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Abstract
Background  Internet gaming disorder (IGD), recognized by the World Health Organization (WHO), significantly 
impacts adolescent mental and physical health. With a global prevalence of 3.05%, rates are higher in Asia, especially 
among adolescents and males. The COVID-19 pandemic has exacerbated IGD due to increased gaming time 
from isolation and anxiety. Vulnerable groups include adolescents with poor academic performance, introverted 
personalities, and comorbid mental disorders. IGD mechanisms remain unclear, lacking prospective research. Based 
on Skinner’s reinforcement theory, the purpose of this study is to explore the mechanisms of IGD from individual 
and environmental perspectives, incorporating age-related changes and game features, and to develop intelligent 
monitoring models for early intervention in high-risk adolescents.

Methods  This prospective cohort study will investigate IGD mechanisms in middle and high school students in 
Shenzhen, China. Data will be collected via online surveys and Python-based web scraping, with a 3-year follow-up 
and assessments every 6 months. Unstructured data obtained through Python-based web scraping will be structured 
using natural language processing techniques. Collected data will include personal characteristics, gaming usage, 
academic experiences, and psycho-behavioral-social factors. Baseline data will train and test predictive models, 
while follow-up data will validate them. Data preprocessing, normalization, and analysis will be performed. Predictive 
models, including Cox proportional hazards and Weibull regression, will be evaluated through cross-validation, 
confusion matrix, receiver operating characteristic (ROC) curve, area under the curve (AUC), and root mean square 
error (RMSE).

Discussion  The study aims to understand the interplay between individual and environmental factors in IGD, 
incorporating age-related changes and game features. Active monitoring and early intervention are critical for 
preventing IGD. Despite limitations in geographic scope and biological data collection, the study’s innovative design 
and methodologies offer valuable contributions to public health, promoting effective interventions for high-risk 
individuals.
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Background
Internet gaming disorder (IGD) is a severe mental and 
physical health issue recognized by the World Health 
Organization (WHO), caused by persistent and repeti-
tive use of internet games [1, 2]. IGD during adolescence 
can significantly impact physical and psychological well-
being, influencing personality formation and mental 
health into adulthood [3–5]. The global prevalence of 
IGD is estimated at 3.05% [6], with higher rates in Asia, 
particularly among adolescents and males [5, 7, 8]. The 
Coronavirus Disease 2019 (COVID-19) pandemic has 
exacerbated IGD, with increased gaming time due to pro-
longed isolation and anxiety [9–11]. Adolescents with 
poor academic performance, introverted personalities, 
attention deficits, and comorbid mental disorders are 
particularly susceptible, leading to disrupted routines, 
declining academic performance, and compromised 
health [4, 12].

Adolescent IGD is influenced by both individual and 
environmental factors [5, 13, 14]. Key individual factors 
include high impulsivity, low self-control, poor emo-
tional regulation, and stress coping difficulties [15, 16]. 
Impulsivity and lack of self-control are strongly linked to 
higher addiction risk [17, 18], while emotional regulation 
deficits and stress relief motivations exacerbate addiction 
[3, 19]. Environmental factors such as family dynamics, 
school environment, and peer influences are also critical 
[20, 21]. Positive family cohesion and parental monitor-
ing reduce addiction risk, whereas neglect increases it 
[22]. Unmet psychological needs in school environments 
and peer influences, including peer gaming habits and 
victimization, significantly predict gaming addiction [23, 
24].

Understanding the interplay between individual and 
environmental factors in constituting risk and protec-
tive factors for adolescent IGD remains a pressing issue. 
Based on Skinner’s reinforcement theory [25], a model 
of adolescent gaming addiction suggests that immedi-
ate rewards from gaming positively reinforce behavior, 
while negative experiences, such as poor academic per-
formance and criticism, have weaker negative reinforce-
ment due to their delayed impact. Neuroscience research 
indicates that these reinforcement effects are tied to the 
reward and aversion circuits in the nervous system [26], 
with changes in the cortico-basal ganglia circuits form-
ing the neural basis of compulsive addictive behaviors 
[27, 28]. However, previous studies have overlooked 
age-related changes and game characteristics. Since 
addiction involves continued behavior despite negative 
consequences, understanding of these consequences 
evolves with age, and adolescents and adults perceive 

them differently [29–31]. Studies show addicted play-
ers often form tight clusters online [32], but how this 
relates to age is unclear. Identifying and understanding 
these age-related clustering patterns may help prevent 
IGD. Additionally, game design, reward mechanisms, and 
social elements significantly influence player behavior 
and addiction risk. Investigating these aspects will help 
uncover new mechanisms of IGD.

