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Abstract

Background: Despite the progress made in the past decade, tuberculosis (TB) control still faces significant
challenges. In many countries with declining TB incidence, the disease tends to concentrate in vulnerable
populations that often have limited access to health care. In light of the limitations of the current case-finding
approach and the global urgency to improve case detection, active case-finding (ACF) has been suggested as an
important complementary strategy to accelerate tuberculosis control especially among high-risk populations. The
present exercise aims to develop a model that can be used for county-level project planning.

Methods: A simple deterministic model was developed to calculate the number of estimated TB cases diagnosed
and the associated costs of diagnosis. The model was designed to compare cost-effectiveness parameters, such as
the cost per case detected, for different diagnostic algorithms when they are applied to different risk populations.
The model was transformed into a web-based tool that can support national TB programmes and civil society
partners in designing ACF activities.

Results: According to the model output, tuberculosis active case-finding can be a costly endeavor, depending on
the target population and the diagnostic strategy. The analysis suggests the following: (1) Active case-finding
activities are cost-effective only if the tuberculosis prevalence among the target population is high. (2) Extensive
diagnostic methods (e.g. X-ray screening for the entire group, use of sputum culture or molecular diagnostics) can
be applied only to very high-risk groups such as TB contacts, prisoners or people living with human
immunodeficiency virus (HIV) infection. (3) Basic diagnostic approaches such as TB symptom screening are always
applicable although the diagnostic yield is very limited. The cost-effectiveness parameter was sensitive to local
diagnostic costs and the tuberculosis prevalence of target populations.

Conclusions: The prioritization of appropriate target populations and careful selection of cost-effective diagnostic
strategies are critical prerequisites for rational active case-finding activities. A decision to conduct such activities
should be based on the setting-specific cost-effectiveness analysis and programmatic assessment. A web-based tool
was developed and is available to support national tuberculosis programmes and partners in the formulation of
cost-effective active case-finding activities at the national and subnational levels.
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Background
Global expansion of the WHO-recommended Stop TB
strategy marked significant achievements in tuberculosis
(TB) control, with 46 million patients successfully treated
and seven million lives saved between 1995 and 2010 [1].
Despite the progress made, TB control today faces signifi-
cant challenges. In many countries with declining inci-
dence, TB tends to concentrate in vulnerable and
marginalized populations that often have limited access to
health care. There are a number of existing and emerging
factors that contribute to the TB epidemic such as the
human immunodeficiency virus (HIV), the widespread
use of tobacco, the epidemics of noncommunicable dis-
eases including diabetes mellitus, increasing flows of mi-
gration and widening socioeconomic disparities [2,3].
In addition, recent prevalence surveys have shown ser-

ious limitations of the current diagnostic approach.
According to survey findings, approximately 40%–60% of
TB patients would be ruled out through initial symptom
screening under the routine programme setting (More
precisely, 45% of TB patients in Viet Nam [4], 46% in
South Africa [5] and 61% in Cambodia [6] would have
been ruled out because they did not have conventional TB
symptoms such as cough for more than two weeks). Simi-
larly, smear microscopy can detect only a proportion (30%
to 69%) of all confirmed cases [4-7]. Yet, most developing
countries still have to rely on sputum smear microscopy
for symptomatic patients who present to health facilities.
Active case-finding (ACF) is a special effort of the

health care system to detect TB patients among people
who do not seek care for TB symptoms [8,9]. In light of
the limitations of the current case-finding approach and
the global urgency to improve case detection, ACF has
been suggested as an important complementary strategy
to accelerate TB control [2,8-10].
To reflect the global attention, some international

initiatives have been promoting various intensified case-
finding activities. For example, the TB REACH grant
mechanism managed by the Stop TB Partnership has
been massively promoting country-level implementation
of innovative case-finding strategies, including ACF.
Nevertheless, comprehensive guidance is still lacking on
ACF especially on which TB high-risk populations can
be targeted and what diagnostic algorithms should be
employed.
Adding to the difficulty, new diagnostic tools have

