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Abstract

Background: Estimates of disease incidence and prevalence are core indicators of public health. The manner in
which these indicators stand out against each other provide guidance as to which diseases are most common and
what health problems deserve priority. Our aim was to investigate how routinely collected data from different
general practitioner registration networks (GPRNs) can be combined to estimate incidence and prevalence of
chronic diseases and to explore the role of uncertainty when comparing diseases.

Methods: Incidence and prevalence counts, specified by gender and age, of 18 chronic diseases from 5 GPRNs in
the Netherlands from the year 2007 were used as input. Generalized linear mixed models were fitted with the
GPRN identifier acting as random intercept, and age and gender as explanatory variables. Using predictions of the
regression models we estimated the incidence and prevalence for 18 chronic diseases and calculated a stochastic
ranking of diseases in terms of incidence and prevalence per 1,000.

Results: Incidence was highest for coronary heart disease and prevalence was highest for diabetes if we looked at

shifted maximally three or four places in rank.

the point estimates. The between GPRN variance in general was higher for incidence than for prevalence. Since
uncertainty intervals were wide for some diseases and overlapped, the ranking of diseases was subject to
uncertainty. For incidence shifts in rank of up to twelve positions were observed. For prevalence, most diseases

Conclusion: Estimates of incidence and prevalence can be obtained by combining data from GPRNs. Uncertainty
in the estimates of absolute figures may lead to different rankings of diseases and, hence, should be taken into
consideration when comparing disease incidences and prevalences.

Background

Morbidity rates, such as disease incidence (number of
new disease cases within a certain period) and disease
prevalence (current stock of diseased at a certain point
in time), are core indicators of public health and health
care needs of a population. Furthermore, incidence and
prevalence rates are also crucial inputs for burden of
disease studies [1-4] and of simulation models designed
to making projections of future population health [5-8].
In all these cases, a comparative perspective is implicitly

* Correspondence: vanbaal@bmg.eur.nl

'Expertise Centre for Methodology and Information Services, National
Institute for Public Health and the Environment Antonie van
Leeuwenhoeklaan, 9 Bilthoven, 3720 BA, The Netherlands

Full list of author information is available at the end of the article

( BioMVed Central

or explicitly chosen: the incidence and prevalence
figures of diseases relative to each other count as much
as these absolute figures themselves. The manner in
which the various morbidity rates stand out against each
other provide guidance as to which diseases are most
common and what health problems deserve priority. It
is not surprising that comparisons of diseases in terms
of incidence or prevalence are frequently made by dis-
ease advocates, pharmaceutical companies, politicians
and journalists.

Obtaining the necessary data to produce comprehen-
sive estimates of incidence and prevalence on a systema-
tic and regular basis is a major obstacle. As a result, for
a lot diseases incidence or prevalence are estimated
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indirectly [9-14]. Even when suitable sources to estimate
incidence and prevalence are available, the estimates
obtained from them will be subject to uncertainty.
Uncertainty surrounding point estimates of population
incidence and prevalence may be due to limitations of
sample sizes, differences in diagnostic criteria, and
methods of case finding. Moreover, the impact of such
differences may have different consequences for differ-
ent diseases. Some sort of quantitative insight into the
magnitude of the uncertainty of the estimates is essen-
tial when interpreting the results. This should also be
borne in mind when policy makers and epidemiologists
rank chronic diseases in terms of incidence and preva-
lence when formulating health policies. Uncertainty in
estimates of incidence and prevalence may lead to dif-
ferent orderings of diseases in a ‘league table or ranking’
when confidence intervals of different diseases overlap.
As these rankings are actually used in practice it is
important to appreciate the impact of such uncertainty
margins on the hierarchical ordering of diseases.

