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Abstract

Background: Mass media is used to inform individuals regarding diseases within a population. The effects of mass
media during disease outbreaks have been studied in the mathematical modelling literature, by including ‘media
functions’ that affect transmission rates in mathematical epidemiological models. The choice of function to employ,
however, varies, and thus, epidemic outcomes that are important to inform public health may be affected.

Methods: We present a survey of the disease modelling literature with the effects of mass media. We present a
comparison of the functions employed and compare epidemic results parameterized for an influenza outbreak. An
agent-based Monte Carlo simulation is created to access variability around key epidemic measurements, and a
sensitivity analysis is completed in order to gain insight into which model parameters have the largest influence on
epidemic outcomes.

Results: Epidemic outcome depends on the media function chosen. Parameters that most influence key epidemic
outcomes are different for each media function.

Conclusion: Different functions used to represent the effects of media during an epidemic will affect the outcomes of
a diseasemodel, including the variability in key epidemicmeasurements. Thus, media functionsmay not best represent
the effects of media during an epidemic. A new method for modelling the effects of media needs to be considered.

Keywords: Mass media, Epidemic, Influenza, Agent-based Monte Carlo simulation

Background
Influenza causes annual epidemics and occasional pan-
demics, which have claimed millions of lives throughout
history. In the past century four worldwide pandemic
outbreaks of influenza have occurred: 1918, 1957, 1977
and 2009, [1,2]. According to the Public Health Agency
of Canada, inter-pandemic (or seasonal) influenza affects
approximately 20, 000 Canadians, with approximately
2, 000 to 8, 000 deaths annually [3]. In the USA, it has been
reported that flu-associated deaths can range from 3, 000
to 49, 000 individuals per year [4].
Mass media can affect disease transmission during an

influenza epidemic or pandemic. Attention to health news
has been increasing in importance during the last few
decades, and thus, media reports can play an important
role in defining health issues, since they serve as a major
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source of information and are able to incite changes in
behaviour in the public [5]. Individual response to a dis-
ease threat depends on risk perception that is gained
largely through information reported by governments to
mass media: number of infections, hospitalizations and
deaths, as provided by the government [6,7].
We have recently seen the use of mass media reports

during two infectious disease outbreaks. The first novel
infectious disease of the twenty-first century was SARS. It
had distinct features such as rapid spatial spread and self-
control, and vast media coverage [6,7] that used to inform
the public, provide a means of contract tracing, and advise
isolation of exposed individuals.
Media coverage was substantial during the H1N1 epi-

demic in 2009 as well, which may have had an effect on
the transmission of influenza by promoting social dis-
tancing and self-isolation [8]. The media coverage of this
influenza pandemic was widespread, with an increased
sense of urgency since this influenza strain was related to
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the 1918 pandemic strain that caused approximately 50
million deaths worldwide [1].
Mathematical modelling has been used to study the

effect of mass media on epidemics by employing the well-
known Susceptible-Exposed-Infectious-Recovered (SEIR)
model and various extensions [6-14]. In these studies,
mass media has been incorporated using different, but
qualitatively similar, functions that directly affect disease
transmission and susceptibility. In general, the chosen
functions are decreasing functions with respect to the
current number of infected individuals in the population.
However, the choice of function seems to be arbitrary. It
is possible that the choice of function can change study
results. For example, public health officials could be inter-
ested in epidemic measurements such as the peak number
of infection, peak time, total number of infections and
end of epidemic, which are all directly related to impor-
tant public health resources (i.e. number of hospital bed,
antiviral stockpile, vaccination doses). These key mea-
surement may vary depending on the chosen media func-
tion. Therefore, a sensitivity analysis on these functions is
required.
In addition to that mentioned above, there is a further

drawback of the previous studies which include media
functions, in that, deterministic systems of ordinary dif-
ferential equations are employed. Deterministic models
can describe the mean behaviour of an epidemic, but
information surrounding any variability in key epidemic
measurements cannot be made. A stochastic model is
well suited to this task. Various methods of introducing
stochasticity into disease models exist: [15-19]. Agent-
Based Monte Carlo (ABMC) simulations, provide a way
in which individuals with certain disease characteristics
can be tracked in a population. This method also pro-
vides flexibility, as changes in biological assumptions can
be easily incorporated, which are difficult to include in
other methods.
In the sections that follow we give an overview of the

functions used to describe media in the disease modelling
literature. The functions are then incorporated into a stan-
dardized SEIR model, and model results are compared. A
stochastic agent-based Monte Carlo (ABMC) simulation
is then introduced, and is employed to study the variabil-
ity within an epidemic depending on the media function
chosen. A sensitivity analysis is also completed in order to
determine the importance of certain model parameters on
various epidemic outcomes for each media function.