been introduced in recent years [11]. Xpert MTB/RIF
(Cepheid, USA), a fully automated real-time polymerase
chain reaction assay, is one such tool. While these tools
propose significant opportunities for improving TB con-
trol, countries are facing considerable challenges in
introducing new tools into their national diagnostic net-
works and policies. Hence, there is an urgent need for
general guidance on TB ACF, particularly on prioritizing
target groups and selecting diagnostic strategies [2].
Since the feasibility and appropriateness of ACF depend
largely on local settings, a careful cost assessment is cru-
cial for rational policy development.
This paper aims at modelling different ACF diagnostic

strategies while focusing on the estimated diagnostic
yield of pulmonary TB cases and associated costs. A
model was designed to estimate the cost-effectiveness
parameters of ACF for different target populations under
various epidemiological settings to support country-level
planning. The model was transformed into a web-based
tool which can support national TB programmes (NTPs)
and civil society partners in formulating cost-effective
and setting-specific ACF activities.

Methods
The model framework
A simple deterministic model was designed to calculate
the estimated pulmonary TB cases diagnosed and the
associated direct costs for different diagnostic algorithms
(Figure 1), with the parameters and assumptions listed
in Table 1. The screening of TB involves multiple steps
of several testing methods, usually consisting of one or
two steps of screening tests followed by a confirmatory
diagnosis with bacteriological tests.
The primary output of the model was the diagnostic cost

per TB case detected, defined as the total diagnostic cost
divided by the total number of TB cases diagnosed. The total
diagnostic cost was derived from a simple step-by-step calcu-
lation of costs. The total number of TB cases diagnosed was
calculated from the number of subjects screened, the TB
prevalence among them, the proportion of prevalent TB
cases diagnosed with a given set of diagnostic procedures
(proportional yield) and the dropout rate. In the model,
dropouts were defined as individuals who entered into a
screening/diagnostic step but did not complete the whole
step through to receiving the test result. In designing the
model, TB prevalence was defined as the prevalence of
bacteriologically-confirmed pulmonary TB.

Diagnostic algorithms
Six diagnostic algorithms were predefined to examine
their cost-effectiveness when applied to different target
populations (Table 2). As a rapid guide, the strategies
were constructed from Strategy 1 to Strategy 5 in an in-
cremental manner from a simple, conservative approach
to extensive approaches. Strategy 1, symptom screening
followed by sputum microscopy, is similar to routine
programme settings. Strategy 2 adds X-ray for diagnosis
of smear-negative cases. Strategy 3 employs radiography
screening for the entire target population, and Strategy 4
is a standard approach recommended by WHO for
prevalence surveys [12]. Strategy 5 uses Xpert as the
diagnostic test with the screening procedure of Strategy 4.



Figure 1 Model framework. The middle part represents the flow of a population screened until diagnosis. The upper part represents the
calculation of a yield, i.e. total TB cases detected. The lower part explains the calculation of diagnostic cost for each step.
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Strategy 6 is the only strategy with two-step screening.
The symptomatic subjects identified by the first screening
undergo X-ray screening to reduce the number of
subjects for the diagnostic test (Xpert). This algorithm
reduces the number of Xpert tests at the cost of losing
non-symptomatic TB patients at the first screening step.