In this study we demonstrate how routinely collected
data from general practice registration networks
(GPRNSs) can be used to estimate incidence and preva-
lence figures for the most common chronic diseases.
Furthermore, we also focus on the role of uncertainty.
In the Netherlands, when patients seek medical care
from a specialist they have to be referred by their GP,
and after consultation the medical specialist reports
back to the patient’s GP. As a result, GPs have contact
with patients suffering from diseases in various stages of
their disease and with all patient groups without selec-
tion regarding age, gender, socio-economic status or
ethnicity [15-18]. We will focus on the role of uncer-
tainty by presenting different outcomes. First, we will
present confidence intervals surrounding point estimates
of incidence and prevalence. In doing so, we distinguish
different levels of uncertainty assessed with multilevel
regression modelling. Next, we will illustrate how uncer-
tainty in the estimates affects the ranking of the various
diseases in a “league table of morbidity”, i.e. a list of
diseases in descending order of their prevalences (or
incidences). Taking into account uncertainty, turns a
league table into a “stochastic” league table. Presenting
outcome measures in terms of stochastic league tables is
common in economic evaluations [19,20], but has not
yet been applied to the ranking of diseases.

Methodology

Data

The data used for this study was collected during 2009
for the Dutch Public Health Forecasts Report that is
published every 4 years [21]. That report describes
public health on the basis of core indicators, including
incidence and prevalence for a selection of more than
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50 diseases. In this paper we will present estimates of
incidences for the year 2007 and prevalences at 1 January
2007 of a subset of 18 chronic diseases using data from
five different GPRNs which are non-overlapping in
terms of GP practices:

+ CMR (Continuous Morbidity Registry Nijmegen):
this registration, which started in 1971, consists of 4 GP
practices (11 GPs) delivering service to 12,000 persons
located in the eastern part of the Netherlands;

+ LINH (Netherlands Information Network of General
Practice): this registration, which started in 1991, con-
sists of 80 GP practices (160 GPs) delivering service to
350,000 persons. GP practices are located all over the
Netherlands;

« RNH (Registration Network General Practices): this
registration, which started in 1988, consists of 22 GP
practices (65 GPs) delivering service to 88,000 persons
located in the southern part of the Netherlands;

+ RNUH-LEO (Registration Network of General Prac-
titioners Associated with Leiden University): this regis-
tration, which started in 1989, consists of 4 GP practices
(20 GPs) delivering service to 30,000 persons located in
the Western part of the Netherlands;

« Transitie (Transition Project): this registration, which
started in 1985, consists of 5 GP practices (8 GPs) deli-
vering service to 13,000 persons located in the Northern
part of the Netherlands.

Approval to use the data for the Dutch Public Health
Forecasts Report and related publications was obtained
from each GPRN (the data are anonymous and aggre-
gated, requiring no ethics approval, is not publicly
available).

When using data from GPRNs for the estimation of
incidence and prevalence it is important to realize the
differences among GPRNs [22]. Two types of differences
are especially relevant. First, several classification sys-
tems are in use: three of the five GPRNs use ICPC-1
(International Classification of Primary Care 1) to clas-
sify diseases, the Transition project uses ICPC-2 and
CMR-N uses E-codes [22]. To account for these differ-
ences in classification, we mapped out the codes
between these registries, which in some cases required
combining codes. For example, the code for diabetes in
ICPC is T90, which corresponds with E-codes 0910,
0911 and 0919. Second, methods of data collection are
episode-based in some registries, but problem-based in
others. Problem-based data contain only information
about health problems that are permanent, chronic
(duration longer than 6 months) or recurrent. Episode-
based data have information about all health problems,
at least when a person seeks medical care. For the ana-
lyses in this paper we only used incidence and preva-
lence counts using a classification such that each person
can only be an incident case once, and that prevalence
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is defined as anyone in the registration who has been
diagnosed previous to 1 January 2007. Table 1 displays
the diseases selected for our exercise, the registrations
for which we had data on prevalence and incidence
counts for those diseases and the ICPC-1 and E-codes
we used to classify cases (ICPC-2 codes were mapped
into ICPC-1 codes).