Methods
Media functions
From the disease modelling literature [6-14] we have iden-
tified three distinct functions employed to present the
effects of mass media:

f (I, p1) = e−p1γ I (1)

f (I, p2) =
(

1
1 + p2I2

)
(2)

f (I, p3) =
(
1 − I

p3 + I

)
(3)

where I is the number of infectious individuals in a pop-
ulation, γ is the recovery rate, and pi, i = 1, 2, 3 is a
parameter used to represent media effects in these func-
tions. In general, these functions are decreasing functions
of I, which represents the fact that, as the number of infec-
tions increases in a population, and is reported by mass
media, susceptible individuals will practice social distanc-
ing or control measures, which decreases susceptibility.
Comparing the three functions, we see that, for a given I
and γ , p1 and p2 can be written in terms of p3:

p1 =
− ln

(
p3

p3+Ic

)
γ Ic

(4)

p2 = 1
p3Ic

. (5)

These equations demonstrate that, if p3 is increased, then
p1 and p2 must decrease to have the functions remain the
same value at a chosen Ic.
In Figure 1, we plot Functions (1)-(3) (dotted, dashed,

solid lines respectively) for media parameters pi, i = 1, 2,
3 (dotted, dashed, solid lines) with γ = 1/4 and Ic = 300
(top) and Ic = 1000 (bottom). Note that the functions are
equal when I = 300 (top) and 1000 (bottom). Here, p3 =
10 (left panel), 100 (middle panel), and 1000 (right panel),
and p1 and p2 are determined using Equations (4) and (5).

SEIR framework
To compare the effects of differentmedia Functions (1)-(3),
wemust choose a standardizedmodel. For the purposes of
our study, we have chosen the basic Susceptible-Exposed-
Infectious-Recovered (SEIR) model with a constant popu-
lation size N :

Ṡ = −f (I, p)βSI
Ė = f (I, p)βSI − σE
İ = σE − γ I
Ṙ = γ I
N = S + E + I + R .

(6)

Briefly, susceptible individuals (S) are infected by infec-
tious individuals (I) with rate β and become exposed
(E). Transmission can also be reduced as determined by
f (I, p). Exposed individuals become infectious with rate
σ , and infectious individuals recover with rate γ . The ini-
tial conditions and parameters values for this study can be
found in Table 1.
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Figure 1Media Functions f(I, p) for different values of p. Functions (1), (2) and (3) (dotted, dashed, solid lines respectively) are shown when
p3 = 10 (left), 100 (middle), 1000 (right), γ = 1/4 and Ic = 300 (top), 1000 (bottom). p1 and p2 are calculated using equations (4) and (5).

Agent-based Monte Carlo simulation
For further comparison of the SEIR model with different
media functions, we utilize an Agent-Based Monte Carlo
(ABMC) simulation to capture the variability in the epi-
demic infection curve (that cannot be determined using a
system of deterministic equations like that of System (6)).
There are various ways of developing an ABMC simula-
tion. We have employed a previous method as developed

by Heffernan and Wahl, [16,22]. Briefly, the ABMC sim-
ulation moves forward in time following event times: the
next time that an individual changes state within the sys-
tem. Agents in each of the susceptible, exposed, infectious
and recovered compartments are assigned event times
corresponding to Table 1 when they are introduced into
the simulation, for each event that allows such an individ-
ual from that compartment to change state. For example,

Table 1 Initial conditions and parameter values for model (6), functions (1)-(3) and the ABMC

Description Value Range Unit Reference

Population

S Susceptible 10, 000

E Exposed 0

I Infectious 10

R Recovered 0

Parameter

R0 Basic reproductive ratio 1.5 1.3 − 1.7 [20,21]

β Contact transmission rate 3.71287e−5 (person-day)−1 Eq. (7)

σ Transition rate E to I 1/2 (day)−1 [20]