Screening methods and prevalence of abnormality
All six diagnostic algorithms employ one of the follow-
ing three screening approaches to identify subjects pro-
ceeding to the diagnostic tests: (i) TB symptomatic
screening, i.e., typically, inquiring about the presence of
prolonged cough for more than two weeks and/or haem-
optysis; (ii) a combination of TB symptomatic screening
and chest radiography, wherein the model assumes that
individuals with TB symptoms and/or abnormal chest
radiography would be ruled in; and (iii) a sequential ap-
plication of symptom screening and chest radiography
which identifies individuals with both TB symptoms and
any abnormal chest radiography.
The first approach is bound to miss a substantial por-

tion of TB patients (45%–61%) [4-6] who do not fulfil
TB symptomatic criteria. The second approach is one of
the most inclusive screening methods and has been
recommended by WHO for TB prevalence surveys [12].
The basic idea of the third approach is to reduce the
number of subjects who undergo an expensive diagnos-
tic test. In our model, it was used only in Strategy 6,
aiming to reduce the cost of tests using Xpert [11].
To calculate the number of subjects proceeding to the

next step, the estimated prevalence of abnormality
among the screened subjects was required. The informa-
tion from prevalence surveys [4,6,12,13] was used to
construct simple linear regression models in order to
predict the prevalence of abnormalities as a function of
TB prevalence (Table 1).

Estimation of yields
A proportional yield, defined as the maximum propor-
tion of prevalent TB cases diagnosed by a given diagnos-
tic algorithm, was required to calculate the number of
TB cases diagnosed. In other words, the proportional
yield can be interpreted as the sensitivity of diagnostic
methods in combination. The assumptions needed for
estimating the proportional yield were distributions of
prevalent TB cases by symptom and smear status as
shown in Figure 2(a). These numbers can be derived
from empirical data from prevalence surveys but, as
shown in Figures 2(b) and 2(c), the survey findings were
not fully consistent [4,6]. While more data are needed
from other surveys, the yield can be theoretically
calculated from two assumed parameters: the sensiti-
vities of TB symptom screening and sputum smear
microscopy. Figure 2(d) shows proportional yields that
were calculated by assuming that 40% of TB cases
were symptomatic and 60% were smear-positive. Based on
a chosen set of the proportional yield, the number of TB
cases diagnosed can be calculated by combining the
segments in Table 2. Dropout rates defined in Table 1
were used to discount the eventual number of cases
who could be diagnosed.

TB prevalence among high-risk groups
The model intends to produce cost-effectiveness para-
meters for multiple risk groups at once so that the
results can be compared to judge the relative importance
of different risk groups. Estimated TB prevalence can be
defined by two methods depending on the type of group.



Table 1 Key parameters and assumptions

Parameter Definition Base value
[range]

Remarks

TB prevalence among the general population and high-risk groups

Prev0 TB prevalence among the general
population (per 100,000)

country
specific

Estimated prevalence of all TB among general population
based on the estimates in Global TB Control 2010, WHO.

PRi and Previ for
Group i (i=1,2,. . .)
where Previ = PRi × Prev0

Assumed prevalence of pulmonary TB for each
of the high-risk groups. Defined either by
prevalence ratio to the general population or
by direct estimate

PR1 = 1.0 Although not strictly accurate, risk-group prevalence
parameters were set to allow general inference regarding
some high-risk groups. (Group 1: General population;
Group 2: Poor, urban dwellers; Group 3: Malnourished;
Group 4: Diabetics; Group 5: TB contacts, and Group 6:
Prisoners and/or other high-risk groups.) Note that these
groups are only indicative. Users of the tool should define
the prevalence parameters based on the best estimate
for the local context.

PR2 = 1.5

PR3 = 2.0

PR4 = 3.0

Prev5 = 4000/
105

Prev6 = 6000/
105

Proportion of abnormalities among screened subjects

Pr (symp) =
a × Previ + b (i=1,2,. . .)

Proportion of TB symptomatics as a function
of Previ

a = 2.9829 Pr (symp) and Pr (X-ray) were expressed as a linear function
of TB prevalence in the target population. The method was
employed due to the observed linear trends in prevalence
survey findings. Simple linear regression models were fit for
multiple data points from prevalence surveys and resulted
intercept and coefficient were used. * The overlap was
assumed to be 20%, based on prevalence survey findings
(References 5, 8). This parameter is required to calculate the
combined suspects, i.e. {Pr (symp) [ Pr (X-ray)}.

b = 0.0355

Pr (X-ray)
= a × Previ + b (i=1,2,. . .)