Furthermore, for each of these 5 registrations the fol-
lowing data were available: population size, as of January
1 2007; numbers of person years (the years lived by the
total population in the GP registration during the regis-
tration period) for 2007. All data were grouped by sex
and 18 age classes (0-4, 5-9, etc., 85+). For diseases that
are only relevant at old age we discarded lower age
categories.

Regression modelling strategy

To capture the hierarchical structure of the data inci-
dence and prevalence were estimated using general-
ized linear mixed models [23]. The possible systematic

Table 1 selection of diseases
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differences between the GPRNs registrations were
taken into account by including a GPRN identifier as
a random intercept. The random intercept in our
model is meant to capture all of the differences that
exist between GPRNs that may be the result of a
range of different underlying reasons (differences in
case definition, differences in socio-economic status,
differences in GP practices, differences in GP compu-
ter software).

Incidence was estimated assuming a Poisson distribu-
tion and using a log link function. Prevalence was esti-
mated using a logit link function and a binomial
distribution for the outcome variable. Age and sex were
the only determinants ("fixed effects”) included in our
dataset, so incidence and prevalence were estimated as a
function of polynomials of age, sex and interactions
between these variables. To reduce the risk of multi-
collinearity we used orthogonal polynomials of age as
explanatory variables. To select the ‘optimal’ model in
terms of highest order polynomials in age and the

Disease name General practitioner General practitioner E-codes ICPC1- Age range included in the
registration networks for  registration networks for codes analyses
which incidence data was  which incidence data was
available available
Diabetes All 5 All'5 0910 790 0-4, 5-9, etc, 85+
Heart failure All 5 All 5 2131 K77 50-54, 55-59, etc, 85+
COPD All 5 All'5 2480 R9T1+R95 30-34, 35-39, etc, 85+
Stroke All 5 CMR/RNH/RNUH-LEO 1559 K90 25-29, 30-34, etc, 85+
Coronary heart All'5 CMR/RNH/RNUH-LEO 2110+2120 K744K75 25-29, 30-34, etc, 85+
disease +K76
Dementia All'5 CMR/RNH/RNUH-LEO/ 1270 P70 50-54, 55-59, etc, 85+
Transitie
Schizophrenia All'5 CMR/RNH/RNUH-LEO 1250 p72 10-14, 15-19, etc, 85+
Transitie
Parkinson All'5 All'5 1570 N87 30-34, 35-39, etc, 85+
Multiple sclerosis All 5 All 5 1560 N86 10-14, 15-19, etc,, 85+
Epilepsy CMR/RNH/RNUH-LEO/ CMR/RNH/RNUH-LEO/ 1580 N88 0-4, 5-9, etc, 85+
Transitie Transitie
Macular degeneration  Transitie/RNH/RNUH-LEO Transitie/RNH/RNUH-LEO Fg4 30-34, 35-39, etc, 85+
Glaucoma CMR/Transitie/RNH/RNUH- CMR/Transitie/RNH/RNUH- 1800 Fo3 25-29, 30-34, etc, 85+
LEO LEO
Cataracts CMR/Transitie/RNH CMR//RNH 1790 F92 30-34, 35-39, etc, 85+
Hearing impairments  CMR/Transitie/RNH/RNUH- CMR/RNH 1890 H84+H85 0-4, 5-9, etc,, 85+
LEO +H86
Inflammatory bowel All'5 CMR/Transitie/RNUH-LEO 2852 D94 0-4, 5-9, etc, 85+
diseases
Osteoporosis CMR/Transitie/RNUH-LEOQ/ CMR/Transitie/RNUH-LEO 4154 L95 25-29, 30-34, etc, 85+
LINH
Rheumatoid arthritis ~ CMR/RNH/RNUH-LEO/LINH.  CMR/RNH/RNUH-LEO 4050 188 0-4, 5-9, etc, 85+
Arthritis CMR/RNH/LINH/RNUH-LEO RNH/RNUH-LEO 4061 + 4062 + 189 + 190 + 30-34, 35-39, etc, 85+
4069 L91

CMR: Continuous Morbidity Registry Nijmegen; LINH: Netherlands Information Network of General Practice; RNH: Registration Network General Practices;
RNUH-LEO: Registration Network of General Practitioners Associated with Leiden university; Transitie: Transition Project.
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number of interactions between those polynomials and
sex we used the Bayesian Information Criterion [24]].
Using a criterion based approach to select an ‘optimal’
model circumvents the problems associated with a
sequential model search.