Active monitoring plays a key role in preventing ado-
lescent IGD. By monitoring gaming behavior, online time, 
and social interactions, excessive gaming and addiction 
risks can be identified early, allowing for timely interven-
tion. Artificial intelligence (AI) technologies can process 
and analyzed large amounts of health data, enabling early 
disease prevention and identification [33, 34]. AI mod-
els can predict the risk of chronic diseases by analyz-
ing physiological indicators, lifestyle habits, and genetic 
information [35, 36]. In IGD research, we plan to use 
online surveys and web scraping techniques with Python 
for data collection, combined with natural language pro-
cessing to structure the data and develop a predictive 
model for early active monitoring of IGD behavior. These 
multi-layered data will provide new perspectives for 
developing intelligent monitoring models, and enabling 
early intervention for high-risk individuals.

Aims
This study, based on Skinner’s reinforcement theory, 
aims to explore the mechanisms of IGD from individual, 
environmental, and game characteristics perspectives, 
incorporating age-related changes and game features. 
The study will focus on middle and high school students 
in Shenzhen, China, constructing a prospective cohort, 
combining online survey, web scraping techniques using 
Python, and natural language processing for data collec-
tion and structuring:

1) Investigate the multi-layered influences of individ-
ual, environmental, and game factors on the occurrence 
and development of IGD among students of different age 
groups (see Fig. 1. Study hypothesis).

2) Develop age-appropriate intelligent monitoring 
models for IGD.

Methods
Study design
This study employs a prospective cohort design (see 
Fig.  2). Participants will undergo a 3-year prospective 
follow-up, with data collected through online epidemio-
logical questionnaires and Python-based web scraping 
techniques. Following the baseline survey, there will be a 
36-month follow-up period, with follow-up assessments 
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Fig. 2  Prospective cohort study design. Abbreviation IGD, Internet gaming disorder

 

Fig. 1  Study hypothesis: A model of adolescent IGD based on Skinner’s reinforcement theory. Abbreviation IGD, Internet gaming disorder. This hypothesis 
integrates individual and environmental factors. Environmental factors include socio-cultural aspects (economic status, family relationships), internet use 
(device availability, usage time), and player clustering. IGD is driven by gaming rewards that reinforce behavior through positive experiences from high 
levels and rankings, and aversion from negative experiences perceived as game or self-ability issues. Key individual factors impacting IGD are impulsivity, 
self-control, emotional regulation, and stress coping. The gaming evaluation system further reinforces behavior through level and ranking changes. IGD 
results in decreased study and activity time, academic decline, and negative psychological impacts like guilt, anxiety, and low self-esteem. Age-related 
changes influence cognitive control and understanding of gaming consequences. This model highlights the complex interactions contributing to IGD
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conducted every 6 months. The project adheres strictly 
to ethical principles for observational studies, ensuring 
the rights and safety of participants throughout the study. 
The study protocol complies with the requirements of 
the Declaration of Helsinki and has been approved by the 
Ethics Committee of Southern University of Science and 
Technology (20230125).

Study sample and enrollment
The study sample consists of university and high school 
students in Shenzhen, China. University students (under-
graduates only, excluding postgraduates) are recruited 
from a local public funded university, while high school 
students are recruited from a regular secondary school 
(including both junior and senior high school). Only 
currently enrolled students are included in the study, 
excluding those who are on leave, withdrawn, or dropped 
out. The specific inclusion and exclusion criteria are as 
follows:

Inclusion criteria:

1)	 High school students aged between 12 and 18 years, 
and university students aged between 17 and 25 
years;

2)	 Currently enrolled students, with academic records 
managed by the respective schools at the time of the 
study;

3)	 Able to independently complete the study survey or 
complete it with assistance from the research staff;

4)	 Willing to participate in the study, with informed 
consent signed by themselves or their guardians.

Exclusion criteria:

1)	 Diagnosed with IGD at any point or showing 
significant signs of addiction at the baseline survey;

2)	 Currently receiving psychological or behavioral 
interventions (e.g., mindfulness therapy, cognitive 
behavioral therapy);

3)	 History of cognitive, speech, or other mental 
function disorders;

4)	 Transferring to another school during the study 
period, making follow-up impossible.