γ Recovery rate 1/4 (day)−1 [20]

pi Media parameter varies varies [7]

ABMC

S/β Mean time to transmission S(t)/β Eq. (7)

1/σ Mean exposed time 2 days [20]

1/γ Mean infectious time 4 days [20]

1/pi Media parameter varies varies [7]
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Figure 2 Schematic of the Agent Based Monte Carlo simulations
corresponding to Table 1.

exposed individuals are assigned a time to become infec-
tious, and infectious individuals are assigned a time to
recovery and a time to infect a susceptible. The mini-
mum event time determines the next event to occur in
the simulation. The event is then carried out, and the next
event is determined. To compare to the SEIR system as
described above, we assume exponential distributions for
all parameters. Table 1 lists the parameter values of the
SEIR model and the mean value of the parameter distri-
butions for the ABMC simulation. Note that, in general,

Table 2 Model and fitted parameters β and pi
Model β pi R0

no media 3.29 ×10−5 1.32

(1) 3.33 ×10−5 0.00365 1.33

(2) 3.32 ×10−5 5.2 ×10−5 1.33

(3) 3.33 ×10−5 1000 1.33

Based on 100 days of data generated using System (6) with Media Function (3)
with σ and γ values listed in Table 1 and p3 = 1000.

the means of the lifetime distributions in the ABMC are
simply the reciprocals of the rates used in System (6).
However, so that infection event times always depend on
the current size of the susceptible population S(t) (similar
to what is assumed in System (6)), the infection time dis-
tribution mean is continuously updated. Figure 2, shows
the progression of an individual through the epidemic.

Results and discussion
Basic reproductive ratio
The basic reproductive ratio R0 is defined as the number
of newly infectious individuals produced by one infec-
tious individual in a totally susceptible population. For
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Figure 3 Epidemic curves using the different values for each media function. Functions (1) (dotted line), (2) (dashed line), and (3) (solid line)
are shown when p3 = 10 (top), 100 (middle), 1000 (bottom). p1 and p2 are determined by equations (4) and (5) with γ = 1/4 and Ic = 300. For
comparison, the standard SEIR model 6 with no media effect is also shown (dash-dotted line).
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Figure 4 Data and fitted models. The epidemic curves are shown
resulting from fitting System (6) with Media Functions (1)-(3) (dotted
line, dashed line, solid line) and no media (dash-dotted line) to 100
days of epidemic data (boxes) generated using Media Function (3)
with p3 = 1000 and γ and σ from Table 1.

a description of different methods for calculating R0 see
[22]. For System (6),

R0 = βN
γ

. (7)

whereN = S0 is the total population size of susceptibles at
time zero. Note that the calculation of R0 is independent
of f (I, p).

Comparison of media functions
Figure 3 plots System (6) using Media Functions (1)-(3)
for p3 = 10, 100, and 1000 (solid line), with and p1 (dot-
ted line) and p2 (dashed line) determined by Equations (4)
and (5), and γ = 1/4 and Ic = 300. For comparison, the
standard SEIR model with no media effect is also shown
(dash-dotted line). This figure demonstrates that mass
media will affect the epidemic curve. It also demonstrates
that the epidemic curve varies depending on the media
function used.
For a further comparison of the media functions, we

determine the values of the basic reproductive ratio R0
and themedia constant p of f (I, p) based on epidemic data
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Figure 5 Epidemic curves for different media functions. The epidemic curves are shown for Model (6) (dashed line) and the ABMC simulation
(gray lines). There are 100 simulations plotted for each. In each panel, we also show the mean of the simulations (sold line). The first row has no
media effect and rows (2-4) correspond to Functions (1)-(3). Here, Ic = 300 and p3 = 1000, γ = 1
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Table 3 Key epidemic measurements for the SEIRmodel with (a) nomedia, (b) media function (1), (c) media function (2),
and (d) media function (3)

Model Peak Magnitude Peak time Epidemic end Total
(E+I) (days) (days) (I)