Outcome measures

We will focus on two outcomes measures: estimates of
numbers of incident and prevalent cases per 1,000 for
the year 2007 and the ranking of the 18 diseases in
terms of incidence and prevalence. Disease specific
predictions from the regression models specified by
age and sex and their fit to the data are only presented
for diabetes in the text. Predictions of the fitted regres-
sion models for incidence and prevalence were
weighted by the age and sex distribution of the Dutch
population as of 1/1/2007 and presented as cases per
1,000.

To estimate cases per 1,000 and the associated
uncertainty, we made two different types of predictions
using the model. First, we used predictions of the
regression models for the ‘average’ GP registration,
that is by fixing the ‘random’ intercept at its average
value on the incidence or prevalence scale (which is
different from setting the random intercept at zero in
case of the log link [25]). We only took into account
uncertainty in the parameters of the “fixed effects” of
the regression models (thus, only the uncertainty
surrounding the coefficients used to model age and
gender). This way, we estimated confidence intervals
taking as reference the ‘average’ registration. Secondly,
we also took into account the variance surrounding
the intercept, i.e. the “random effect”. This provides
insight into the uncertainty that is due to differences
between GPRNS.

A stochastic ranking (a ranking taking into account
uncertainty) was computed of the incidence and
prevalence of diseases using Monte Carlo simulations.
Regression coefficients of the regression models for the
different diseases were repeatedly drawn from a multi-
variate normal distribution on the link scale including
the between GPRN variance. For each draw of the
regression coefficients and random intercepts, incidence
and prevalence numbers were calculated for all diseases.
Subsequently, for each draw the diseases were ranked in
descending order of magnitude for both incidence and
prevalence. Sample size for the Monte Carlo simulation
was set at 5,000 resulting in 5,000 rankings. This
allowed us to compute what rankings of diseases were
most likely and to what extent shifts in ranks may occur
due to uncertainty in the model parameters. Sample size
for the simulation was set at 5,000 as this sample size
resulted in an accurate replication of the confidence
intervals obtained from the regression models.
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Results

Regression models

To illustrate the age and sex specific estimates obtained
with the regression models Figure 1 displays data of dia-
betes incidence and prevalence for the different GPRNs
and predictions of the regression models. The regression
model for diabetes incidence contained 4 terms for age
(age, age”2, age”3 and age”™4) and one dummy variable
for gender. Figure 1 illustrates the effect of the variation
between GPRNs and this is reflected by the fact that
confidence intervals around the model predictions are
wider if the variance surrounding the random intercept
is included.

Table 2 displays a summary of the variables included in
the ‘optimal’ regression models according to the Bayesian
Information Criterion. For instance, the optimal model
for heart failure prevalence include the variables age, age
squared, age cubed, sex and a term for the interaction
between sex and age.

Population incidence and prevalence

Figures 2 and 3 display estimates of the numbers of
incident and prevalent cases per 1,000 for 2007 together
with 95% confidence intervals with and without the
between GPRN variance (note that the x-axis is on the
log scale in both figures and that in both Figure 2 and
Figure 3 diseases are ranked by their point estimate). It
can be seen from Figure 2 that coronary heart disease
had the highest incidence in 2007 (more than 5 cases
per 1000) and Multiple Sclerosis (MS) the lowest (a bit
more than 0.1 case per 1,000). Confidence intervals
around point estimates for total incidence are especially
wide for arthritis ranging from less than 1 case per
1000 to more than 10 cases per 1000 personyears.
Figure 3 shows that diabetes had the highest prevalence
and MS the lowest. Confidence intervals around total
prevalence are especially wide for diabetes, arthritis, cor-
onary heart disease, cataracts and COPD. What also can
be seen from Figures 2 and 3 is the influence of the
variance of the random intercept. For some diseases
confidence intervals widen enormously when including
this variance (especially arthritis), while for other
diseases the random effects variance was estimated to
be very low (e.g. diabetes prevalence). In general, the
between GPRN variance is higher for incidence than
prevalence.