Proportion of subjects with X-ray abnormality
as a function of Previ

a = 3.0415

b = 0.0377

Overlap* {Pr (symp) \ Pr (X-ray)} divided by {Pr (symp) +
Pr (X-ray)}

0.20

Proportional yields (Refer to Figure 2)

Proportions of prevalent TB cases who are Sensitivity analysis was conducted for the ranges of
PYsymp [0.3-0.5] and PYsmear [0.5-0.7], both are assumed
to follow a uniform distribution.

PYsymp TB symptomatic 0.40 [0.3-0.5]

PYsmear smear-positive 0.60 [0.5-0.7]

PYss TB symptomatic and smear-positive 0.24 Assuming PYsymp and PYsmear are independent,
PYss = PYsymp × PYsmear

PYsc TB symptomatic and smear-negative 0.16 PYsc = PYsymp × (1-PYsmear)

PYxs Not TB symptomatic and smear-positive 0.36 PYxs = (1-PYsymp) × PYsmear

PYxc Not TB symptomatic and smear-negative 0.24 PYxc = (1-PYsymp) × (1-PYsmear)

Dropout rate for screening/diagnostic test

Symptom screening 0.00 A proportion of individuals who entered in a screening
step but did not complete the step to receiving the result.
The model assumed a high return rate for culture due to
a long turnaround time for solid culture.

Sputum smear
microscopy

0.02

Chest X-ray (screening) 0.02

Chest X-ray (diagnosis) 0.20 Similarly, the rate is high if the chest X-ray is used for
diagnosis of smear-negative TB as it often requires some
lead time for group diagnosis (e.g. TB diagnostic
committees) as per national guidelines.

Sputum culture (solid) 0.15

Xpert MTB/RIF 0.00

Unit cost for screening/diagnostic test

Symptom screening in USD per person 0.02 The unit cost of screening and diagnostic tests in USD.
They were meant to be direct unit cost excluding capital,
equipment and human resources cost. These costs can
be included in the analysis in the web-based tool if they
are deduced to the cost per test.

Sputum smear
microscopy

in USD per slide (three slides per person) 0.70

Chest X-ray in USD per test 3.00 [2.00-
6.00]

Sputum culture (solid) in USD per test 5.00

Xpert MTB/RIF in USD per specimen 16.86
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Table 2 Diagnostic algorithms predefined for the model

Strategy Description First
screening

Second
screening

Diagnostic
test

Maximum
proportional yield*

Example in Figure 2(d)
condition***

1 Basic routine programme
model

Symptom – Microscopy PYss 24%

2 Strategy 1 + smear-negative
diagnosis with X-ray

Symptom – Microscopy X-ray PYss + part** PYsc 24–40%

3 X-ray + symptom screening Symptom X-ray – Microscopy PYss+PYxs+part** (PYsc+PYxc) 60%–100%

4 Prevalence survey model Symptom X-ray – Microscopy Culture PYss+PYsc+PYxs+PYxs 100%

5 Xpert in Strategy 4 Symptom X-ray – Xpert PYss+PYsc+PYxs+PYxs 100%

6 Restrictive screening + Xpert Symptom X-ray Xpert PYss+PYsc 40%

* PY: Proportional yield (a proportion of prevalent TB cases by symptomatic and smear statuses). Please see Table 1.
** A diagnostic sensitivity of smear-negative TB can vary depending on the programmatic setup.
*** A maximum proportion of TB cases that can be diagnosed.

