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Abstract

Introduction Noncommunicable diseases (NCDs) are the leading cause of morbidity and mortality worldwide,
accounting for 74% of deaths annually. Satellite imagery provides previously unattainable data about factors related
to NCDs that overcome limitations of traditional, non-satellite-derived environmental data, such as subjectivity and
requirements of a smaller geographic area of focus. This systematic literature review determined how satellite imagery
has been used to address the top NCDs in the world, including cardiovascular diseases, cancers, chronic respiratory
diseases, and diabetes.

Methods A literature search was performed using PubMed (including MEDLINE), CINAHL, Web of Science, Science
Direct, Green FILE, and Engineering Village for articles published through June 6, 2023. Quantitative, qualitative, and
mixed-methods peer-reviewed studies about satellite imagery in the context of the top NCDs (cancer, cardiovascular
disease, chronic respiratory disease, and diabetes) were included. Articles were assessed for quality using the criteria
from the Oxford Centre for Evidence-Based Medicine.

Results A total of 43 studies were included, including 5 prospective comparative cohort trials, 22 retrospective
cohort studies, and 16 cross-sectional studies. Country economies of the included studies were 72% high-income,
16% upper-middle-income, 9% lower-middle-income, and 0% low-income. One study was global. 93% of the studies
found an association between the satellite data and NCD outcome(s). A variety of methods were used to extract
satellite data, with the main methods being using publicly available algorithms (79.1%), preprocessing techniques
(34.9%), external resource tools (30.2%) and publicly available models (13.9%). All four NCD types examined appeared
in at least 20% of the studies.

Conclusion Researchers have demonstrated they can successfully use satellite imagery data to investigate the
world's top NCDs. However, given the rapid increase in satellite technology and artificial intelligence, much of
satellite imagery used to address NCDs remains largely untapped. In particular, with most existing studies focusing
on high-income countries, future research should use satellite data, to overcome limitations of traditional data, from
lower-income countries which have a greater burden of morbidity and mortality from NCDs. Furthermore, creating
and refining effective methods to extract and process satellite data may facilitate satellite data’s use among scientists
studying NCDs worldwide.
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Introduction

Noncommunicable diseases (NCDs) account for 74% of
global deaths annually, with cardiovascular diseases, can-
cers, chronic respiratory diseases, and diabetes respon-
sible for over 80% of premature NCD mortalities [1].
NCDs are not limited to older adults, with 17 million
deaths before age 70, predominantly in low- and middle-
income countries [1]. In the United States, direct health
costs related to NCDs exceed $1 trillion annually [2].
Unhealthy behaviors like smoking, poor diet, and physi-
cal inactivity increase NCD susceptibility [3]. The third
largest underlying risk factor of chronic disease (after
high blood pressure and tobacco usage) is air pollution,
an environmental risk factor most often increasing the
risk for three of the top four NCDs - cardiovascular dis-
ease, cancers, and chronic respiratory diseases [4].

Achieving the World Health Organization Sustainable
Development Goal Target 3.4 of reducing premature
NCD mortality by one-third by 2030 [5] is challenging,
with most countries making minimal progress [6]. Iden-
tifying geographic locations with populations most at
risk for NCDs is one step toward directing prevention-
related policies and programs to achieve this goal [7].
Satellite technologies offer tools to help identify at-risk
geographic locations that overcome limitations of tra-
ditional, non-satellite-derived environmental data (e.g.,
surveys and ground monitoring stations) such as sub-
jectivity and being limited to smaller geographic areas.
Satellite data is open source, available on a global scale,
and has four resolutions: temporal, spatial, radiometric
and spectral [8]. With over 400 Earth observation satel-
lites orbiting our planet [9], satellite imagery data, often
coupled with artificial intelligence (AI), has shown great
promise in advancing areas of research outside of health-
care, such as earth science [10] and economics [11], and
within health sciences, particularly in infectious disease
[12-14]. While satellite data helps mitigate the problem
of traditional environmental data availability, it presents
new challenges in understanding what satellite data to
use and how to interpret the data. Fortunately, publicly
available algorithms, tools, and tutorials exist to help sci-
entists extract, process, and interpret satellite data. Satel-
lite imagery has been less commonly used for analyzing
and managing NCDs [15].

