
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Ghazanfari et al. BMC Public Health         (2024) 24:2609 
https://doi.org/10.1186/s12889-024-19920-w

BMC Public Health

*Correspondence:
Parisa Mehdizadeh
p.mahdizade@gmail.com
1Department of Health Economics and Management, School of Public 
Health, Tehran University of Medical Sciences, Tehran, Iran
2Health Management Research Center, Baqiyatallah University of Medical 
Sciences, Tehran, Iran
3Department of Health Economics, Health Management Research Center, 
Baqiyatallah University of Medical Sciences, Tehran, Iran

4Health Management and Economics Research Center, Health 
Management Research Institute, Iran University of Medical Sciences, 
Tehran, Iran
5Department of Health Services Management, Faculty of Health, 
Baqiyatallah University of Medical Sciences, Tehran, Iran
6Chemical Injuries Research Center, Systems Biology and Poisonings 
Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
7Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah 
University of Medical Sciences, Tehran, Iran

Abstract
The novel coronavirus disease 2019 (COVID-19) is the latest evidence of an epidemic disease resulting in 
an extraordinary number of infections and claimed several lives, along with extensive economic and social 
consequences. In response to the emergency situation, countries introduced different policies to address the 
situation, with different levels of efficacy. This paper outlines the protocol for developing a model to analyze 
the burden of COVID-19 in Iran and the effect of policies on the incidence and cumulative death of the disease. 
The importance of the model lies in the fact that no study, according to the authors’ best knowledge, tried to 
quantify the impact of the disease on Iran society and the impact of various implemented interventions on disease 
control. Based on a systematic review of COVID-19 prediction models and expert interviews, we developed a 
system dynamics model that not only includes an epidemic part but also considers the impact of various policies 
implemented by the Ministry of Health. The epidemic model estimates the incidence and mortality of COVID-19 
in Iran. The model also intends to evaluate the effect of implemented policies on these outcomes. The model 
reflects the continuum of COVID-19 infection and care in Iran (of which some of its elements are unique) and 
key activities and decisions in delivering care. The model is calibrated and validated using data published by the 
Ministry of Health of Iran. Finally, the study aims to provide evidence of the impact of interventions intended to 
curb COVID-19 in Iran. Insights provided by the model will be necessary for controlling either future waves of the 
disease or similar future pandemics.
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Introduction
The novel coronavirus disease 2019 (COVID-19) is the 
latest evidence of an epidemic disease resulting in an 
extraordinary number of infections and claimed several 
lives, along with extensive economic and social conse-
quences. In addition, it caused different long-term health 
consequences and a significantly higher burden on health 
systems. In response, various countries enacted different 
clinical and non-clinical procedures to curb the spread of 
disease (e.g., total lockdown and societal health). While 
such measures are necessary to control the disease, there 
should be an appropriate balance between them as, along 
with health benefits, they negatively impact the economy 
and society. This is only possible when policymakers have 
access to appropriate information in an in-time manner 
[1]. On the other hand, the fact that COVID-19 is highly 
contagious and its evolving nature are among the factors 
that indicate the pandemic will continue in the future 
[2]. Furthermore, healthcare policymakers should com-
prehensively understand the disease, including its trans-
mission pattern, to develop appropriate strategies while 
having an eye on its future dynamics [3].

In this line, several models are introduced to quantify 
the effect of COVID-19 on various health outcomes, as 
well as to determine the risk of future health outcomes [4, 
5]. In addition, some models are intended to evaluate the 
effect of various non-clinical interventions on COVID-
19 spread [6–8]. The literature includes a wide range of 
models, including statistical models [9], network-based 
models [10], simulation models [11], etc. In recent years, 
simulation-based models have been used as effective 
solutions, mainly because in rapidly evolving pandemics 
such as COVID-19, the higher the complexity of statisti-
cal and network-based approaches, the lower their appli-
cability, while the need for more data increases [12]. The 
outputs of such models have been crucial for decision-
makers to make evidence-informed decisions intended 
to curb disease expansion and provide more effective, 
risk-based treatments based on disease severity [13, 14]. 
Nevertheless, among various developed models, only a 
few are of high quality and context-specific, as mentioned 
by a systematic review [15]. Furthermore, more informa-
tion about their actual performance should be available. 
Meanwhile, each country has implemented some specific 
measures to address the situation, which often are not 
considered in currently available models, leading to their 
underperformance.