Nishikiori and Van Weezenbeek BMC Public Health 2013, 13:97 Page 5 of 10
http://www.biomedcentral.com/1471-2458/13/97
TB prevalence of some groups may be better defined as a
prevalence ratio to the baseline prevalence (e.g. smokers)
while other groups may have direct estimates of TB preva-
lence if relevant data is available (e.g. TB contacts, prison-
ers). For the model analysis, we arbitrarily defined the four
TB risk groups by a prevalence ratio (PR=1.0, 1.5, 2.0 and
3.0) and two high-risk groups by prevalence estimates of
4000 and 6000 cases per 100,000 population (Table 1). A
(a) Proportional Yield

With TB symptoms
Without TB symptoms 
  but identified by X−ray

PYsc

PYss

PYxc

PYxs

Culture−positive

Smear−positive

Culture−positive

Smear−positive

(c) Cambodia 2002

With TB symptoms
Without TB symptoms 
  but identified by X−ray

19%
PYss

21%
PYsc

11%
PYxs

49%

PYxcCulture(+)

Smear(+)

Culture(+)

Smear(+)

Figure 2 Proportional yields. (a) Proportions of prevalent TB cases are de
statuses where the total sum is 100% (Table 1). (b) Proportional yields base
prevalence survey in Cambodia.4 (d) Calculated by assuming that 40% of p
60% of TB cases are smear- positive and they are independently distributed
detailed discussion on the estimates of TB risk is not
within the scope of this study. Nevertheless, literature is
available on the estimates of differential risk of TB among
various groups to make inference from the model outputs
to a real-life scenario [14-18]. For the online tool, users are
expected to set estimated prevalence parameters according
to the local context and the model provides context-
specific outputs to facilitate local level project planning.
(b) Viet Nam 2006−7

With TB symptoms
Without TB symptoms 
  but identified by X−ray

29%

PYss

14%
PYsc

35%

PYxs

22%
PYxcCulture(+)

Smear(+)

Culture(+)

Smear(+)

(d) Theoretical
60% smear +ve / 40% symptomatic

With TB symptoms
Without TB symptoms 
  but identified by X−ray

24%

PYss

16%
PYsc

36%

PYxs

24%
PYxcCulture(+)

Smear(+)

Culture(+)

Smear(+)

noted as PYss, PYsc, PYxs and PYxc by TB symptoms and smear
d on the TB prevalence survey in Viet Nam.7 (c) Based on the TB
revalent TB cases can be identified through symptomatic screening,
. Note their similarity with (b).
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Figure 3 Cost per case detected and incremental yield, by
diagnostic strategy, in a hypothetical TB risk group of 10,000
population with TB prevalence of 1.0%. The number of TB cases
detected (a) and the cost per case detected are plotted against the
total diagnostic cost. Each point represents a diagnostic strategy
from strategies 1 to 6 defined in Table 2.
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Output parameters
Under a given baseline of TB prevalence among the gen-
eral population, the model estimates a diagnostic cost per
case detected for each of the defined high-risk popula-
tions. Cost per case detected has been used in the global
TB control community through two international initia-
tives: Fund for Innovative DOTS Expansion Through
Local Initiatives to Stop TB (FIDELIS) by the International
Union Against Tuberculosis and Lung Disease launched
in 2004 [19], and TB REACH by the Stop TB Partnership
launched in 2010 (www.stoptb.org/global/awards/tbreach).
TB REACH generally recommends formulating a project
within the overall budget of USD 350 per case detected
and successfully treated. Since the model only calculates
the direct diagnostic cost, not the costs associated with
operation, logistics and treatment, USD 200 per case
detected was arbitrarily used as a benchmark. Additional
outputs include the Number Needed to Screen (NNS) and
incremental yields in relation to the total costs incurred.
Sensitivity analysis was conducted for the selected para-
meters for which values were less certain.

Developing a tool to assist decision-making
The model was initially developed in Microsoft Excel,
and summary outputs were utilized for formulating ACF
projects in selected countries in the Western Pacific Re-
gion. After some upgrading, the tool was coded in the
statistical package R (CRAN: the Comprehensive R
Archive Network at http://cran.r-project.org) to conduct
statistical analysis and simulations.
As an attempt to provide the model on a user-friendly

and interactive platform, the tool was rewritten in Java-
Script to be available on the Internet at http://www.
innovationsinpublichealth.org.