Stochastic ranking of incidence and prevalence

Table 3 shows the stochastic ranking of disease
incidences, with in the first column the diseases in des-
cending order according to the point estimates of their
incidence. The grey shaded probabilities indicate the
rank positions which each disease is most likely to
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occupy (i.e. the maximum value of each row). The bold
faced numbers indicate which disease is most likely to
take a certain rank position (i.e. the maximum value of
each column). For instance, if we look at ranking
according to the point estimates arthritis is ranked 4.
However, arthritis can take ranks between 1 and 12 with
the first rank being most probably. The disease that is
most likely to take the first position in terms of inci-
dence is arthritis. Arthritis, coronary heart disease, cat-
aracts, diabetes and hearing impairments all have a non-

zero probability to rank first in terms of incidence,
although the probability for hearing impairments is
below the 5% level.

Table 4 shows the stochastic ranking of disease preva-
lence. Arthritis has the highest probability of being first
in rank while diabetes is highest in rank if we look at
point estimates. This is due to the fact that the point
estimates of both diseases are very close to each other
with their confidence intervals largely overlapping. The
ranking of disease prevalence is similar to the ranking of
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Disease name Incidence

Prevalence

Diabetes flage, age2,age’\3,age\4,sex)

flage, ageN2,age’\3,ageNd,ageN5,age6,sex,sex*age, sex*age/2)

Heart failure flage, age\2,sex,sex*age, sex*age2)

flage, age2,age’ 3,sex,sex*age)

COPD flage, agen2,age”3,age4,sex,sex*age, flage, agen2,age3,agend, age/\s, age/\6,age’\7,age\8, sex,sex*age, sex*age/2
sex*agen2) sex*age3 sex*age/N4)
Stroke flage, sex) flage, ageN2,agen 3,sex)

Coronary heart disease  flage, age/\2,sex,sex*age, sex*age/2,

sex*agen3)

flage, age2,sex,sex*age, sex*ageN2)

Dementia flage, ageN2,agen 3,sex)

flage, ageN2,agen3,sex)

Schizophrenia flage, ageN2,sex)

flage, ageN2,agen 3,sex,sex*age)

Parkinson flage, ageN2,sex)

flage, age2,age’3,age,sex)

Multiple sclerosis flage, ageN2,sex)

flage, ageN2,sex)

Epilepsy flage, agen2,sex)

flage, ageN2,age’3,ageN4,ageN5,sex)

Macular degeneration  f(age,sex)

flage,sex)

Glaucoma flage, ageN2,sex)

flage, ageN2,agen 3,sex)

Cataracts flage, ageN2,agen 3,sex)

flage, age2,age’3,age,sex)

Hearing impairments flage, ageN2,agen 3,sex)

flage, ageN2,age’3,ageNd,ageN s, sex,sex*age)

Inflammatory bowel
diseases

flage, ageN2,agen 3,sex)

flage, agen2,age’3,age,sex)

Osteoporosis flage, sex,sex*age, sex*age/2)

flage, sex,sex*age, sex*age2,sex*age’3)

Rheumatoid arthritis flage, ageN2,sex)

flage, ageN2, sex,sex*age)

Arthritis flage, ageN2,sex)

flage, ageN2 sex,sex*age,age2, sex*age2,sex*age/3,sex*age’4)

disease incidence. Differences in the incidence and pre-
valence ranking can partly be explained by differences in
lethality of the disease. For example, coronary heart is,
due to its detrimental effects on life expectancy, ranked
lower in terms prevalence than in terms of incidence.
From both the ranking of incidence and prevalence we
can see that if uncertainty margins overlap the uncer-
tainty interval of one disease may influence the stochas-
tic ranking of other diseases.