Traditional (non-satellite-derived) environmental mea-
surements have been successfully used in research in the
form of surveys (e.g., light at night (LAN), greenspace)
and ground monitoring stations (e.g., air pollution), both
of which have limitations [8]. Survey data can be subjec-
tive and non-uniform, while ground monitoring station

data is limited to areas within a close proximity to a sta-
tion, most often a developed urban area [8]. Satellite data
has been found to overcome these limitations by its being
open source, available on a global scale, and having four
resolutions: temporal, spatial, radiometric and spectral
[8].

Satellite data is derived from remote sensors located
on satellites. The amount of energy reflected, absorbed,
or transmitted by any item on Earth creates a “spectral
fingerprint” Remote sensors can detect a number (spe-
cific to the type of remote sensor and called its spectral
resolution) of spectral bands, which allows items to be
identified by their spectral fingerprint [16, 17]. There are
two types of sensors: passive sensors (e.g., radiometers
and spectrometers operating in the visible, infrared, ther-
mal infrared and microwave electromagnetic spectrum)
that measure land and sea physical attributes (e.g., tem-
perature, vegetation properties, aerosol properties, cloud
properties) and active sensors (e.g., radar sensors, altim-
eters operating in the microwave band of the electromag-
netic spectrum) that measure vertical profiles of land and
sea attributes (e.g., forest structure, ice, aerosols). Satel-
lites have specific orbits and sensor designs that dictate
resolution [16]. How well a remote sensor can distinguish
between small differences in energy is called its radio-
metric resolution, which is the amount of information in
each pixel (e.g., 8 bit resolution that can store up to 256
values). Higher resolution means more detail, though this
also requires more processing power. Spatial resolution
is defined as the size of each pixel. For example, to see
buildings you would need 10 m (m) spatial resolution,
which represents a 10 m by 10 m square on the ground.
Neighborhoods need 20 m spatial resolution, which
represents a 20 m by 20 m square on the ground, while
regional needs 1 km (km), which represents 1 km by 1 km
square on the ground (national: 10 m, continent: 30 km
and global: 110 km) [16]. Spectral resolution is defined by
both the number of bands and how narrow the bands are.
For example, 3—10 bands is referred to as multispectral,
whereas hundreds or thousands of bans are hyperspec-
tral. Temporal resolution is defined as the time it takes
the satellite to complete one iteration of its orbit, which
is dependent on its orbit, its swath, width and the specific
sensor (e.g., Moderate Resolution Imaging Spectroradi-
ometer (MODIS) on NASA’s Terra and Aqua satellite’s
temporal resolution is 1-2 days) [16].

We aimed to provide the first systematic literature
review focusing on how environmental factors data col-
lected from satellite imagery has been used to examine
risk, incidence, prevalence, or mortality related to an
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NCD, both methodologically and technically. This review
can illuminate resources and methods for using emerg-
ing satellite imagery technologies to capture and analyze
comprehensive data that can inform NCD prevention
and control interventions and policies. By integrating
satellite-derived data with ground-based monitoring sys-
tems, scientists and policymakers can better understand
the risk and distribution of NCDs, allocate resources
more effectively, and implement targeted strategies to
lessen NCD burden.

Methods

This systematic review was registered at PROSPERO
(CRD42023433472). We followed the Preferred Report-
ing Items for Systematic Reviews and Meta-analyses
(PRISMA) reporting guidelines [18].

Data sources

We conducted a systematic review of literature related to
satellite imagery and the top 4 NCDs (cardiovascular dis-
eases, cancers, chronic respiratory diseases, and diabetes)
in the world through June 6, 2023. We did not restrict our
search to any start date. To gather relevant studies, we
searched PubMed (including MEDLINE), CINAHL, Web
of Science, Science Direct, Green FILE, and Engineer-
ing Village databases. See Additional file 1 for keyword
search strings.

Study selection

First, we removed duplicate studies. Next, at least two
study authors independently assessed the remaining
abstracts based on predetermined inclusion criteria of
needing to examine the top four NCDs in the world using
satellite imagery. We considered all quantitative, qualita-
tive, and mixed method study designs written in English.
Then 2 study authors independently evaluated the full-
text articles for inclusion, with discrepancies resolved
through discussion. Studies that were not about one or
more NCDs, not about satellite imagery, or review arti-
cles were excluded. Another way to describe our inclu-
sion criteria is using the PECO (Population, Exposure,

Table 1 Inclusion and exclusion criteria
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Comparator, Outcomes) framework recommended for
exploring associations of environmental and other expo-
sures with health outcomes [19]. Table 1 presents the
inclusion and exclusion criteria.