Results
Incremental yields of TB cases detected
Figure 3(a) shows the yield of TB cases for each of the six
diagnostic strategies against overall diagnostic cost under
a hypothetical setting of 10,000 population with 1.0% of
TB prevalence (1000 per 100,000 population). In general,
the number of TB cases diagnosed increased as the diag-
nostic strategy moved from conservative to extensive
(strategies 1 to 5) with an additional diagnostic cost at
each step. Cost per case detected also linearly increased,
except for Strategy 6, as shown in Figure 3(b).
Under the hypothetical setting, Strategy 1 diagnosed

only 23.5 patients out of 100 prevalent TB cases in the
population with a diagnostic cost of USD 1571. In terms
of cost-effectiveness, this translates to USD 67 per case
detected. With Strategy 2, a total of 36.1 patients (an add-
itional 12.6 patients) were diagnosed with an overall diag-
nostic cost of USD 3530. Strategies 3 and 4 substantially
increased the number of TB cases (90.2 and 91.7 patients,
respectively), but the cost was substantially higher (more
than tenfold, USD 32 535 and USD 43 655, respectively).
Cost per case detected became USD 361 and USD 476
which is several times higher (i.e. less cost-effective) than
the first two strategies. The increased cost for Strategy 3
was primarily due to X-ray examinations for the entire tar-
geted population, and the difference between the two
strategies (3 and 4) was the use of culture as a diagnostic
test. The model assumed that Xpert yielded the same level
as solid culture, but a relatively high dropout rate (15%)
was set for culture considering the long turnaround time.
As expected, Strategy 6 yielded a relatively small propor-
tion of TB cases because the strategy applied the most re-
strictive approach in screening. However, it is important
to note that this strategy seemed reasonably cost-effective
with USD 155 per case detected, despite the higher cost of
using of Xpert.

Cost-effectiveness of ACF in relation to TB risk and
diagnostic strategy
Figure 4(a) summarizes the cost-effectiveness of diagnostic
strategies for different risk groups. Each of the six plotted
lines represents a different risk group with PR of 1.0 (gen-
eral population), 1.5 (e.g. poor urban communities), 2.0
(e.g. malnourished), 3.0 (e.g. diabetics), 8.0 (e.g. TB contacts)

http://www.stoptb.org/global/awards/tbreach
http://cran.r-project.org/
http://www.innovationsinpublichealth.org/
http://www.innovationsinpublichealth.org/
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and 12.0 (e.g. prisoners or people living with HIV). The base-
line TB prevalence was set at 0.5%, which is approximately
the prevalence level for Bangladesh, the Democratic Republic
of the Congo, Mozambique, Myanmar and the Philippines,
and is lower than the prevalence for Cambodia and South
Africa [1].
As observed in Figure 3, the general trend of decreas-

ing cost-effectiveness with upgraded diagnostic strategies
persisted for all risk populations. However, the cost per
case detected was substantially reduced in a population
with a very high prevalence such as TB contacts, prison-
ers or people living with HIV. In these very high-risk
populations, the most extensive diagnostic strategies
(such as the strategies 4 and 5) were still cost-effective
(i.e. all strategies fell within a diagnostic cost per case
detected of less than USD 200).
Another important finding was that conservative

approaches which were similar to routine programme set-
ups (strategies 1 and 2) were the most cost-effective strat-
egies even though the yield was low. These strategies were
cost-effective for almost all high-risk populations in TB
high-burden countries.
The cost per case detected increased abruptly between

Strategy 2 and Strategy 3 due to the application of X-rays
for all subjects. With the given set of assumptions and
using USD 200–250 as a cost-effectiveness target, TB
prevalence around 1.5% was identified as the decision-
making-point whether to employ X-ray screening for all.
However, it requires context-specific analysis because the
cost-effectiveness of Strategy 3 appears sensitive to the
unit cost of X-ray which varies among different countries
and localities. This issue was further examined in sensitiv-
ity analyses.

