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Abstract 

Background Human reproductive dynamics in the post-industrial world are typically explained by economic, tech-
nological, and social factors including the prevalence of contraception and increasing numbers of women in higher 
education and the workforce. These factors have been targeted by multiple world governments as part of family 
policies, yet those policies have had limited success. The current work adopts a life history perspective from evolution-
ary biology: like most species, human populations may respond to safer environments marked by lower morbidity 
and mortality by slowing their reproduction and reducing their number of offspring. We test this association on three 
levels of analysis using global, local, and individual data from publicly available databases.

Results Data from over 200 world nations, 3,000 U.S. counties and 2,800 individuals confirm an association 
between human reproductive outcomes and local mortality risk. Lower local mortality risk predicts “slower” reproduc-
tion in humans (lower adolescent fertility, lower total fertility rates, later age of childbearing) on all levels of analyses, 
even while controlling for socioeconomic variables (female employment, education, contraception).

Conclusions The association between extrinsic mortality risk and reproductive outcomes, suggested by life history 
theory and previously supported by both animal and human data, is now supported by novel evidence in humans. 
Social and health policies governing human reproduction, whether they seek to boost or constrain fertility, may ben-
efit from incorporating a focus on mortality risk.

Keywords Environmental risk, Evolutionary psychology, Life history theory, Demography, Global fertility crisis, 
Adolescent fertility, Reproductive slowdown

Background
In recent decades, the world has seen major shifts in 
human reproduction. The Western world, along with a 
few ‘tiger’ economies of Asia, have witnessed an unprec-
edented fertility slowdown with women giving birth 
to fewer children and doing so later in life [1, 2]. These 
changes have become so extensive that some demogra-
phers, sociologists, and economists have dubbed them 
the “global fertility crisis” [3, 4]. The slowdown has been 

particularly pronounced in socially and technologically 
advanced societies [5, 6], including the United States 
where the fertility rate has dropped below the replace-
ment level, from 2.12 children per woman in 2006 to 1.78 
in 2020 [7]. Although potentially beneficial for pressing 
global issues, such as carbon emissions [8, 9], the slow-
down has caused concerns among economists for its 
projected effect on long-term economic growth [10, 11]. 
Developed countries spend 1–4% of GDP on family sup-
port and birth stimulation initiatives [12, 13] but, not-
withstanding some successes, few have managed to stop 
or reverse the fertility decline [14, 15].

In contrast, lower-income regions of the world, such as 
countries of sub-Saharan Africa, continue to experience 
high adolescent fertility rates that presumably impede the 
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growth of human capital in young women [16, 17]. High 
fertility rates in those nations are expected to increase 
the world’s population by another 4 billion by the end of 
this century [18].

Not only do women across the globe give birth to dif-
ferent numbers of children, but they do so at drastically 
different life stages, spanning from adolescence to mid-
dle-age [2, 19]. Such variability raises its own concerns 
at both extremes: older age of childbearing, a feature 
of developed countries, is associated with undesirable 
health outcomes for women and children [20, 21], while 
fertility in adolescence has negative effects on young 
women’s human capital [22].

Social and behavioral policies targeting human repro-
duction, whether they seek to boost or constrain it, are 
based on the current consensus about its driving forces 
[23]. Demographers, economists, and sociologists most 
often explain human reproductive dynamics with refer-
ence to economic, technological, and social factors: the 
availability of contraception, women obtaining higher 
education, or entering the workforce [24–27]. Despite 
the utility of these explanations, they fail to fully account 
for global variability in human reproduction. For exam-
ple, they have difficulty explaining why fertility rates are 
further decreasing in the most industrialized nations, 
where education and employment have become more 
(not less) accommodating of childcare responsibilities: 
even in countries with comprehensive birth stimulation 
programs, such as France or Sweden, fertility rates have 
increased only slightly, remaining substantially below 
their mid-twentieth century levels [28, 29]. Existing 
explanatory frameworks also have difficulty accounting 
for the fact that some lower-income nations (e.g., Niger, 
Congo, or Gabon) that in the past 70 years have seen rel-
atively sharp increases in women attaining higher educa-
tion, have not seen the same declines in fertility rates that 
more progressive societies have [19].