Discussion and conclusions

In this study we showed how routinely collected data
from several general practitioners registration networks
can be combined to estimate incidence and prevalence
for 18 chronic diseases. Uncertainty around estimates of
incidence and prevalence was looked at from different
angles. First, we estimated confidence intervals both
with and without the between GPRN variance. Next, we
calculated a stochastic ranking of diseases in terms of
incidences and prevalences. This was done using Monte
Carlo simulation, which consisted of randomly drawing
from the estimated probability distributions of the dis-
ease prevalences and incidences, each time obtaining a
particular ordering. After repeating this process many
times, a distribution of rankings emerges that provides
insight into the likelihood of orderings different from
the “standard” ordering based on the point estimates.
Our simulations showed that the presence of wide

confidence intervals for some individual diseases also
influences the rank of other diseases with smaller confi-
dence intervals. In this respect, the results of our study
showed that league tables of diseases should be inter-
preted with caution as the standard (point estimates)
ordering may not reflect the “real” ordering accurately.
These findings obviously have relevance for public
health policy and the monitoring of chronic diseases.
Furthermore, our findings beg the need for effective
tools to communicate uncertainty to policy makers.

It should be noted that in this study we only presented
a ranking of a small set of diseases. Increasing the num-
ber of diseases would probably imply more overlap in
confidence intervals and, therefore, more uncertainty in
the ranking. Furthermore, in constructing the stochastic
ranking we assumed independence between diseases.
However, some diseases are causally related (e.g. diabetes
and coronary heart disease) or share common risk factors
such as smoking and body mass index. If the dependency
between diseases could be quantified the stochastic rank-
ing of diseases might again turn out to be different.

A drawback of our study is that we only used second-
ary data at the GPRN level that did not include demo-
graphic characteristics besides age and sex and that we
could not assess disease classifications errors within our
data set [26-28]. We did not have data at the GP prac-
tice level and could not verify how accurately GP’s
establish their diagnoses and code them into their
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computerised files. We can only hope that they maintain
their professional standards and adhere to the profes-
sional standards as set forth in guidelines. Given these
limitations regarding the crude data of our study, we
employed methods of analysis that were chosen to take
these potential sources of bias into account. The major
challenge was to combine the data while doing justice
to the heterogeneity between the different registries.
This was achieved by modelling the data in a hierarchi-
cal/multi-level fashion using generalized linear models,
in which the registries were modelled as a random

intercept. Since the goal of our study was explicitly to
focus on the typical (in our case average) GPRN instead
of average subject we have chosen a random effects
model over a GEE model [29]. This assumes that there
is such thing as an “average” practice, which can be
used to extrapolate estimates valid for the population.
An additional advantage of the random effects model is
that it provided an estimate of the variability between
GPRNs. We have presented this variability graphically
and have incorporated it in our simulations and saw
that especially for incidence the between GPRN variance
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was considerable. This could suggest that GPRNs might
differ in the distinction between ‘new’ and ‘old’ cases.
There are several ways to estimate morbidity rates in a
population in a cross-sectional manner [28]. Examples
are health interview surveys and health examination sur-
veys. It is obvious that health interview surveys have
inherent limitations as they rely on self-report. Hospital-
based data, although readily available in many countries,
have the important disadvantage of selection bias as
these include only those cases that lead to hospitaliza-
tion. Information gathered in general practices, on the

other hand, does not have these drawbacks. In countries
in which the majority of the population is registered
with a GP, such as the UK and the Netherlands, a
source is available that could, in principle, be used to
derive reliable, and representative estimates of descriptors
of national health [30-32]. In the best of all possible
worlds, all GPs would diagnose and document disease
(episodes) in a uniform manner, reporting them compre-
hensively to a central databank. However, in reality there
are important obstacles to drawing from this well in a
sound manner. Firstly, there is the limited availability of
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Table 3 stochastic ranking of diseases in terms of incidence in 2007