Data extraction

At least two study authors independently extracted
information for each study that met the inclusion crite-
ria, including the study aim, disease, geographic level,
year of data collection, methods, tools and resources,
data extracted from images, measures, results, and find-
ings. The authors discussed and resolved any discrep-
ancies in the extracted data. We assessed the quality of
the evidence for each study using the criteria from the
Oxford Centre for Evidence-Based Medicine [20]. The
quality of each study was independently graded by two
study authors, with any discrepancies resolved through
discussion. Following is a description of the quality rat-
ings: 1 for properly powered randomized clinical trials,
2 for well-designed controlled trials without random-
ization and prospective comparative cohort trials, 3 for
case-control studies and retrospective cohort studies, 4
for case series with or without intervention and cross-
sectional studies, and 5 for case reports or opinions of
respected authorities.

We conducted a qualitative synthesis of satellite data
by determining if an association (statistically significant
relationship) was found between the satellite data and
each study’s dependent variable (e.g., NCD outcome) and
explored the authors’ statements about the value of using
satellite data. We also recorded statements that included
wording about satellite data such as “overcame the prob-
lem,” “great tool,” and “enhanced” We used a spreadsheet
so that at least two authors could track these associations
and statements and used codes to categorize aspects
about the value of satellite imagery for examining NCD
outcomes for each article. Our analysis also included all
authors reviewing the frequency of the findings and the
wording of the statements. Based on this analysis, the
authors developed themes about the value of satellite
imagery for examining NCDs.

Inclusion criteria

Exclusion criteria

Population Study population had at least one of the top four NCDs in the world (car-
diovascular diseases, cancers, chronic respiratory diseases, or diabetes)

Exposure Any type of NCD risk factor(s)

Comparator Patients prior to having NCD(s) or patients without NCD(s)

Qutcomes Risk, incidence, prevalence, or mortality

Study design Quantitative, qualitative, and mixed methods

Methods Used satellite imagery to examine the risk, incidence, prevalence, or
mortality related to at least one of the top four NCDs in the world

Language English

Study population did not have at least one of the
top four NCDs in the world (cardiovascular diseases,
cancers, chronic respiratory diseases, or diabetes)

None

No comparator

No NCD-related outcome
Reviews

Did not use satellite imagery to examine the risk,
incidence, prevalence, or mortality related to at
least one of the top four NCDs in the world

Not available in English
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Results

We identified 1,495 articles from our database searches.
After applying inclusion and exclusion criteria, 43 stud-
ies were selected for inclusion and 1,452 were excluded
(Fig. 1). Table 2 includes details, quality assessment, and
study authors’ statements about satellite value for all the
reviewed studies and Table 3 presents the study charac-
teristics, analysis, and data synthesis.

The study publication dates spanned over 15 years,
2008-2023, with more than half published within the 5
years before our study search end date. Overall, 70% of
the studies were from high-income countries, with over
half of those from the United States. The remaining
studies were from middle-income countries, and none
were from low-income countries. The majority of stud-
ies (66%) used satellite data examined at the city, census
tract or census block, or county level. About half of the
study designs were retrospective cohort and about one-
third were cross-sectional. The 12% of studies that fit in
the most rigorous study design category for this review
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(had prospective study designs) all focused on cancer.
There were no randomized control trials or case reports.
Regarding disease outcomes examined, prevalence was
an outcome in over half of the studies (53.5%), incidence
in about 30% of the studies, mortality in just under 20%,
and disease risk in just under 5% (Table 2).

30% of the studies used satellite images from MODIS
[21-34], an instrument located on NASA’s Aura, Terra,
and Aqua satellites, and 16% used unspecified instru-
ments located on NASA’s Landsat satellites [24, 35-45].
The other major satellite image source was the United
States Space Force’s Department of Meteorological Satel-
lite Program (DMSP) [46-52], with images used in 21%
of the studies. MODIS and Landsat were primarily used
to extract air pollution and greenspace data, while DMSP
was primarily used to detect LAN. Greenspace was the
most frequently extracted data, with nearly half of the
studies examining this feature. The next most frequently
extracted data was air pollution, appearing in 37.2% of
the studies (Table 3).

e

Identification of studies via databases

"
Studies identified from*:
g PubMed (n = 505)
= CINAHL (n = 161) : o
§ Web of Science (n = 448) Duplicates removed (n=517)
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§ Engineering Village (n = 234)
— y
N
Study abstracts screened Studies excluded
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&
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7}
2]
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Review article (n =4)
) Not an article (n=2)
v
°
- Studies included in review
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£
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From: Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg.