Therefore, following a susceptible–exposed–infected–
recovered epidemic (SEIR) model, this study intended 
to develop a simulation-based model to comprehend the 
dynamics of COVID-19 in Iran. In other words, the study 
investigated the effect of epidemiological, social, eco-
nomic, and health sector-related variables to estimate the 
effects of COVID-19 (i.e., infections and mortality) using 

various scenarios in Iran. The system dynamics (SD) and 
design of experiment (DOE) approaches are applied to 
determine the optimal state of variables and their rela-
tions in order to match the model with empirical data, 
leading to a better evaluation of the situation and to fore-
cast the disease’s future dynamics using various scenar-
ios. The model contains dynamics of societal interactions 
and the effects of various governmental interventions on 
susceptibility and infectiousness across persons. Hence, 
the outputs of the model can be used to both investigate 
and forecast the dynamics of the diseases and to evalu-
ate the effect of various interventions on the defined out-
comes. In other words, one of the objectives of this model 
is to ascertain how governmental interventions changed 
the course of the pandemic (i.e., number of deaths, infec-
tions, hospitalization, etc.). The research team tried to 
recreate the COVID-19 pandemic as precisely as possi-
ble; hence the study has some prominent aspects that are 
disregarded in previous research. For instance, the model 
is based on an enhanced SEIR model to realistically 
simulate the pandemic’s spread and considers suscep-
tible, isolated, infected, and vaccinated cases. In addition, 
interventions such as lockdowns, social contacts, public 
awareness, latent time, recovery time, and mortality are 
included in the model. Noteworthy, the DOE approach 
is used to develop the model, and integration of this 
approach is an efficient technique to calibrate the model 
based on scenarios, which is not widely used in previous 
studies.

According to the authors’ best knowledge, this is the 
first study that developed a model based on the Iran con-
text. As a result, it can be argued that the model both 
tried to address the limitations of other models and to 
provide a model based on Iran’s context. The model is 
described in the following, which is structured into five 
main sections: (a) research background and objectives; 
(b) literature review, by emphasizing knowledge gaps; (c) 
methodology; and (d) final model.

Literature review
Since the emergence of COVID-19, several models have 
been introduced to either predict disease dynamics 
or estimate its effects, some of which are simulated for 
Iran. These models used different approaches, including 
extrapolation, back-calculation, system dynamics, etc. 
For instance, ShreylL et al. (2020) used an agent-based 
approach to simulate the COVID-19 pandemic in Aus-
tralia. They used the ACEMoD model that was previ-
ously developed by another researcher. Based on discrete 
time and stochastic agent-based methods, the research 
team developed several scenarios [16]. Scott et al. (2020) 
introduced a model to quantify the effect of govern-
mental interventions on COVID-19 spread in countries 
with low infection rates. They also used an agent-based 
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approach to simulate the risk of disease transmission net-
works in families, schools, workplaces, and a wide range 
of public areas [17]. Richard Stutt O.J et al. (2020) pre-
sented a modeling framework to evaluate the effective-
ness of using masks and quarantine in the management 
of the COVID-19 pandemic using a branching process 
as well as susceptible, infected, and removed model [18]. 
Hwan Oh et al. (2020) investigated years of lost life due 
to COVID-19 in countries with high infection rates. 
They developed a system dynamics model to achieve this 
goal in 30 countries [19]. Zia et al. (2020) developed a 
SEIR model to simulate the COVID-19 spread in Oman 
using epidemiological data [20]. He et al. investigated 
the effect of quarantine and hospitalization on COVID-
19 dynamics using official COVID-19 data from Hubei 
province (China). They used a particle swarm optimiza-
tion algorithm to estimate infection and hospitalization 
rates [21]. Ghaffarzadegan and Rahmandad also devel-
oped a simulation-based model to estimate the early 
spread of COVID-19 in Iran in order to compare actual 
and confirmed cases of the disease. They combined dif-
ferent sources of data to estimate the magnitude of the 
outbreak. The findings showed that COVID-19-related 
deaths are likely 7.1 times more than official counts [22]. 
Also, Annas et al. (2020) developed a model with vacci-
nation and isolation factors and mentioned the impor-
tant contribution of vaccination in improving healing and 
the major contribution of maximum isolation in curbing 
disease spread [23]. Moreover, Kazempour Dizaji et al. 
(2022) developed a simulation model for the COVID-
19 disease epidemic in Iran using a SIR model using 
various scenarios. They reported that increased social 
restrictions and higher health measures translated into 
a declined reproductive rate. The findings also showed 
that medications and vaccines had an important role in 
improving the recovery rate [24]. In the same vein, Chen 
et al. (2023) investigated the relationship between the 
COVID-19 spread and governmental interventions using 
a SEIR model. To estimate the transmission rate, they 
divided the data into eight different periods with corre-
sponding SEUIR models for each period [25]. Similarly, 
Liu et al. investigated the effectiveness of measures per-
formed to curb the COVID-19 pandemic (e.g., social dis-
tancing and social gatherings) using area-based exposure 
to infections during travel and quarantine. The model is 
focused on disease transmission during travel [26].