(a) 2676.1 21.155 76.6065 9254.8

2623.9 ± 204.09 21.005 ± 19.9 77.1863 ± 15.59 9542.4 ± 255.37

(b) 1061.5 21.7841 162.3647 7537.5

1095.6 ± 46.35 21.001 ± 19.99 168.077 ± 31.24 7578.13 ± 460.95

(c) 858.176 18.544 176.8229 7557.9

902.15 ± 78.85 17.7 ± 15.99 177.07 ± 23.6 7622.2 ± 328.8

(d) 1144.7 23.5169 154.3623 7586.0

1175.9 ± 175.09 22.01 ± 20.99 157.07 ± 28.005 7643.9 ± 229.2

The results of system 6 and the ABMC are listed in the top and bottom row of each section respectively with p3 = 1000, p1 and p2 determined using equations (4) and
(5), and γ = 1/4 and Ic = 300. 500 simulation runs are used for the ABMC calculations.

generated from our models. For an example, Table 2 lists
the values of β and p determined through a fitting rou-
tine (inMATLAB - various routines were used and similar
results were obtained) over the first 100 days of an epi-
demic, with data generated using Media Function (3) with
σ and γ values listed in Table 1 and p3 = 1000. Figure 4
plots the resulting epidemic curves of System (6) using
Media Functions (1)-(3) (dotted, dashed and solid lines)

and no media (dash-dotted line). Table 2 and Figure 4
demonstrate that even though all of the models have a
very similar shape and basic reproductive ratio R0 at the
beginning of the epidemic, the resulting epidemic curves
can still vary drastically depending on the media function
chosen. Similar observations were made using different
numbers of days of data used to fit β and p, and differ-
ent Media Functions to generate the data (not shown).

Figure 6 LHS-PRCC results for Ic = 300 for peakmagnitude. This sensitivity analysis is done with 1000 bins. The rows correspond to Function (1),
Function (2) and Function (3), respectively. The columns of this PRCC figure correspond to p3 = 10, p3 = 100 and p3 = 1000. Here Ic = 300 and
γ = 1

4 .
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Figure 7 LHS-PRCC results for Ic = 1000. This sensitivity analysis is done with 1000 bins. The rows correspond to Function (1), Function (2) and
Function (3), respectively. The columns of this PRCC figure correspond to p3 = 10, p3 = 100 and p3 = 1000.

Therefore, it can be concluded that key epidemic mea-
surements – peak number of infections, time of peak, end
of epidemic, and total number of infections –will also vary
depending on the Media Function chosen.
System (6) is useful in describing the mean behaviour

of an epidemic, but it is unable to provide estimates of
variation of important public health measures. A stochas-
tic simulation lends itself well to demonstrating variation
within an epidemic. Here, we employ an Agent-Based
Monte Carlo (ABMC) simulation. Figure 5 shows 100 sim-
ulation runs of the ABMC simulation when no media is
involved (top), and whenMedia Functions (1)-(3) are used
(second to bottom rows). Each simulation run (gray line)
is shown, as well the mean of the simulation runs (solid
line) and solution of the System (6) with the correspond-
ing media functions (dashed line). Note that the mean
(solid line) and solution to System (6) are in agreement.
This figure demonstrates that variability in the key epi-
demic measurement occurs. Table 3 lists the mean and
standard error of each epidemic measurement when no
media is considered (section a), and Media Functions (1)-
(3) are included in the simulation (Sections b-d). In each
section we list the simulation mean and standard error
(top row), and the solution of System (6).

Sensitivity analysis
Within public health settings, a goal is to identify key
characteristics of an epidemic that drive the infection
with the hope of determining public health measures that
can be implemented so that control or eradication of the
pathogen can be achieved. By performing sensitivity anal-
ysis on System (6) with Equations (1)-(3), parameters that
most affect epidemic outcomes for each media function
can be identified, informing policy makers so that appro-
priate public health measures can be put into place. To
conduct the sensitivity analysis, we use Latin Hypercube
Sampling (LHS) and partial rank correlation coefficients
(PRCC) [23].
We first conduct the sensitivity analysis with Ic, p3

and γ constant to directly compare the media functions.
Figures 6 and 7 show the PRCC values determined for
peak magnitude when Ic = 300 (Figure 6) and 1000
(Figure 7) for Functions (1)-(3) (top to bottom) when p3 =
10, 100 and 1000 (left, middle and right columns respec-
tively). These figures demonstrate that for each set of
parameters the PRCC value is similar. This is true for each
key epidemic measurement - the PRCC values are similar
between different values of p3 and Ic. However the PRCC
values between key measurements are different i.e. the
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Figure 8 PRCC for system (6). Results are shown for peak magnitude, peak time, epidemic end time, and total number of infections (left to right)
when no mass media function is considered, and functions (1)-(3) are used (top to bottom). Here, p3 = 100 and p1 and p2 are determined by
Equations (4) and (5).