2021;88:105906.

Fig. 1 PRISMA flow diagram
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Table 3 Characteristics of the studies, analysis, and data synthesis (n=43)

Number of studies

Study quality score

1 (Randomized controlled trial) 0 (%)
2 (Prospective comparative cohort trial) 5(11.6%)
3 (Case-control studies; retrospective cohort study) 22 (51.2%)
4 (Cross-sectional study) 16 (37.2%)
5 (Case reports) 0(0.0%)
Country economies?®
High-income 31 (72.1%)
Upper-middle-income 7 (16.2%)
Lower-middle-income 4(9.3%)
Low-income 0 (0.0%)
Geographic level
Global 1(2.3%)
Country 1(2.3%)
Region 4 (9.1%)
State/Province 3(6.8%)
County 5(11.6%)
Metropolitan area 3 (6.8%)
City 14 (31.8%)
Zip code 2 (4.5%)
Census tract or census block 9 (20.9%)
Household 1(2.3%)
Disease outcomes examined®
Prevalence 23 (53.5%)
Incidence 13 (30.2%)
Mortality 8 (18.6%)
Risk 2 (4.7%)
Environmental factors extracted from satellite images®
Greenspace? 20 (46.5%)
Air pollution (including aerosol optical depth; surface reflectance, cloud fraction, PM2.5 level, and smoke level) 16 (37.2%)
Light at night (LAN) 7 (15.9%)
Flooding 1(2.3%)
Temperature 2 (4.6%)
Satellite image source(s)® <
Satellite: Aura, Aqua or Terra:
Instrument: Moderate Resolution Imaging Spectroradiometer (MODIS) 13 (29.5%)
Instrument: Multi-Angle Imaging Spectroradiometer (MISR) 3(6.8%)
Instrument: Advanced Spaceborne Thermal Emissions and Reflection Radiometer (ASTER) (using Terra satellite) 2 (4.5%)
Instrument: Ozone Monitoring Instrument (OMI) (using Aqua satellite) 2 (4.5%)

Satellite: LandSat —4, 5, 7, or 8:

Instrument: Enhanced Thematic (ETM)

Instrument: Operational Land Imager (OLI)

Instrument: Thermal Infrared Sensor (TIRS) (using landsat 8 satellite)
Instrument: Thematic (TM) (using landsat 4 or 5 satellite)
Instrument: unspecified

2 (

2 (

T(

2 (

7(
Monitoring Program: U.S. Defense Meteorological Satellite Program (DMSP) 9 (20.5%)
Satellite: Sentinel 2, 3, or 5P 3¢
Application: Google Static Map 2 (
Satellite: CALIPSO 1(
Satellite: China Environmental Monitoring Center Satellite 1(
Satellite: GeoEye 1(
Satellite: SPOT-5 1(
Satellite data extraction method(s)?
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Table 3 (continued)

Number of studies
Algorithm 34 (79.1%)
AER FloodScan (32) 1
AOD (general, with GWR or with land use regression) (38,53,60) 3
1
1

Geophysical and aerosol retrieval (26)
GrahamSchmidt (55)
Index:
NDVI (13,24,27,31,37-41,43-45,56,61-63)
Tassel cap (45,63)
EVI, NDWI, NDSI, SAVI, or VCF (35,44)
Jenk’s Natural Break Method (46,47)
MAIAC (33,64)
Polynomial function (36)
Sentinel algorithms (index: LST, NDVI, NDBI and PV) (53)
Spectral Ultraviolet (25)
Water detect (24)

CNN
CNN with t-SNE (57)

VGG-CNN-F (58)

External resources tool
ArcGIS (46,47,51,52,55,56)

ArcMap (26)

GEE (40)

Google gsutil tool (24)
MERRA-2 (28)

NASA Giovanni (29)
QGIS (53)

SNAP (53)