As mentioned above, a wide range of variables are 
investigated in the proposed models, as evidenced by the 
literature review. While variables such as social aware-
ness, public warning, and vaccination are of crucial 
importance to understanding the dynamics of COVID-19 
pandemic, most previous studies have focused on epide-
miological variables (e.g., infection period, isolation time, 
recovery time). Hence, this study attempts to include 

variables other than epidemiological factors to provide 
a throughout understanding of the disease dynamics in 
Iran.

Model description
First, a steering committee (SC) was established, whose 
responsibility was to ensure that the final model would be 
a realistic representation of the COVID-19 pandemic and 
its continuum of care in Iran (i.e. screening to identify 
newly infected individuals, linkage of newly diagnosed 
to care, clinical assessment, monitoring of clinical signs, 
adverse events and drug resistance, and long-term reten-
tion of patients in treatment, appropriate data are used 
for model parameters and calibration, and comprehen-
sive and well-fitted scenarios are developed). The SC is 
composed of seven well-known experts in public health, 
health policy, statistics, modeling, and epidemiology.

Data gathering
Based on the compiled model, six groups of information 
were needed to complete and implement the model:

a. Epidemiological information such as the prevalence 
of Covid-19 among different groups, the possible 
proportion of diagnosed people and people who 
are not aware of their disease; These data were used 
from the statistics published daily by the Ministry of 
Health and Medical Education of Iran.

b. Behavioral information: the number of contacts, the 
number of contacts with infected people, the amount 
of mask use, the amount of social distancing, the 
amount of tendency to receive the vaccine.

c. Information about the disease: the probability of 
transmission per contact with an infected person 
through breathing, the probability of transmission 
per contact with an infected person through contact 
with contaminated surfaces, the probability of 
disease transmission when using a mask, the rate of 
disease transmission when receiving a vaccine.

d. Programs and policies related to the control of 
Covid-19 in Iran and their coverage.

e. Demographic information: population growth rate 
and the share of different age groups from the total 
population.

Model development
Since the main question of the current study was ‘actual 
trend of the COVID-19 pandemic (i.e., incidence and 
mortality) in Iran’, the first step was to develop a model 
for the projection of the disease dynamics. Hence, the 
first step of the study was a systematic review of all pub-
lished studies on modeling COVID-19, as well as its 
dynamics in Iran and other middle-income countries. 
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Besides, it was necessary to study unpublished literature. 
Therefore, a systematic review was performed from the 
onset of the disease to November 2022. For this purpose, 
PubMed, EMBASE, Web of Science, Google Scholar, and 
local databases (i.e., Iranmedex, Magiran, SID, and Iran-
doc) were searched using the following keywords: predic-
tion models, system dynamics, COVID-19, Coronavirus, 
SARS-CoV, SARS-CoV-2, healthcare, healthcare system, 
survival model, medical care. Various combinations of 
the search terms were used to retrieve related articles 
from the databases.

The review aimed to identify COVID-19’s dynamics 
(e.g. high-risk groups, risky behaviors), as well as pro-
grams, policies, interventions, organizations, and insti-
tutions engaged in policymaking and/or provision of 
COVID-19-related services in Iran.

The selection criteria referred to COVID-19 transmis-
sion, prevention, treatment, the continuum of care, high-
risk behaviors, high-risk groups, policymaking or policy 
analysis, optimization of resources, both globally and in 
Iran, developing a novel model to predict the incidence 
or prevalence of COVID-19, reviewing/updating previ-
ously developed models, and investigating pros and cons 

of the current models. In total, 616 studies were deemed 
to be relevant for full-text review. Then, documents 
were reviewed to assess their relevance to the objectives. 
After reviewing titles and abstracts 126 articles were 
removed due to various reasons such as duplication or 
being irrelevant. Then, 490 documents were screened. 
We also searched the references of all eligible studies to 
find further evidence and asked the experts whether an 
important study was omitted or not. That resulted in 15 
more studies (3 were suggested by experts, and 12 were 
extracted through searching references). Finally, 137 
studies were eligible to be included (Fig. 1).