In this work, we offer a different perspective on global 
reproductive patterns, a perspective inspired by life his-
tory theory (LHT), a conceptual framework from evo-
lutionary behavioral science that seeks to understand 
the diversity of reproductive strategies and life cycle 
traits in species and individual organisms. As suggested 
by LHT, people, just like other animals, may adjust 
the timing and number of offspring to mortality risk in 
their local ecology [30, 31] Based on this perspective, 
socioeconomic incentives targeting fertility through 
education, employment, and contraception may have 
a limited effect because they overlook the biology of 
human reproduction.

While another major theoretical perspective on 
human reproduction – demographic transition theory 
(DTT) – also acknowledges a link between mortality 

and population dynamics, LHT suggests a direct causal 
link between the two and generates somewhat different 
predictions than DTT. Below, we briefly review prior 
evidence and report novel data supporting a life history 
approach to human reproductive dynamics.

Demographic transition theory
Classic demographic transition theory (DTT) [32, 33] 
has established links between mortality and fertility in 
humans. According to DTT, human societies progress 
from a mode of high fertility and high mortality to that 
of low fertility and low mortality. In DTT, changes in 
mortality and fertility are orthogonal factors that inde-
pendently cause declines in population growth. The driv-
ing forces behind declining mortality – mainly, changes 
in extrinsic mortality sources, such as contagious dis-
eases – were obvious to the theory’s authors. The causes 
of declining fertility were less evident: Frank Notestein 
wrote that it was “impossible to be precise about [its] 
various causal factors”, attributing fertility decline to 
youth mobility, “anonymity of city life,” changes in cul-
tural values, and “rational point of view” [33]. The idea 
that decreasing fertility could be ultimately caused by 
decreasing mortality through a biological mechanism 
shared with other species was not part of the classic the-
ory. DTT has later been challenged as only applicable to 
one historical era and having less predictive power for 
future population dynamics [34, 35].

Life history theory
The reproductive behavior of many animal species is 
adaptively calibrated to features of the immediate ecol-
ogy, as suggested by life history theory, a framework 
in evolutionary biology that seeks to understand the 
diversity of reproductive and developmental strategies 
observed among organisms [36]. Research in this domain 
has explored factors determining how organisms allo-
cate finite resources toward growth, reproduction, and 
survival over their lifetimes. Apart from intrinsic factors 
(e.g., metabolic rates, reproductive physiology), it has 
been established that extrinsic factors, such as predation 
pressures, resource availability, and habitat stability, may 
cause organisms to adjust their life history strategies to 
maximize reproductive success in a given ecology [37].

Interspecies variability
A notable pattern established in the domain of life his-
tory is the link between levels of environmental harsh-
ness and unpredictability and a species’ reproductive 
strategy. Typically, species exposed to higher levels of 
morbidity and mortality risk (as well as higher stochastic 
fluctuations of this risk across times and contexts) tend 
to prioritize immediate reproduction over long-term 
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development, exhibiting the so-called “fast” life history 
strategy. Mammals in ecologies with higher predation 
risk mature earlier, have larger litters and shorter gesta-
tion periods – house mice being a prototypical example, 
with their reproductive cycles measured in mere weeks, 
frequent and large litters of 4–12 pups several times a 
year, and short lifespans of 6–18 months [38]. The accel-
erated reproductive timing helps such organisms reap 
maximum genetic benefits in uncertain environments 
where long-term development involves higher risk of 
death before reproduction. Larger numbers of offspring, 
in turn, reflect a genetic bet-hedging strategy when the 
threat of offspring mortality is high.