Image preprocessing 16 (37.2%)
General (23,26,30,34,38,40,41,43,44,4849,51-53) 14
Calibration (50,60) 2

Model 6 (14%)
Global transport:

WRF-Chem (28)

GEOS-Chem (30)

Unspecified (54)
Radiation transfer (54)
Spatial-statistical (31)
Supervised classification (42) 1

Not stated (21) 1(2.3%)

Abbreviations: AER, Atmospheric and Environmental Research; AOD, Aerosol Optical Depth; CTM, chemical transport model; EVI, Enhanced Vegetation Index; GEE,

Google Earth Engine; GEOS-chem, Goddard Earth Observing System Chemical transport model; GWR, Geographically Weighted Regression; LST, Land surface

temperature; MAIAC, Multi-angle Implementation of Atmospheric Correction; MERRA-2, Modern-Era Retrospective Analysis for Research and Applications, Version

2; NASA, National Aeronautics and Space Administration; NDBI, Normalized Difference Built-up Index; NDSI, Normalized Difference Snow Index; NDVI, Normalized

Difference Vegetation Index; NDWI, Normalized Difference Water Index; PV, Photosynthetic Vegetation; SAVI, Soil Adjusted Vegetation Index; SNAP, Sentinel

Application Platform; t-SNE, t-distributed Stochastic Neighbor Embedding; VCF, Vegetation Continuous Fields; WRF-chem, Weather Research and Forecast model
coupled with chemistry

(4.7%)

3(30.2%)

— a5 & S N = N — = 2NN NN

20ne study is not included here because it was global [23]

b These totals do not add up to 43 because some studies fit into multiple categories
“Two articles extracted numerical features using artificial intelligence (Al) [57, 58]

4 Two articles that include greenspace also includes blue space, or water [24, 40]

All 4 major NCDs examined—cardiovascular dis-
ease, cancers, chronic respiratory disease, and diabe-
tes—appeared in at least 20% of the studies, with chronic
respiratory diseases and cancers each appearing in about
40%. Cardiovascular disease, chronic respiratory disease,
and diabetes studies heavily used greenspace and air pol-
lution data. All studies using LAN examined cancer out-
comes [46-52], with 4 of the 7 specific to breast cancer

[46, 47, 50, 51]. DMSP data was from 1996 to 97 and was
used as a baseline for determining LAN in 6 [47-52] of
the 7 articles [46-52]. Approximately one-third of the
cancer studies included air pollution data [23, 25, 29,
35, 53, 54], while less than one-fifth included greenspace
data [27, 53, 55] (Table 3). Air pollution was the primary
data extracted for chronic respiratory disease, closely
followed by greenspace. We found the reverse with the
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studies on cardiovascular disease; greenspace was the
primary data extracted, closely followed by air pollution.
Greenspace was the primary data extracted for diabetes
studies (Fig. 2).

The majority of the articles (60%) used data from ear-
lier than 5 years from the publication date and matched
health data year(s) to satellite data year(s). Of the 10 arti-
cles [26, 37, 41, 45, 47-52] using data from earlier than 10
years from the publication date, 6 used data from DMSP
[47-52], and 3 used data from LandSat [37, 41, 45]. All
but 3 articles [39, 48, 49] in the review found associations
between the satellite data and NCD outcomes of risk,
incidence, prevalence, or mortality. For example, Fan
and colleagues [38] found a positive association between
neighborhood greenness and COPD prevalence using the
NDVI based on satellite imagery. Two of the studies that
found no association used LAN and cancer [48, 49]; how-
ever, both found that LAN was a valid representation of
circadian rhythm disruption. The third article found no
association between greenspace in early life and insulin
resistance in adolescence [39] (Table 2).