After reviewing the literature on COVID-19, the next 
step was to obtain experts’ opinions on COVID-19 
dynamics. Then, we interviewed key informants, epide-
miologists, researchers, providers engaged in COVID-19 
care, public health experts, and system dynamics experts. 
To select the key informants and experts the following 
criteria were considered: having experience in modeling 
infectious diseases; being familiarized with the meth-
odology of the system dynamics; and being engaged in 
policy-making. Interviewees were selected using the 
purposive sampling technique. Using a semi-structured 

Fig. 1 Study selection process
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approach, interviews intended to explore the dynam-
ics of COVID-19 in the country, including current and 
future high-risk groups, risky behaviors, the future trend 
of the disease, and main considerations for modeling the 
disease.

In total, 15 interviews were conducted. All interviews 
were transcribed and then analyzed. The mean duration 
of interviews was about 72  min. The analysis was con-
ducted by a member of the research team. Therefore, a 
qualitative model of the COVID-19 in Iran was devel-
oped. The model was used as a guide to construct various 
parts of the final model. To better document interviews 
and facilitate discussions with system experts, the Uni-
fied Modelling Language, or UML was used to develop 
diagrams of system workflows.

Apart from extracting the disease dynamics, the find-
ings of the review and interviews were categorized into 
two groups: (a) COVID-19-related policies and pro-
grams; and (b) COVID-19 dynamics in Iran, which are 
described in the following.

(A) COVID-19-related policies and program
Table  1 includes interventions and policies that are 
intended to control COVID-19 spread in Iran since the 
onset of the Pandemic.

(B) Epidemiological model
The model is developed following the SD approach, 
which is widely used to comprehend the nonlinear 
behavior of complicated systems. SD mostly relies on 
stocks (represented by a box), flows (symbolized by 
valves with arrows), auxiliary, and delay components to 
provide a realistic estimation of the actual situation. To 
better understand the pandemic dynamics, a determinis-
tic stage-structured SEIR (Susceptible-Exposed-Infected-
Removed) model is used in this study; that is, initially, the 
population is divided into six groups of susceptible (S), 
exposed (E), infected (I), Hospitalized (H), Isolated (IS), 
and removed (R). Then, the groups are further divided 
based on other variables. Also, based on the known 

information about SARS-CoV-2 transmission, infected 
states can be either asymptomatic or symptomatic during 
the simulation period. Each node represents a stock vari-
able containing the number of individuals in the popula-
tion depending on the state of infection.

The flow rates among the states depend on the inter-
action of variables and latency under the Iran condi-
tion. Noteworthy, it is assumed that each compartment 
is homogeneous regarding population characteristics. 
Furthermore, it is assumed that birth and death rates are 
equal (i.e., no population growth during the simulation 
period). Also, those in either isolation or hospital com-
partments are assumed to have zero infection rates. A 
high-level stock-flow schematic of the model is provided 
in Fig. 2.

The proposed pandemic model is described in the fol-
lowing. Susceptible might acquire the infection at a given 
rate in cases where they contact infected patients; then, 
they enter ‘exposed’. Afterward, they may present symp-
toms or not (known as symptomatic and asymptomatic). 
Symptomatic cases enter the compartment of ‘infected’. 
They may either be isolated, hospitalized, stay at home, 
or follow their usual behavior. Those in the hospital may 
require intensive care. The last compartment is ‘removed’ 
or ‘dead’.

The migration of those in the susceptible compartment 
to exposure depends on the infection rate (IR), which, 
as presented in Eq.  (1), relies on the infection rate (IRi), 
contact rate (λ), susceptibility proportion (Sp), and social 
awareness impact (α).

 IR = IRi × λ × Sp × α  (1)

Noteworthy, the initial infection rate only includes the 
reproduction number (R0). The infection rate was calcu-
lated using Eq. 2.