Probability to rank
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18

1 Coronary heart disease 030 034 022 011 003

2 Cataracts 022 043 028 007 001

3 Diabetes 004 011 033 037 014 001

4 Arthritis 038 004 005 008 011 008 005 008 006 003 002 001

5 Hearing impairments 005 007 011 028 034 012 002 001

6 COPD 001 002 009 027 038 014 008 002

7 Heart failure 005 025 0.44 021 003

8 Stroke 002 011 028 045 013 001

9 Osteoporosis 001 002 004 005 010 035 021 013 007 002 001

10 Dementia 001 001 005 028 033 020 009 002 000

11 Rheumatoid arthritis 008 030 0.44 016 002 0.00

12 Macular degeneration 001 006 010 012 022 017 008 016 006 0.01

13 Glaucoma 002 009 0.40 037 008 004 000

14 Epilepsy 005 030 0.49 015 001

15 Inflammatory bowel diseases 001 008 031 057 003

16 Parkinson 005 0.79 0.15

17 Schizophrenia 001 001 001 003 011 050 033
18 Multiple sclerosis 033 0.67

Diseases are ordered by rank as obtained by point estimates: bold face reflects the disease that is most likely to be at that position (i.e. the maximum value of
each column); grey shade reflects at which position the disease is most likely to be ranked (i.e. the maximum value of each row).

Table 4 stochastic ranking of diseases in terms of prevalence 1/1/2007

Probability to rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 Diabetes 034 040 019 007
2 Arthritis 042 012 009 032 006
3 Coronary heart disease 022 030 026 021 001
4 Hearing impairments 002 018 044 034 001
5 Cataracts 001 001 006 0.82 0.10 000
6 COPD 010 0.85 004 001
7 Stroke 003 0.75 020 002
8 Osteoporosis 001 070 034 032 014 006 003
9 Rheumatoid arthritis 001 010 0.34 033 013 006 002
10 Heart failure 008 021 035 024 012
11 Epilepsy 003 012 033 038 0.14
12 Glaucoma 005 026 0.68 001
13 Dementia 001 041 029 022 005 001
14 Inflammatory bowel 039 0.40 020 001
15 Macular degeneration 0.18 030 0.43 008 001
16 Schizophrenia 001 015 0.83 001
17 Parkinson 002 0.92 006
18 Multiple sclerosis 006 0.94

Diseases are ordered by rank as obtained by point estimates: bold face reflects the disease that is most likely to be at that position (i.e. the maximum value of
each column): grey shade reflects at which position the disease is most likely to be ranked (i.e. the maximum value of each row).
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data, because a national system of data collection for pri-
mary health care does not exist in most countries. Fortu-
nately, several GPRNs have been started in the
Netherlands over the past decades, which collect and
share their morbidity data on a regular and structured
basis. Secondly, diagnostic criteria and procedures are not
always clear-cut and unambiguous, leaving room for dif-
ferences in “case finding” and case ascertainment [28].
Under such conditions, differences between GPRN5s (as
captured in our models by the random intercept) can lead
to big differences in estimates of prevalence and incidence.
We hypothesize that for diseases for which uncertainty
intervals are wide (such as arthritis), differences in case
finding between GPRNs may offer an explanation for our
findings [28]. Furthermore, differences in registration
length between GPRNs might explain the between GPRN
variance for some diseases because the longer the registra-
tion period the lower the probability that a prevalent case
is misclassified as incident [33].

Concluding, estimates of incidence and prevalence can
be obtained by combining data from different GPRNSs,
but confidence intervals must be considered. Monte
Carlo simulation techniques can be utilized to assess
uncertainty in the relative rankings of diseases. League
tables of diseases based on point estimates should be
interpreted with caution.
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