Air pollution  m Extracted features

Number of studies

-
o
I “ I I “ ~ I

Cancer

H Flood

Cardiovascular disease
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All data extracted in the studies in this review were
related to a previously known disease risk factor. That
is, no studies introduced a new disease risk factor that
had not been established in prior research. Additionally,
the majority of the studies included covariates such as
sociodemographic factors like age and income level or
health-related factors like body mass index (BMI) and
smoking. Most studies focused on one type of satellite
data, such as greenspace. However, 9% of the studies [22,
24, 28, 37, 38, 40, 44, 53, 56] examined multiple environ-
mental factors extracted from satellites, such as greens-
pace and air pollution, in studying the incidence [28, 44],
prevalence [22, 24, 37, 38, 40, 56], and mortality [28, 53]
of NCDs. Two articles used a type of Al, convolutional
neural networks (CNN), to extract numerical features
from satellite imaging. One article [57] used a CNN with
t-SNE (t-distributed Stochastic Neighbor Embedding) to
verify the capacity of the neural network to extract rel-
evant features related to cancer prevalence. The other
article [58] used a visual geometry group fast convolution
neural network (VGG-CNN-F), a network previously

B Greenspace LAN mTemperature

o I o o I o o o

Chronic respiratory
disease

Diabetes

Fig. 2 The number of studies of each type of satellite data for each noncommunicable disease. “LAN"is “light at night”and refers to ambient light expo-
sure at night. “Extracted features” refers to features extracted using machine learning to inform a machine learning model. “Air pollution” refers to aerosol
optic depth measures, particle matter in air with diameter less than 2.5 micrometers, particle matter in air with diameter less than 10 micrometers, “Flood”
refers to changes in land and water surface due to rainfall. “Greenspace” refers to normalized difference vegetation index (NDVI), enhanced vegetation
index (EVI), photosynthetic vegetation (PV), and soil adjusted vegetation index (SAVI). “Temperature” refers to the land surface temperature (LST) and

surface urban heat island (SUHI)
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described by Chatfield and colleagues [59] with elas-
tic net regression to prevent overfitting of the model to
training data and minimize mean cross-validation error
in a study examining obesity prevalence.

All articles used satellite data extracted based on
geolocation(s) specific to the population of interest’s
location (versus using data from a convenience sample
based on data availability) using one or two of a variety of
methods (Table 3). Existing publicly available algorithms
were the primary method for satellite data extraction,
with such algorithms used for analyzing 85% of greens-
pace data (primarily the normalized difference vegetation
index, or NDVI) and 50% of air pollution data (such as
the multi-angle Implementation of Atmospheric Correc-
tion (MAIAC) and deriving aerosol optical depth (AOD)
with geographically weighted regression (GWR), primar-
ily for particulate matter 2.5, or PM2.5). Two articles
used the Jenk’s Natural Break method algorithm to clas-
sify LAN data [46, 47]. Image preprocessing methods
performed on raw satellite image data to prepare it for
further data processing were referenced in just under half
of the studies. Examples of image preprocessing are LAN
data transformed into radiance [49, 50, 52] or determin-
ing image inclusion according to criteria such as 10% or
less cloud cover. Image preprocessing calibration, gauging
the data with a standard scale, was used in two articles
[50, 60]. One article calibrated LAN with satellite sensor
data to provide average daily radiance [50] and another
calibrated satellite air pollution data with ground data
using a land-use regression model [60]. One-quarter of
the studies referenced external resource tools that extract
data from satellite images, such as ArcGIS, MERRA-2,
NASA’s Giovanni tool, and the Sentinel Application Plat-
form [26, 28, 29, 46, 47, 51-53, 56]. Five articles used
models, three of which were specific to chemistry: WREF-
Chem [28], GEOS-chem [30], and an unspecified global
chemical transport model [54]. Yuan and colleagues [54]
also used the radiation transfer model and the differen-
tial absorption spectroscopy inversion technique. Qu
and colleagues [31] used a spatial-statistical model with
the NDVI to derive an estimate of residential greenness,
and Qazi and colleagues [42] used a model for supervised
classification. The “satellite data extraction method(s)”
section in Table 3 shows the breakdown of satellite data
extraction methods used in the studies.