 IRi = R0 / IP (2)

Table 1 Interventions and policies that intended to control COVID-19 spread in Iran
Policy/intervention Description
National Quarantine Nationwide restriction aimed at reducing social interactions
Closure of schools and universities in the country
Public awareness Through national broadcasting medial, social media, and 24/7 call centers
Travel ban with significant fines
Case finding and tracking patients Through mobilizing the society and NGOs
Intra-city travel restrictions Restriction was from 22 to 6 am with significant fines
Including COVID-19 related services into the basic benefit package
Limit gathering in closed areas Particularly for national and religious events
National-wide vaccination campaign
Free distribution of sanitary products (e.g., masks and alcohol) Mainly to reduce the risk of disease transmission
Investing in vaccine production programs At both national and international level
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R0 is the number of times the virus reproduces. IP stands 
for infection period and refers to an individual’s infec-
tiousness duration. This study considered the R0 and 
IP as 3.9 and 6, respectively [27]. Noteworthy, as since 
the onset of the pandemic, the Iranian government 
has implemented several restrictive interventions, it is 
assumed that the effect of such interventions (i.e., lock-
down (β)) should be considered. In other words, interven-
tions such as lockdowns can significantly reduce contact 
rates, translating into reduced infection rates. However, 
there should be a variable to indicate the delay in impact 
(known as time in this study). Equation 3 intends to esti-
mate the contact rate (λ). It should be noted that the 
exponential delay of the first order is used to capture its 
behavior.

 λ = (λNL − DELAY1(β, tim))  (3)

The value of tim was estimated using the examination of 
data published by the Ministry of Health and Medical 
Education (MoHME), as well as obtaining expert opin-
ions. Equation (4) is used to estimate the behavior of vari-
able β. For this purpose, a similar study performed in the 
middle-east was used to estimate the behavior of β [27].

 

β =Step (7, 30) − Step (2, 120) − Step (5, 300)

+ Step (7, 395) − Step (7, 410)
 (4)

The other important variable is ‘proportion suscepti-
bility’, which indicates all cases in the initial population 
except for the susceptible population. As in Iran, those 
living in rural areas (with low population density) have 
a significantly lower rate of infection, this variable was 

included to consider population density. Equation 5 was 
used to estimate the proportion susceptibility.

 

φ = 1 + ρ × (SMOOTH

(PULSE TRAIN (Ts, TD, TR, TF))
 (5)

The variable of ‘social awareness’ intends to capture the 
effect of interventions implemented to control the dis-
ease spread, e.g., hand sanitization, social distancing, 
wearing masks, etc. (Eq. (6)).

 α = 1 − DELAY1(Step (τ, 30), dadopt) (6)

Furthermore, it is assumed that personal hygiene and 
wearing a mask affect the infectivity and are modeled 
using the v(t) multiplier. Moreover, we defined a time-
dependent adjustment factor y(t) for contact rate, Cij. 
There is a delay function (τ), ranging from one to 20 days, 
to consider the effect of social awareness interventions, 
and then the effect starts to decline. The value of τ was 
obtained from the literature review. The higher the social 
awareness, the lower the IR. According to evidence, most 
interventions on social awareness affect the behavior for 
50 days, on average [2]. On the other hand, it often takes 
time to adopt a new behavior (dadopt).

Initially, a proportion of the population is susceptible 
(S) to the disease (Eq.  5); then, they get exposed to the 
virus by contacting infected individuals. After expo-
sure, most cases are asymptomatic and become infec-
tive only after a latency period (dEA days). Then (after 
another dAI days), they start to present symptoms and 
move to the Infectious Symptomatic group. The sum of 
dEA and dAI represents the average incubation period 

Fig. 2 Stock flow diagram of the model
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(dP). The infection rate depends on the contact rate (λ) 
and the infectivity (p) (Eq. 2). The contact rate for each 
compartment is the sum of all interactions of all mem-
bers with other compartments across all contact loca-
tions (i.e., home, work, school, and other locations). The 
study assumes that contacts only occur at home, work-
place, school, and all other locations. We assumed that 
transmission occurs through contact with symptomatic 
or asymptomatic cases. Also, it is assumed that the rel-
ative infectivity of the asymptomatic cases is (1-k) % of 
the symptomatic cases. Most people in the symptom-
atic compartment are active in society and transmit the 
disease, and only a fraction require hospitalization. The 
rate of admitting patients for inpatient services has been 
calculated using the percentage of initial hospitalization 
(IHP) and the stress (σ) and by using an expert’s opinion. 
In this study, IHP is defined as 0.4; that is, 40 out of every 
100 infected cases go to inpatient centers. Afterward, a 
fraction of hospitalized cases require intensive care, and 
the rest will recover. A fraction of ICU (Intensive Care 
Unit) patients recover and the rest die. In order to cover 
possible deterioration in hospital care due to exces-
sive demand for hospital services and staff burnout, the 
overflows at hospitals are explicitly modeled. Moreover, 
based on the availability of beds, patients may either go 
to the hospital immediately or wait for a while to enter 
stock H. The same is true for ICU beds. All recovered 
cases lose their immunity to the disease and enter the 
susceptible compartment after a period (defined as ‘Wan-
ing time (WT)’). Noteworthy, it is assumed that hospi-
talized patients are in full isolation and do not transmit 
the disease. The burden on the healthcare system due to 
extra demand for either outpatient or inpatient services 