Exposure
This study investigates multiple potential exposure fac-
tors related to IGD. These factors include internet gam-
ing usage (e.g., game type, duration and frequency of play, 
gaming partners), academic experiences (e.g., academic 
stress, academic burnout), and psycho-behavioral-social 
factors (e.g., impulsivity, mobile phone dependence, 
interpersonal relationships). The specific measurement 

methods for these exposure factors are detailed in the 
“Data acquisition” section.

Outcome
The primary outcome of this study is IGD, defined as a 
severe mental and physical health issue from persistent 
internet game use. IGD will be assessed using the Chi-
nese version of Petry et al.’s criteria [37], based on the 
nine diagnostic criteria for gaming disorder outlined in 
the fifth edition of the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-5) (Supplementary Table S1). 
These include preoccupation with gaming, withdrawal 
symptoms, increased tolerance, unsuccessful attempts to 
reduce gaming, loss of interest in other activities, jeop-
ardized relationships, gaming to escape negative moods, 
continued gaming despite psychosocial problems, and 
deceiving others about gaming time. A diagnosis requires 
meeting five or more criteria within the past 12 months. 
This tool is widely validated and used in IGD research. 
Additionally, a self-developed internet gaming usage 
scale will be used to comprehensively assess participants 
for IGD behaviors (see “Data acquisition: Supplementary 
Table S2. Self-developed internet gaming usage scale”.

Follow-up
Participants will undergo a 3-year follow-up with assess-
ments every 6 months, totaling six follow-ups to evaluate 
the incidence of IGD. To ensure quality, a follow-up man-
ual and standardized training for personnel will be imple-
mented. A specialized follow-up report form will cover 
exposure factors, outcome variables, and psychological, 
behavioral, and social impacts. A cohort follow-up sys-
tem and regular reminders will enhance compliance and 
reduce loss to follow-up. Participants will be reminded 
via WeChat, phone, and email, with reasons for missed 
follow-ups recorded. Quality control will involve review-
ing follow-up data and contacting participants to cor-
rect or update information, ensuring an accurate and 
complete cohort follow-up database for assessing IGD 
incidence.

Sample size
Based on a 2-year longitudinal study by Jeong et al. on 
the severity, incidence, and persistence of IGD in chil-
dren and adolescents [14], playing internet games for 
≥ 240  min per day was identified as an independent 
predictor of IGD. The incidence rate of IGD in the con-
trol group (p0) was 4.8%, and in the exposed group (p1) 
was 14.9%. Using the formula −

p= (p0 + p1)/2, −
q= 1−

−
p

, q1 = 1 − p1 , with a two-sided test level of α = 0.05 and 
β = 0.10, the sample size calculation formula for cohort 
studies (1) was applied. Assuming a 1:1 ratio between 
the exposed and control groups, 181 participants are 
required for each group. Considering a 20.0% loss to 
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follow-up rate, each group needs 227 participants, result-
ing in a total sample size of 454 participants.
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Data acquisition
Online epidemiological questionnaire survey
An online questionnaire will collect participants’ demo-
graphic data, internet gaming usage, and psycho-behav-
ioral-social factors. The questionnaire will be promoted 
through campus posters, social media, official emails, 
and WeChat groups for broad dissemination. Respon-
dents will be initially screened for quality assurance. The 
questionnaire content is detailed in Table 1.

Data acquisition via Python-based web scraping
In this study, we will use Python-based web scraping 
techniques combined with ChatGPT-4.0’s “Scraper” 
plugin to obtain unstructured data, and ChatGPT-4.0’s 
“Make A Sheet” plugin to save unstructured data. This 
approach will actively gather information related to gam-
ing behavior published by participants on platforms such 
as gaming forums, Baidu Tieba, and public social media. 
The detailed acquisition process is as follows (illustrated 
using League of Legends, a popular online game among 
adolescents, see Fig. 3):

1)	 Identify target websites: Select the target gaming 
forums and other websites to scrape, understanding 
their data structures, page layouts, and request 
parameters.

2)	 Send HyperText Transfer Protocol (HTTP) requests: 
Use Python’s “Requests” library to send HTTP 
requests and retrieve the HyperText Markup 
Language (HTML) code of the gaming forum web 
pages.