The vast majority (90%) of studies found an associa-
tion between their dependent variable and the satellite-
derived data [21-38, 40, 42-47, 50-53, 55-58, 60-65]
(Table 2). For example, both Bauer and colleagues [46]
and Kloog and colleagues [47] found breast cancer inci-
dence was associated with high LAN exposure. Fan
and colleagues [38] found a significant positive associa-
tion between COPD prevalence and greenness (NDVI).
Another 2% of studies [39] found value in satellite data
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but no association with their dependent variable [39]. In
this article, Jimenez and colleagues [39] found that NDVI
is the most widely used satellite-derived indicator of
green space and can be used as a longitudinal exposure
measure. Furthermore, 58% of the articles stated that sat-
ellite data overcomes the difficulties present in research
when geographic areas do not have environmental data
or the available ground data is sparse [21-26, 28, 30, 32—
36, 38, 39, 42, 44, 51, 53, 55, 57, 58, 63—65]. For example,
Prud’homme [30] (2013) and Yitshak [64] (2015) specifi-
cally noted the limitation of ground data for air pollution,
proximity to monitoring stations, and sparse spatial data,
which can be overcome by using satellite data. The final
two columns of Table 2 shows if the dependent variable
and satellite-derived data were related and any claims
stated by the study authors about the value of using sat-
ellite data. We found two themes regarding the value of
using satellite imagery to examine risk, incidence, preva-
lence, and mortality related to NCDs. The first theme
was that satellite data overcomes problems of sparse or
missing spatial and temporal data. Traditional environ-
mental data (non-satellite data) is limited by the range of
each sensor and the completeness of data. Satellite data
complements traditional data and extends the availabil-
ity of environmental spatial and temporal data to a global
scale. The following representative quote illustrates such
sentiments:

In particular, we have clearly shown that, thanks to
data availability and big data technologies, it is now
possible to jointly study heterogenous data, such as
health care and air pollution information extracted
from satellites. This provides an unprecedented
opportunity to improve our understanding of phe-
nomena by extracting unseen temporal and spatial
correlations [36].

Use of satellite images has become a great tool
for epidemiology because with this technological
advance we can determine the environment in which
transmission occurs, the distribution of the disease
and its evolution over time [44].

The second theme was the ability of open-source satel-
lite data to enable studies to be extrapolated to other
areas. Traditional data sources are specific to a distinct
geographic area, whereas satellite data often allows
for (spatial and temporal) data to be available glob-
ally. The following representative quote illustrates such
sentiments:

The results of studies like ours could be extrapolated
to other cities, given that the use of Sentinel 3 satel-
lite images lies within the reach of the entire scien-
tific community, and their use for determining land
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surface temperature (LST) and surface urban heat
island (SUHI) is straight forward [53].

Our findings will have important public health
implications for policy makers when they are plan-
ning the size, shape, density and accessibility of sur-
rounding green spaces in living areas [38].

Discussion

Satellite imagery has been used in a variety of ways to
address NCDs. A key finding of this review is that nearly
all studies found an association between at least one type
of satellite data and one NCD. Most of the studies used
existing publicly available algorithms to extract data
from images. Furthermore, a couple of studies [57, 58]
attempted to harness the power of Al to see beyond pre-
determined features.

Over half of the studies analyzed satellite data based
on geolocation(s) specific to the research population of
interest’s location at the city, census tract, or census block
level. One reason the authors may have chosen these geo-
graphic levels could be because sociodemographic and
health-related data, types of data that have been integral
to NCD studies [3], is often available at these levels [3,
66]. Furthermore, by adding satellite data at these geo-
graphic levels, study authors may have been able to fill
gaps in environmental factors when using ground data
alone, such as in Allen and colleagues’ [35] examination
of air pollution in the city of Ulaanbaatar, Mongolia. Just
one article used satellite data globally; it replicated pre-
vious studies that either excluded areas without ground
monitoring or were limited by “coarse spatial resolution”
[23].

Over 80% of premature deaths caused by NCD occur
in lower-income countries [1], yet just one-quarter of the
studies in our review were from lower-income countries.
Satellites orbiting the Earth capture data from across the
globe, including areas without robust healthcare data
collection, such as lower-income countries [8]. Using
satellite data for these countries could better enable dis-
ease surveillance, tracking health trends and risk fac-
tors, and informed healthcare decision-making [15, 67].
One potential strategy for using satellite data in lower-
income countries is identifying trends between certain
satellite-derived data and health outcomes in similar
countries or regions that have health data available and
extrapolating those trends to the lower-income country
of focus. A similar method has been succeesfully used
with satellite imagery data in the field of economics [68].
However, a limiting factor for using satellite imagery for
health is a lack of proper tools, knowledge, and skills in
collecting and analyzing satellite data among research-
ers, engineers, and government employees [69]. This is
particularly problematic in lower-income countries with
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fewer educational resources to train people [69, 70]. One
potential solution to address the lack of training is to use
the publicly available governmental and university-based
tutorial programs and resources designed to make satel-
lite data easier to use [69-72]. Additional file 2 presents
resources to help researchers, scientists, and policymak-
ers understand, find, and use satellite imagery data.