is considered using the variable of ‘stress’. So, the higher 
the capacity and preparedness of the health system, the 
lower the value of stress. Hence, when the stress level is 
zero, the HP is normal, and the higher the stress level, 
the higher the negative impact on the health system. This 
variable allows to capture fluctuations in the availability 
of care to patients. The model also includes the effect of 
immunization on IR, as well as the vaccine efficacy (ζ). 
Vaccine efficacy represents the impact of vaccines, and as 
time passes, the immunity reduces. Several studies show 
that vaccination could reduce infections, hospitalization, 
and fatalities [2]. Most Iranians have received the Sino-
pharm vaccine, so its efficacy is generalized to the whole 
population (Fig. 3).

The model includes both medical and non-pharmaceu-
tical interventions. Medical interventions include both 
outpatient and inpatient services, which are included as 
Hospitalized (H) and Isolated (IS) compartments. Non-
pharmaceutical interventions included in the model are 
quarantining and isolation, which have been widely per-
formed in Iran. These interventions are explicitly cap-
tured by stocks A and I. The flow of asymptomatic from 
A to Q A represents the proportion of patients that are 
quarantined, which may be due to self-awareness (f1(t)) 
or contact tracing of positive tested patients (fX(t)). 
Patients flow from A to LA is defined as patients with a 
positive test result that are isolated. These patients either 
recover or develop more severe symptoms. The flow of 
symptomatic cases from I to QI represents the number of 
cases chosen to quarantine due to self-awareness (f3(t)). 
The flow of patients with explicit symptoms from I to LI 
represents the proportion of isolated cases following a 
positive result for the COVID-19 test (f4(t)). Noteworthy, 

Fig. 3 Stock and flow of vaccination campaign
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all the flows are governed by explicit delays between 
stages. Other equations are provided in the Parameters 
section.

The Social Contact Matrix provided by Prem et al. 
(2017) was used in this study [28]. However, the model 
was calibrated by applying a correction multiplier of 1.7 
to adjust the number of contacts for all locations. More-
over, two pathways are considered to either identify or 
confirm new patients via testing: (a) when the individual 
seeks medical help; and (b) via contact tracing and test-
ing symptomatic individuals before presenting severe 
symptoms. The former is captured by the flow of Disease 
Progress Rate (DPR) from Infectious Symptomatic (I) to 
Hospitalized (H) compartments. The latter is captured 
by the flow of Isolating Symptomatic Rate (LIR) from 

Infectious Symptomatic (I) to Isolated Symptomatic (LI) 
compartments.

Feedback loops
Transmission loop
This is the initial loop for the infection that depends on 
the infection rate. It relies on various factors such as the 
current infection rate, behavioral transmission rate, sus-
ceptible population, and immunity.

Infection loop
It shows the transition from susceptible to exposed and 
then infected cases, which have a probability of trans-
mitting the virus if not contained, quarantined, or 
monitored.

Table 2 Variables and definitions
Variables Definition Unit
Population Population entered the model People
susceptible Initial population that is prone to COVID-19 infection %
Exposed Persons who have been exposed to the virus but have not yet begun to present symptoms %
Infected Individuals who are infectious and spread the disease %
Hospitalized Cases with severe disease that require intensive care %
Vaccinated Individuals who have been immunized for COVID-19 infection %
Initial Hospitalization Percentage A normal proportion of infected patients admitted to hospitals 1/Day
Infection Period Average duration of infectiousness of patients Day
Initial Infection Rate The infection rate in the absence of any additional influencing elements 1/Day
Infection Rate The rate at which infection takes place and it depends on several influencing factors 1/Day
Reproduction number Number of times the virus reproduces Dimensionless
Latent time Duration between exposure and becoming contagious Day
Transmission rate Rate of transmission from non-isolated active infected to susceptible %/day
Basic reproduction number Expected number of individuals that a single infected individual directly infects when introduced 

in a fully susceptible population in the absence of external interventions
Time of impact Duration after which the effects of lockdown are felt Day
Days to achieve The timeframe during which the effect of social awareness takes place Day
Waning time Duration after which recovered people lose their immunity and become more vulnerable to 