3)	 Parse HTML code: Use Python’s “BeautifulSoup” 
library to parse the HTML code and extract the 

necessary unstructured gaming-related data, 
including information on post authors, titles, 
publication dates, content, and replies (comments). 
During the data acquisition process, we will strictly 
adhere to the website’s robots.txt protocol to 
ensure the legality and stability of data acquisition. 
Additionally, we will use proxy servers to prevent IP 
blocking, ensuring stable data acquisition.

Natural language processing (NLP)
After acquiring unstructured data from players using 
Python-based web scraping, we will use Alibaba Cloud’s 
NLP technology to structure the data (see Fig.  4). The 
specific step include: registering an Alibaba Cloud 
account, creating an NLP instance, installing the Alibaba 
Cloud Python Software Development Kit (SDK), config-
uring access credentials, creating a sentiment analysis 
request object, sending the request, and obtaining the 
response.

Data management
A dedicated data management team will oversee data col-
lection, entry, and quality control. Trained in Good Clini-
cal Practice (GCP) and Standard Operating Procedures 
(SOPs), they will ensure standardized data handling. 
Quality control will include logical, range, time window, 
consistency, data integrity, and terminology checks. Dis-
crepancies will be recorded in a “Data Query Form” and 
resolved promptly. Raw data will be cleaned, integrated, 
or transformed for analysis, while web-scraped data will 
be processed by removing HTML tags, converting data 
types, and storing it locally. Both data management and 
statistical analysis personnel will supervise the data, lock-
ing the database if necessary, and performing regular 
backups to maintain data traceability and integrity.

Handling of missing data
Before statistical analysis, we will assess data complete-
ness to determine the extent and causes of missing data. 
Objectively missing data (e.g., non-exposure to a study 

Table 1  Content of the online epidemiological questionnaire
Data type Variables
Demographic characteristics Gender, age, school name, grade, major (for university students), family economic status, parents’ occupations, current 

residence and duration, height, weight, vision status, smoking (including tobacco or e-cigarettes), and alcohol use.
Internet gaming usage Custom items will measure the time spent on internet gaming and the types of games played. Internet gaming refers 

to multiplayer games requiring an internet connection, typically involving multiple players in a virtual environment. 
Internet gaming usage will be assessed using items in Supplementary Table S2. Additional data will be collected via 
Python-based web scraping, detailed in section “Data acquisition via Python-based web scraping”.

Academic experiences Academic stress (ESSA), academic burnout (MBI-SS).
Psycho-behavioral-social 
factors

• Psychological factors: impulsivity (BIS-11), self-control (BSCS), emotional regulation (DERS), stress coping (CISS), 
generalized anxiety disorder (GAD-7).
• Behavioral factors: mobile phone dependence (MPPUS), social media dependence (BSMAS).
• Social factors: social support (MSPSS), parenting styles (PAQ), interpersonal relationships (IPRI).
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Fig. 4  Structuring participants’ unstructured information using Alibaba Cloud’s NLP technology. Panel A: posts made by players (unstructured text); Panel 
B: Application Programming Interface (API) call to Alibaba Cloud’s NLP functions; Panel C: Sentiment analysis results of participants’ natural language 
(indicating the player’s sentiment as “negative”)

 

Fig. 3  Acquiring participant gaming behavior information using Python-based web scraping combined with ChatGPT plugins. Panel A: posts made by 
players on gaming forums; Panel B: ChatGPT-4.0’s “Scraper” plugin; Panel C: Python-based web scraping combined with the “Scraper” plugin to acquire 
gaming forum post information (unstructured data); Panel D: ChatGPT-4.0’s “Make A Sheet” plugin outputting unstructured data; Panel E: Acquired un-
structured data on participant gaming behavior
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factor) will not be treated as missing. For genuinely miss-
ing data, we will choose imputation or analysis methods 
based on the missing data mechanism and its relevance 
to the study’s primary scientific questions. We will con-
sider three scenarios: (1) Missing Completely at Ran-
dom (MCAR): Impute using sample means, medians, 
or generalized estimating equations; if MCAR data is 
below 15.0%, analyze only complete cases. (2) Missing at 
Random (MAR): Use regression models, Markov Chain 
Monte Carlo (MCMC), or fully conditional specification 
(FCS) for multiple imputation. (3) Missing Not at Ran-
dom (MNAR): Apply pattern mixture models for com-
parative analysis of missing and non-missing data.