Most reviewed articles discussed how satellite data
is an asset to NCD research by providing open-access
environmental data that surmounts the constraints of
ground-based data collection methods and availability.
However, it is important that investigators consider trad-
eoffs between levels of spatial, temporal, and spectral res-
olution when choosing their satellite remote sensing data
sources [15]. Researchers can use guidance from organi-
zations such as NASA [73, 74] and the European Space
Agency [75, 76] to help determine the optimal scale of
data needed for their research. For example, MODIS (on
Terra, Aura, Aqua, and Sentinel 1a satellites) is an instru-
ment that produces moderate-resolution images, while
Sentinel 2 and 3 instruments produce high-resolution
images. The choice between using MODIS or Sentinel
2 or Sentinel 3 would depend on the investigator team’s
resources (e.g., computing processing power and avail-
able investigator hours) and the data needs (e.g., general
greenspace in a city versus specific greenspace by city
block) for their research questions.

While satellite imagery has existed for over a half-cen-
tury [77], not until recently did scientists have a method
to process the vast amounts of data amassed by observing
our planet from space [78, 79]. Al can quickly and effi-
ciently extract meaningful patterns, trends, and insights
from satellite images. Most articles in this review (95%)
examined previously known environmental factors (e.g.,
air pollution, LAN) using satellite image data. The pau-
city of studies employing Al to analyze satellite image
data for NCD research—just two studies in this review—is
notable given that other fields (e.g., waste management
[80, 81], agriculture [82, 83], urban planning [82, 84], and
defense [82, 85]) have more readily adopted AI methods
to process satellite image data. Within health sciences,
satellite imagery coupled with Al has been used to study
patterns in infectious diseases [12, 13, 71]. With 241 in-
orbit Earth observation satellites registered with the
United Nations and that number growing [86], there is an
opportunity to expand the use of Al and satellite data to
monitor and analyze NCD risk for informing policy and
programmatic decisions to improve noncommunicable
disease outcomes.

Several studies used existing algorithms to measure
satellite data. These algorithms allowed the researchers
to avoid developing a new measure and better enabled
comparisons between studies. We recommend that
researchers continue testing these existing algorithms
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and develop and test new algorithms to measure satel-
lite data to help facilitate future satellite imagery-based
NCD research. Such algorithms could be constructed by
researchers or generated using Al and validated through
research studies. The existence of previously validated
algorithms may help epidemiologists and other individu-
als focused on studying NCD conduct more robust satel-
lite data-based studies and avoid the need to create and
study the properties of a new measure.

Our study deviated from the original protocol in a few
ways. First, due to the quantitative nature of the studies,
we ended up using the assessment of quality from the
Oxford Centre for Evidence-Based Medicine instead of
the Mixed Methods Appraisal Tool. Second, we focused
on the top four NCDs in the world because the World
Health Organization highlights these four diseases as
the deadliest diseases [1]. Third, we added more techni-
cal engineering and environmental databases to our lit-
erature search to ensure we captured as many articles as
possible that fit our search criteria.

This review has some limitations. First, it was limited in
scope to peer-reviewed literature; thus, it could be miss-
ing case reports and other grey literature contributions.
Second, there is a risk of publication bias in a review of
published studies. Third, due to the heterogeneity of the
research methods across studies, we did not perform
a meta-analysis to quantitatively examine how satellite
imagery has been used to address the top NCDs in the
world. This limits the depth of the analysis that could
be achieved through more rigorous statistical explora-
tion. Fourth, given that most studies are from developed
regions, findings are skewed toward higher-income coun-
tries. Future studies should explore ways to include more
diverse geographical inputs to research using satellite
imagery in examining noncommunicable diseases.

Conclusions

Overall, this systematic review found satellite data to be
an asset to NCD research. However, given the recent pro-
liferation of satellites and the emerging capabilities of Al,
using satellite imagery data to address the global health
threat of NCDs has barely scratched the surface, par-
ticularly for locations most vulnerable to NCDs, such as
low- and middle-income countries. Scientists and policy-
makers worldwide should take concerted and collabora-
tive action to keep pace with the advancement of satellite
imagery to produce better data-driven health outcomes.
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