Number Needed to Screen (NNS)
The Number Needed to Screen, defined as the total
number of subjects screened divided by the number of
TB cases detected, is presented in Figure 4(b). Obvi-
ously, the higher the TB prevalence, the lower the NNS.
However, even within the same risk group, the NNS sig-
nificantly differed depending on the diagnostic strategy.
Under the assumptions for Figure 4, NNS went up to
several hundred for the low-yield strategies (1 or 2), but
the diagnostic cost was actually very low. Conversely,
the NNS was minimized by applying extensive diagnos-
tic strategies that yielded more cases but were costly.
Due to this inverse relationship between the NNS and
the diagnostic cost, a low NNS would not necessarily
guarantee the feasibility and cost-effectiveness of ACF.
The reality seems the other way round - inexpensive
strategies (1 and 2) were almost always cost-effective
even though the NNS was very high.



Nishikiori and Van Weezenbeek BMC Public Health 2013, 13:97 Page 8 of 10
http://www.biomedcentral.com/1471-2458/13/97
Sensitivity analysis
The sensitivity of the cost per case detected was exam-
ined under varied parameter conditions. Figure 5(a)
presents the result when the unit cost of X-ray uniformly
varied between USD 2 and 6. As expected, the cost per
case detected varied significantly for strategies 3, 4 and
5. Importantly, the output was more robust under the
prevalence of 4.0% than under 1.0%.
Another less certain set of assumptions was the pro-

portional yield. The uncertainty bound was obtained by
uniformly, simultaneously and independently varying the
proportion of symptomatic patients between 30% and
50% and the proportion of smear-positive patients be-
tween 50% and 70% (Table 1). As a result, Figure 5(b)
shows that the model output was reasonably robust
against the proportional yield assumptions, which mini-
mized the issue of uncertainty due to insufficient empir-
ical data.

Discussion
Our analysis reconfirms that TB ACF can be a costly
undertaking, depending on the target population and the
diagnostic strategy used. Therefore, the prioritization of
proper target populations and careful selection of cost-
effective diagnostic strategies are critical prerequisites
for launching any rational ACF activities.
There seem to be several important conditions under

which ACF can be cost-effective and, in such circum-
stances, it can contribute to a significant increase in case
detection. First, TB prevalence among a target population
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Figure 5 Sensitivity analysis for X-ray cost and proportional yield ass
prevalence of 1.0% and 4.0% under uniform distribution of the values for (a
ranges are shown in Table 1.
is a very important determinant of cost-effectiveness. The
higher the TB prevalence among the target population,
the more TB cases detected thus contributing to better
cost-effectiveness.
Second, using the conventional DOTS approach, symp-

tom screening followed by smear microscopy (Strategy 1)
was found to be almost always cost-effective as the unit
cost of tests is inexpensive. Although the yield is very low
due to low sensitivity, the strategy is always an option for
a population with different TB risks.
Third, in designing ACF activities, a critical decision to

make is to determine whether all subjects should
undergo X-ray screening. The cost per case detected for
strategies 3, 4 and 5 was sensitive to the unit cost of X-
ray which generally ranges between USD 2 and USD 6,
in accordance with the country context. Therefore, it is
important to carefully assess the cost-effectiveness of
ACF by using accurate local cost information including
human resources, as well as infrastructural and logistics
expenses. This was part of the reason for providing an
online tool for national stakeholders to examine the
cost-effectiveness indicators according to their local set-
tings. To be noted, digital X-ray technologies could sub-
stantially reduce the unit cost of X-ray (without printing
the films), and substantially expand the potential of X-
ray screening for ACF.
As with any model analysis, the current approach carries