In contrast, species living in safer and more predictable 
ecologies show signs of a “slower” life history strategy by 
investing a greater proportion of bioenergetic resources 
in long-term development prior to reproduction. They 
have fewer offspring and invest more resources in each, 
which typically pays off given that these offspring are 
likely to survive to reproductive age. For example, naked 
mole rats have a strikingly “slower” life history than 
mice: mole rats live up to 30 years, reach sexual maturity 
around 6–9 months of age, and have extended period of 
maternal care lasting for 4–6  weeks [39]. Similarly, the 
little brown bat reaches sexual maturity at age 1–2 and 
has 1–2 pups per litter, a striking contrast to the repro-
ductive frequency and abundance of mice [40]. Such 
differences have been attributed to safer and more pre-
dictable ecologies the “slower” species inhabit: those are 
often characterized by lower predation rates and stabler 
habitats. Neither life history strategy – fast or slow – is 
inherently more adaptive than the other. Rather, both 
are well-calibrated to optimize reproductive success 
with respect to the harshness and unpredictability of the 
immediate ecology.

Intraspecies variability
Apart from interspecies variation in life history strate-
gies, there is some evidence of intraspecific differences 
in response to environmental variation. In some insects, 
fish, wild birds, and even plants, organisms within the 
same species living in different environments have mani-
fested variation in life history traits [41, 42]. Typically, 
longer lifespans and lower mortality have been associated 
with delayed fertility and allocation of fewer resources 
towards reproduction [43]. It must be noted that direct 
application of life history theory principles to intraspe-
cies variability has been challenged [37], especially in 
application to humans [44, 45].

Human life histories
By some developmental features, humans are among the 
“slowest” animals [45], although considerable variability 

exists across people and world populations [46, 47]. The 
time we invest in our offspring after birth is 2–4 times 
longer than that of our closest genetic relatives (chimpan-
zees), who typically start procuring their own food by age 
5 [47, 48]. In some human ecologies, such as post-indus-
trial societies, women reach sexual maturity as late as at 
age 16 [49], give birth after 25 [50], and care intensively 
for offspring for up to 21 years: a rare length of parental 
investment in the animal kingdom.

At the same time, there is considerable intraspecific 
variability in human life history trajectories [46]. The 
reproductive window of modern humans spans from 5 to 
59 years of age [51], and the documented number of chil-
dren a woman has ever had in her lifetime ranges from 
zero to well over twenty and, in one case, even as high 
as 69 children [52, 53]. While these numbers depict stark 
extremes, population averages also vary across times and 
ecologies: e.g., the average number of births per woman 
in eighteenth century Belgium (6.2) [54] or in modern 
Niger (6.91) is over six time higher than in modern Tai-
wan (0.87) [19], while the average age of women at birth 
of first child varies from 18 in Angola to 31.2 in Italy [19]. 
From the standpoint of evolutionary biology, such vari-
ability could stem from varying levels of harshness and 
unpredictability in people’s local environments and thus 
reflect the adaptive calibration of human developmental 
systems.

Population‑level reproductive patterns
Evidence from samples of world societies indicates that 
variability in fertility and childbearing age is associated 
with mortality risk [55–57]. Prior work examined nation-
level indicators of reproductive timing (age of birth of 
the first child, adolescent fertility, age of marriage), as 
well as fertility, showing that reproductive age is higher, 
while rates of adolescent fertility are lower, in nations 
with lower mortality rates [58, 59]. Similarly, recent work 
suggests that earlier age of menarche is associated with 
higher fertility and higher mortality rates [60].

Individual developmental trajectories
Research in the field of human evolutionary psychol-
ogy has focused on the ontogenetic development of life 
history traits and documented a conceptually similar 
pattern: physical development and sexual behaviors of 
teenagers and young adults showed signs of adjustment 
to safer vs. riskier early environments [61–63]. Spe-
cifically, harshness and unpredictability of early envi-
ronments have been associated with the prevalence of 
“faster” reproductive trajectories in adolescents [64, 65] 
characterized by earlier age of sexual debut, greater num-
ber of sexual partners, and the timing of sexual maturity. 
Girls who experienced unpredictable relationships with 
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childhood caregivers reach sexual maturity at a younger 
age [66]. Such effects are theorized to reflect the adap-
tive calibration of human reproduction to environmental 
mortality threat.