Statistical analysis
Data analysis will be conducted using Statistical Analysis 
System (SAS) version 9.4 (SAS Institute, Inc., Cary, NC, 
USA), IBM Statistical Package for the Social Sciences 
(SPSS) version 26.0 (IBM Corp., Armonk, NY, USA) with 
the PROCESS macro, and Mplus version 8.4 (Muthén & 
Muthén, Los Angeles, CA, USA). A significance level of 
α = 0.05 will be used for all hypothesis tests, with P < 0.05 
considered statistically significant.

1)	 Baseline characteristics: Descriptive analysis of 
demographics, internet gaming usage, academic 
experiences, and psycho-behavioral-social factors 
will be performed. Continuous data will be presented 
as mean ± standard deviation (SD) or median 
(Interquartile Range [IQR]), and categorical data as 
frequency (percentage). Differences between groups 
will be compared using t-tests or Mann-Whitney U 
tests.

2)	 Survival analysis: Time to first IGD occurrence 
during follow-up will be analyzed using Kaplan-
Meier estimates and Log-rank tests. Cox 
proportional hazards models will calculate hazard 
ratios (HR) and 95% confidence intervals (CI).

3)	 Correlation and interaction analysis: Spearman 
rank correlation and interaction analyses will be 
conducted on IGD, demographics, gaming usage, 
academic experiences, and psycho-behavioral-social 
factors. Correlation coefficients and interaction term 
statistics (e.g., F values) will be reported.

4)	 IGD mechanism models: Mediation, moderation, 
and mixed effects models will be constructed using 
path analysis, logistic regression, and Structural 
Equation Modeling (SEM) based on correlation and 
interaction results. Robust Maximum Likelihood 
Estimation (MLE) will be used, with standardized 
regression coefficients (β) and indirect effects 
reported. Bootstrap resampling (1,000 iterations) will 
calculate 95% CI. Model fit indices will guide SEM 
modifications.

5)	 Propensity Score Matching (PSM): PSM will 
balance confounding factors between exposure and 
control groups. Logistic regression will calculate 
propensity scores, with nearest neighbor matching 
(caliper = 0.02) performed at a 1:1 ratio. Standardized 
differences (d < 0.1) will confirm covariate balance.

6)	 Sensitivity analysis: Various imputation strategies 
will assess the impact on effect estimates (e.g., HR, 
β). Stratified analysis will explore demographic 
effect modifications on gaming behavior and IGD 
association pre- and post-PSM. Forest plots will 
report sensitivity analysis results.

Predictive model
The construction of the predictive model involves key 
steps: data collection, preprocessing, feature extraction, 
model training, and evaluation:

1)	 Data collection: We will gather data on personal 
characteristics, internet gaming usage, academic 
experiences, and psycho-behavioral-social factors of 
gaming addicts through online surveys and Python-
based web scraping. Baseline data will be used for 
training and testing, while prospective cohort data 
will validate the model.

2)	 Data preprocessing: This includes cleaning, 
normalization, feature selection, and data splitting. 
Cleaning removes incomplete or erroneous data; 
normalization scales the data; feature selection 
identifies important features via correlation and 
principal component analysis data splitting divides 
the sample into training, validation, and test sets in a 
6:2:2 ratio.

3)	 Feature extraction: Relevant features will be 
extracted from the dataset based on research 
hypotheses and analysis results.

4)	 Model training:

 	• Model and software: We will use Cox proportional 
hazards and Weibull regression models to predict 
IGD. The Cox model predicts IGD risk over time, 
while the Weibull model predicts the exact time of 
IGD occurrence. These models will be implemented 
using Python 3.12.4 with the “lifelines” library 
(“CoxPHFitter” and “WeibullAFTFitter”).

 	• Predictor determination: Significant predictors will 
be identified through statistical analysis, normalized 
using the Min-Max method, and selected based on a 
significance level of P < 0.01.
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5)	 Model evaluation: Performance will be assessed 
using 10-fold cross-validation, confusion matrix, 
receiver operator characteristic (ROC) curve, area 
under the curve (AUC), and root mean square error 
(RMSE):

 	• Confusion matrix: We will calculate sensitivity (Se), 
false negative rate (β), specificity (Sp), false positive 
rate (α), Youden’s index, positive predictive value 
(PPV), negative predictive value (NPV), overall 
accuracy (π), and F1 score.