several limitations. The model assumes a number of para-
meters based on available information including the preva-
lence of test abnormalities, proportional yields and unit
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costs. Although we used the best available information for
these assumptions, our source of information might be
biased towards Asian settings due to the availability of such
data. Including data from other parts of the world might
be needed as a future development of the model. To ad-
dress the uncertainly around the assumptions, we con-
ducted sensitivity analysis of the model output. It is
important to note that the model output was quite robust
against the diagnostic yield assumptions, which support
the general observation described above.
The cost information was limited to direct diagnostic

costs that represent a part of the minimum necessary
costs for ACF activities. In reality, other operational
costs such as those involving human resources and lo-
gistics should also be considered in any project planning.
In view of this, the model output should be used to
check whether the proposed diagnostic strategy is worth
further consideration or if its diagnostic cost alone is too
prohibitive to consider further project planning.
Besides cost per case detected employed in our ana-

lysis, there would be other important cost-effectiveness
and cost-utility indicators such as deaths averted, sec-
ondary cases prevented and disability-adjusted life years
saved. All of these are important indicators in the con-
text of TB ACF. For example, preventing secondary in-
fection through early case-finding [20,21] might be one
of the major benefits of ACF in reducing the TB burden
in a community. However, assessing these benefit indica-
tors requires many additional assumptions for which in-
formation is scarce. Moreover, the evidence base is still
insubstantial to support any epidemiological impact of
ACF though, theoretically, it is expected to exist.
For the reasons stated above, it is justifiable to limit

the scope to the simple but robust cost-effectiveness cal-
culation. Our intention was to support national TB pro-
grammes to formulate various ACF initiatives rather
than to model the epidemiological impact of ACF.
Nevertheless, we believe the model and our online tool
can contribute to the debate on conditions required for
cost-effective ACF and the selection of diagnostic strat-
egies for different target groups.
TB ACF is not a new intervention. It has been exten-

sively used in many parts of the world, sometimes in-
volving mass radiological screening [8]. As our model
shows, these ACF activities can be cost-effective only
against the backdrop of high TB prevalence in the soci-
ety or when targeting a TB high-risk population. This
explains the fact that many industrialized countries dis-
continued mass population screening when the TB
prevalence among the general population decreased.
However, in countries with a high burden of TB and a
well-established basic DOTS programme, there is a
renewed interest in ACF as a complementary strategy to
increase case detection [2].
Many studies documented several important benefits
of ACF over routine passive case-finding. ACF can de-
tect a substantial portion of undiagnosed TB patients
much earlier than passive case-finding while their bac-
terial load is low [20-23]. Consequently, it also contri-
butes to reducing transmission by shortening the
duration of infectiousness [24,25]. Moreover, ACF would
potentially play an important role to address health in-
equities. ACF can specifically target and benefit vulner-
able segments of the population such as the elderly, the
poor, and the marginalized [15,20,22,23].
Our online tool provides some essential information

on TB ACF that would help national TB programme
managers and partners make decisions on priority target
populations and cost-effective diagnostic strategies. In
the current culture of information technology, the con-
cept of an interactive, online tool for context-specific de-
cision-making is not novel. However, it is also true that
public health programmes are not benefiting as much
from the full potential of available technologies as the
private sector. We aimed at providing a model of an
interactive tool that contributes to the national and sub-
national levels of planning for public health activities.
Real-time user experience and feedback will help us fur-
ther improve the model which may, overtime, initiate an
innovative way to build up and refine public health pol-
icy guidance.

Conclusions
The prioritization of appropriate target populations and
careful selection of cost-effective diagnostic strategies
are critical prerequisites for rational active case-finding
activities. A decision to conduct such activities should
be based on the setting-specific cost-effectiveness ana-
lysis and programmatic assessment. A web-based tool
was developed and is available to support national tuber-
culosis programmes and partners in the formulation of
cost-effective active case-finding activities at the national
and subnational levels.
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