The Tuojiang River is one of the largest tributaries of
the upper Yangtze River, industries and agriculture are
well developed along the coastal area of the TuoJiang
River. Pollution from chemical plants, machinery and
paper industries as well as non-point source pollution
from rural regions is a very serious issue. A literature re-
view showed that heavy metal pollution in sediments in-
creases from up to downstream of the Tuojiang River.
Mining activities are the most important sources of
heavy metals, and heavy metal contents clearly increase
at the convergence region of the Tuojiang River. The po-
tential ecological risk from cadmium is the highest,
followed by that of arsenic and lead [49,50]. In addition,
the average total nitrogen and total phosphorus concen-
trations in the Tuojiang River exceed the standard ac-
ceptable value by more than 3-and 1.2-folds, respectively
[51,52]. All of these characteristics are potential risk fac-
tors for a high prevalence of CHD.

Limitations

Three major limitations of this study should be dis-
cussed. First, the calculation of CHD prevalence was a
key step in the study. The reported prevalence of CHD
at birth varies widely worldwide. In our study, the new-
born rate in Sichuan Province was 8.93% in 2010, which
was cited from the Sixth National Population Census
from the National Bureau of Statistics, China. The
prevalence of CHD in our study area was lower than this
value because we only considered surviving children
with CHD in each family as per the current family plan-
ning policy in China.

The second limitation was that spatial patterns of
CHD prevalence may change dependence on the spatial
scales and units used in analysis, which is commonly
known as a modifiable areal unit problem or ecological
fallacy [53]. The importance of location, spatial inter-
action, spatial structure, and spatial processes has been
well established in public health literature. The utility of
exploratory spatial data analysis tools allows researchers
to map spatial patterns, identify local variability in CHD
prevalence, and assess the efficacy of spatial models. The
objectives of this study were to help generate working
hypotheses and design a more sophisticated research
protocol for future research efforts. Studying different
distributions and spatial patterns (point or lattice) at dif-
ferent spatial scales (country or village level) deserves
further research.

The third limitation was CHD defects include abnor-
mal chromosomes, single-gene disorders, and polygenic
disorders. But the prevalence of CHD differs in different
areas within a limited region. Geographical variations in
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CHD prevalence can be explained by variations in socio-
economic status, education, urbanization, climatological
factors, ethnicity, and patient-related factors such as co-
morbidity, lifestyle, and healthcare-seeking behavior. More
insight into the epidemiology of CHD is needed. Exploring
the environmental risk factors for CHD is also a difficult
problem. Maternal factors, maternal health, and diseases
such as diabetes mellitus, phenylketonuria, febrile illness,
rubella,stress, and obesity have significant relationship
with CHD. Maternal lifestyle, drug and medical use, and
environmental toxic exposure lead to CHD.

Conclusions

It is very intriguing that the high prevalence of CHD
was associated with watershed environmental pollution
and specific environmental factors in specific areas. Po-
tential risk factors contribute to CHD, and the mechan-
ism of the environmental risk factor effects deserves
special attention. In addition, considering more potential
risk factors from the epidemiology perspective and ap-
plying different spatial statistical methods are important
strategies in CHD studies.

Exploring the spatial and temporal changes in CHD
prevalence, reducing the recurrence of CHD, and pre-
paring prevention strategies are new challenges for sub-
sequent studies. We hope that information is gleaned
from this study and that more in-depth studies are based
on this research. Identifying causal agents of CHD using
geographical analysis technology and tools to provide
public health professionals and policy makers within
areas of elevated risk are important for designing effect-
ive intervention programs.
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