 	• ROC curve and AUC: ROC curves will be plotted 
and AUC values calculated to determine feature cut-
off values and compare model performance.

 	• RMSE: RMSE will be calculated to compare 
regression performance using the formula (2):

	
RMSE =

√∑
n
j=1(Tj−Y j)

2

n
� (2)

Where Tj is the actual value and Yj is the predicted value.

6)	 Model selection: The optimal model will be chosen 
based on evaluation results and cost-effectiveness 
analysis of IGD prevention.

7)	 Risk stratification: The model will stratify gamers 
into risk levels to provide targeted interventions:

 	• Risk prediction and assessment: Predict each player’s 
IGD risk using the model.

 	• Set risk thresholds: Establish thresholds for low, 
medium, and high risk based on study data.

 	• Risk stratification: Classify players based on 
predicted scores and thresholds.

 	• Develop targeted interventions (see Table 2): Create 
intervention strategies based on risk levels. Low-risk 
players receive health tips; medium-risk players get 
targeted support and gaming restrictions; high-risk 
players need strict measures like time limits and 
professional counseling.

 	• Feedback and optimization: Collect and analyze 
the effectiveness of interventions, and adjust the 

predictive model and strategies based on feedback to 
better manage adolescent gaming behavior.

Strengths
This study has three main strengths: Firstly, it focuses on 
the mechanisms of IGD among adolescents, especially 
in the post-COVID-19 era, addressing an urgent public 
health issue. Secondly, it utilizes advanced data collection 
techniques, such as online surveys and Python-based 
web scraping, tailored to the highly active internet user 
group of university and high school students. These 
methods ensure real-time, accurate, and objective data 
collection while reducing participants’ reluctance. Addi-
tionally, NLP is employed to structure data, uncovering 
multi-layered information beyond traditional surveys. 
Lastly, the study adopts an interdisciplinary approach, 
integrating gaming psychology theories with AI technol-
ogies and utilizing prospective cohort studies and SEM. 
This combination provides new perspectives and meth-
odologies for addressing adolescent mental health issues 
by merging insights from psychology, computer science, 
and public health.

Limitations
Firstly, due to resource constraints, this study is con-
ducted exclusively in Shenzhen, China, which may limit 
the generalizability of the findings. We hope that the ini-
tial results will raise awareness among government, edu-
cational, and health authorities about the severity of IGD, 
leading to more resources being allocated to this field in 
the future. Secondly, as an observational study relying 
primarily on online questionnaires and AI technology, it 
is challenging to obtain biological samples and neurobio-
logical information from the participants. This may limit 
our exploration of the biological mechanisms underlying 
IGD. However, this design allows real-time acquisition of 
gaming behavior data, filling gaps in previous research. 
We also consider the dynamic effects of age changes and 
game types on the development of IGD, aspects that have 
been overlooked in prior studies.

Discussion
The COVID-19 pandemic has led to prolonged online 
education and improved internet access in many house-
holds, potentially increasing the risk of IGD among 

Table 2  Risk stratification and intervention strategies for IGD
Risk level Intervention strategies
Low risk Periodically send tips and suggestions for healthy gaming habits and advice on balancing gaming with other life activities.
Moderate risk Provide targeted support and counseling, and set limits on gaming time, such as restricting daily gaming hours or enforc-

ing breaks after continuous gaming.
High risk Implement stricter measures, such as further limiting gaming time, issuing strong warnings within the game, temporarily 

banning gaming, and guiding players to seek professional psychological counseling.



Page 9 of 10Huang et al. BMC Public Health         (2024) 24:2536 

adolescents [9, 10, 38]. Our study aims to explore the cur-
rent state of IGD, its possible mechanisms, and whether 
these mechanisms differ across age groups. Traditional 
studies have relied on passive monitoring, detecting IGD 
only when addiction is imminent, making interventions 
challenging and less effective. Proactive identification of 
high-risk individuals early on could prove more preven-
tive than traditional measures like limiting gaming time. 
To address these issues, our prospective cohort study 
will combine online surveys and AI technology to collect 
real-time gaming behavior data from adolescents. Using 
Skinner’s reinforcement theory, we will consider age and 
game type variations to deeply investigate IGD’s devel-
opment mechanisms, tackling this significant adolescent 
public health concern.
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