COVID-19
Day

Vaccination per day Daily doses of vaccines administered Person/Day
Vaccine efficacy Effectiveness of immunization Dimensionless
Contact rate The rate at which people interact with each other, which may cause spread of disease Dimensionless
Social awareness Effect of measures such as social distancing, wearing mask, etc. Dimensionless
Social awareness impact The extent to which social awareness influences the control of disease’s spread Dimensionless
Active infected Those infected with COVID-19 whom are active in society (out of their home) People
Social mobilization efforts Efforts intended to reduce the risk of infection, such as lockdowns and mask mandates Dimensionless
Quarantine effectiveness Fractional reduction in infections due to quarantine Dimensionless
Self-isolation effectiveness Fractional reduction in infections due to isolation that roots in personal awareness of people Dimensionless
Hospital capacity Ability of hospital to meet the need to receive special care, including human resources, beds, 

ventilators, etc.
Capacity/
capita

Hospital care effectiveness Effect of care provided in hospital which negatively affects fatality rate Dimensionless
Dying Number of people dying after hospitalization due to COVID-19 People/day
Recovering Number of people recovering after hospitalization People/day
Burnout The burden on the health system due to overloading Dimensionless
Lockdown plan Establishing the lockdown plan with start and end times Dimensionless
Values of parameters used in the model are provided in Table 3
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Social mobilization loop
It includes all measures intended to minimize the trans-
mission rate (i.e., both pharmaceutical and non-phar-
maceutical interventions). This loop covers government 
mandated practices such as lockdowns, community quar-
antine, and private institution societal adjustments.

Health system capacity loop
This loop is focused on the first-line measures of COVID-
19 patients, including testing and quarantining. It is 
capped by the effectiveness decline and depreciation due 
to resource usage. The disease testing and diagnosis loop 
is provided in Fig. 4.

Simulation
The model presented in this study is developed using the 
commercial software Vensim ® (Vensim Systems, Inc., 
Harvard, MA, USA), which may be acquired for free 
from Ventana Systems, Inc. Vensim PLE is a simulation 

software that supports continuous simulation by pro-
viding a graphical modeling interface for stock-and-flow 
and causal loop diagrams. The model will be simulated 
using the Euler integration method with a time-step of 
0.0625. concerning the study parameters, values of some 
parameters are extracted from the literature review (e.g., 
infection period, recovery time, etc.). Some others are 
obtained from the MoHME, trials performed in Iran, 
or online Iranian sources; for instance, hospitalization 
percentage and days to achieve social awareness. Note-
worthy, all data are tailored to Iran’s context based on 
the expert’s opinions. Also, the results will be provided 
per day. All units are crosschecked to ensure the con-
sistency of variables. Furthermore, direct structure tests 
are used to ensure consistency of relations and assump-
tions, as well as including all necessary variables. Even-
tually, the outputs of the model can be used to better 
understand the actual COVID-19 dynamics in Iran and 

Fig. 4 Test and diagnosis
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develop appropriate strategies to better control the dis-
ease spread.

Parameters
Defined variables and their definition are provided in 
Table 2.

Noteworthy, the authors are aware that some of the 
abovementioned parameters are not available for Iran. 
Hence, data from some countries with similar contexts 
are generalized and are assumed to hold true for the 
country.

Data collection
As SARS-Cov-2 has different mutations, each with vari-
ous characteristics (e.g., infectivity, incubation period, 
etc.), for each wave of the disease the epidemiological 
parameters of the dominant mutation were embedded 
in the model. Data on epidemiological characteristics 
were obtained from WHO and the Center for Disease 
Control of the US. Calibration of obtained rates with 
real data was performed through comparison with offi-
cial statistics (i.e., confirmed diagnosed cases) and expert 
opinions. Then, demographic data were obtained from 
Iran Statistical Center. Data on therapeutic infrastruc-
tures were extracted from official reports of the Minis-
try of Health and Medical Education, as well as the Iran 
Statistical Center. Data on hospital capacity, including 