PRCC values are different if comparing peakmagnitude to
epidemic end time (not shown).
For further sensitivity analysis, all parameters are

allowed to vary. Figure 8 shows the result of the sensi-
tivity analysis for all four outcomes key to public health:
peak number of infections, peak time, epidemic end time,
and total number of infections. The results demonstrate
that the SEIR model is more (or less) sensitive to certain
parameters depending on what Mass Media Function (1)-
(3) is used. For example, changes in β have a large effect on
peak magnitude when Function (1) is used, but it has lit-
tle to no effect when Functions (2-3) represent the effects
of media. Variable p3 also has a large effect on peak mag-
nitude when media is represented by Function (1). It has
a similar effect when Function (2) is used, but it has no
effect on the system utilizing Function (3).
The sensitivity analysis indicates that models that

include mass media influence will greatly depend on
different parameters, depending on the media function
chosen. This makes it very difficult for policy makers to
determine an effective public health intervention strategy.

This also explains the very different epidemic curves pro-
duced by System (6) when different media functions are
employed, notwithstanding the similarities in the media
functions when plotted at a specific level of media.

Conclusion
Technology and media play an increasing role in daily life.
Mass media that is transmitted via technological media
can therefore be used to inform the public during pan-
demics and epidemics. An understanding of the effects
of media during an epidemic or pandemic threat can aid
in the development of public health policy. Of particu-
lar interest to public health are the effects of media on
key epidemic measurements - peak magnitude of infec-
tion, time of peak, end of epidemic, and total number of
infections.
Mathematical modelling has been used to study the

effect of media on epidemics by employing functions in
the transmission terms of mathematical models [6-14].
A survey of the literature identified three functions that
have been utilized to represent media in diseasemodelling
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[6-14]. We have conducted a comparison of these func-
tions to determine the effects of media function on key
epidemic measurement and variability within these mea-
surements. We first demonstrated that by including mass
media in System (6) the peak magnitude of the epidemic
and the total number of infections would decrease. We
also determined that the time to peak and the end of
the epidemic would also occur earlier. However, we also
demonstrated that, although the functions are similar in
shape and magnitude, the resulting epidemic curve can
be quite different (Figure 5). Therefore, the key epidemic
measurements that are used to inform public health policy
will be different. Furthermore, we demonstrated that vari-
ability in the key epidemic measurements also depends on
the media function chosen (Figure 5 and Table 3).
A sensitivity analysis on System (6) with the differ-

ent media functions was also conducted. Obtained from
this analysis was the insight that some parameters are
important for some outcomes and not for others. We can
conclude that due to the different fixed functions result-
ing in very different epidemic behaviours, there is no clear
control strategy present. Also, as a reult of the differ-
ent behaviours from the different media functions, we are
unsure as to which is the best function to use to model
mass media. This suggests that a function representing
media may not be the best course for modelling the effects
of media during an epidemic. We suggest that perhaps, a
separate model compartment representing media reports,
such as those incorporated into surveillance data [24]
could be used. Development of such a model is a course
for future work.
Mass media reports can affect social behaviour, that

ultimately, affects transmission of disease. However, an
individual’s response to a media stimulus will wane over
time [13,25-29]. Models that employ a media function
such as those studied here are difficult to modify to
involve a waning response to a media stimulus over the
age of an epidemic. This can be incorporated easily into a
model whereby media is represented as a model compart-
ment. A study of the effects of ‘waning media’ is a course
for future work.
The current study has employed a simple SEIR model

that includes three parameters. This model implicitly
assumes that individuals mix at random in the population,
the age and sex of individuals is unimportant, and that
the population size remains constant over the epidemic.
These assumptions are not true reflections of reality. An
interesting direction for future work is to consider the
effects of mass media reports on individual decision mak-
ing strategies, and study how mass media can impact the
contact structure of a population network [30].
The simple SEIR model employed in this study was

used to study one season of influenza. Typically, seasonal
forcing is used to model multiple seasons of influenza.

Inclusion of mass media reports and media waning in
a model of multiple seasons with seasonal forcing is an
interesting direction for study.
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