ICU beds, were also obtained from MoHME. Also, data 
on the extensiveness of various therapeutic measures to 
control the pandemic were obtained from MoHME, as 
well as official reports published by medical universities. 
Meanwhile, data on the infectiveness of various muta-
tions of the SARS-Cov-2 were obtained from the WHO 
Coronavirus Disease (COVID-19) Dashboard. Mean-
while, the effect of various measures on disease spread 
was obtained through a literature review. Noteworthy, 
for all steps, national data were preferred over interna-
tional data, except for cases data national data were not 
available; for instance, data on contact matrix, which cur-
rently there is no evidence for Iran, and the research team 
had no other option except to use data of countries with 
similar context. In such cases, the research team tried 
to adapt data based on Iran’s context through a steering 
committee comprised of various experts. Furthermore, 
the steering committee supervised the data collection 
process, and in the case of any discrepancy, a third ref-
eree (i.e., an expert with sufficient experience in the field) 
was referred to address the situation. For cases were 
more than one source of data was available (e.g., daily 
infection cases), data published by the national institu-
tions were preferred.

Model validation and sensitivity
As SD is a behavior-focused technique, the sensitiv-
ity of behavior patterns (e.g., level and time) to changes 
in parameters should be examined to identify potential 
leverage points that can enhance the performance of 
the system. Data on daily incidence, daily mortality of 
COVID-19, number of recovered cases, and hospitalized 
cases were extracted from daily reports of the MoHME. 
The model is calibrated using the data reported by the 
MoHME of Iran. The research team performed about 
140 simulations to tune the model. The validity of the 
feedback relationship was evaluated by developing a 
stock-and-flow diagram. Also, testing model structure, 
consistency, and utility were used to demonstrate the 
model’s validity. Simple mathematical equations were 
used in the simulation model to express the relationships 
between variables, while parameters indicate the weight 
of these relationships.

Limitations
Like other similar studies, the current study also had 
limitations. The first, and most important, is not dividing 
the population based on age groups, which was mainly 
because of inaccessibility to the required data in Iran. 
Secondly, the model only contains an epidemic part, and 
other important risk factors such as super-spreaders and 
anti-vaccine groups are considered as external variables. 
A comprehensive model should consider such variables 
as internal variables which depend on various factors.

Table 3 Main parameters and included values
Base infectivity, p̂ 0.015

Reduction in infectiousness of asymptomatic, k 0.5
Incubation period, dEA + dA 5 days
Latency period, dEA 3 days
Average time to develop symptoms, dAI 5 − 3 = 2
Average time for asymptomatic to recover, dAR 11 days
Average time for infectious Symptomatic to become seri-
ous/hospitalize, dI

5 days

Average time for infectious symptomatic to recover, dI 14 days
Average worsening duration, dH 5 days
Average time for hospitalized patients to recover, dH 14 days
Average time for critical patients to die dC 5 days
Average time for critical patients to recover dC 14 days
Average time to quarantine/isolate asymptomatic, dAQ, dA 1 day 

(assumed 
half of dAI)

Average time to quarantine/isolate symptomatic, dIQ,dI 2.5 days 
(assumed 
half of dAI)

Average time for quarantine/isolate asymptomatic to 
develop symptoms, dQQ, dL

1 days (dAI 
- dAQ)

Average time for quarantine/isolate symptomatic to be-
come serious/hospitalize, dQH, dL

2.5 days 
dIH - dIQ)

Average time for quarantine/isolate asymptomatic to 
recover, dQAR, dLA

10 days 
(dAR - dAQ)

Average time for quarantine/isolate symptomatic to be-
come serious/hospitalize, dQIR, dLIR

13 days 
(dIR - dIQ)
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Epilogue
The current model has two main implications for the Ira-
nian healthcare system. Firstly, it can be used to predict 
the future incidence of the COVID-19 and other similar 
disease in Iran. Secondly, the impact of different inter-
ventions on the expansion of the diseases can be evalu-
ated and interventions (both behavioral, diagnostic, and 
curative). Furthermore, the cost of necessary interven-
tions to reduce the incidence also can be estimated.

Policy implication
The model provided in this article adds to the current 
body of knowledge regarding the effect of a combination 
range of policies (pharmaceutical and non-pharmaceuti-
cal), as well as behavioral aspects of social interactions, 
on the incidence and mortality of the COVID-19 pan-
demic in Iran.
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