Limitations of prior research
Prior work examining the association between mortality 
risk and human reproductive dynamics, although sugges-
tive, had a few methodological limitations. Population-
level analyses used indicators aggregated on national 
level, which raised critiques about the “ecological fal-
lacy,” i.e., a potentially false assumption that aggregated 
data from large entities adequately reflects local ecologi-
cal conditions [67]. In contrast, studies of individual life 
histories did not fall prey to ecological fallacy, but they 
had their own limitation: indirect measures of life his-
tory variables. In this field of research, mortality risk has 
been operationalized through indirect socioeconomic 
indicators, such as low income or absence of father, while 
reproductive trajectories have been represented by sexu-
ality (e.g., timing of sexual maturation) rather than repro-
ductive outcomes per se. No work has yet applied a single 
analytic framework to link mortality risk and reproduc-
tive outcomes on different levels of analyses.

Another methodological concern of prior research has 
been the non-independence of data points due to shared 
variance in ecological conditions between neighboring 
entities within the same geographical area [67]. Finally, 
past work discovered signs of nonlinearity in the data 
[55] that traditional linear methods have limited capacity 
to explore.

The current work advances this literature by examining 
reproductive and mortality data on different populational 
and individual levels, while addressing previous method-
ological limitations.

Current research
This work applies a life history framework to suggest 
an explanation for global, local, and individual vari-
ability in human reproductive outcomes. In line with 
prior work, we suggest that the variability of reproduc-
tive timing and abundance in modern human popu-
lations might reflect a broader biological pattern in 
which organisms slow their reproduction in response 
to increased safety and stability – or speed their pace 
in response to environmental risk. However, apart from 
analyzing nations and individuals, we leverage data on 
a third, previously unexplored level of analysis – U.S. 
counties – that serves as an intermediary population 
level connecting the other two. Moreover, rather than 
using socioeconomic indicators as proxies to mortal-
ity, we instead leverage data on the actual mortality risk 

for all three levels and use socioeconomic indicators as 
covariates, thus examining effects specific to mortality.

Methodological overview
Focusing on human reproductive timing and abun-
dance in connection to local mortality, we leveraged 
public archival data from 217 world nations, 3,242 
U.S. counties, and 2,808 individuals (see Table  S1 in 
the Supplemental for the full list of variables and data 
sources). At each level, we examined whether repro-
ductive outcomes (age of parents at birth of first child, 
rates of adolescent fertility, number of offspring) 
would be predicted by mortality risk (total life expec-
tancy was chosen as the most cumulative mortality 
measure, see Methods for details). Using both linear 
and nonlinear models, we tested whether those links 
would hold after controlling for social/economic indi-
cators (wealth, contraception, education, urbanization, 
female participation in labor force). Thus, we applied 
a consistent analytic framework to test the relation-
ships between objective indicators of human mortality 
and reproductive outcomes on national, subnational, 
and individual-level data. We controlled not only for 
most conventional socioeconomic indicators, but also 
for shared region-level variance. Alongside more tradi-
tional hierarchical linear models, we applied machine 
learning techniques to explore non-linear relationships 
between variables of interest.

Results
Summary
In hierarchical linear models of human reproductive 
outcomes on national, county, and individual levels 
of analysis, life expectancy was a significant predictor 
of reproductive timing and number of offspring after 
controlling for effects of socioeconomic variables (see 
Tables 1, 2 and 3, S2, S8). In some models, mortality had 
a stronger performance than all socioeconomic predic-
tors considered together: e.g., among world nations, life 
expectancy alone explained a greater amount of vari-
ance in adolescent fertility than did the five socioeco-
nomic predictors. Among individuals, mortality was the 
only significant (and positive) predictor of the number of 
children, aside from age. In most random forest models, 
life expectancy was among top three variables by feature 
importance.

Below, we report detailed results for adolescent fertility 
on nation and county level, as well as number of children 
on the individual level. For other indicators, results are 
reported briefly in the main text, tables and figures are 
reported in the Supplement.
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Adolescent fertility
Nation‑level
In a mixed-effect model, after controlling for the random 
effect of world region, the fixed effect of life expectancy 
explained 48.8% of the variance in adolescent fertility. 
In comparison, fixed effects of five socioeconomic pre-
dictors together accounted for 43.5% of the variance 
in adolescent fertility. In a combined model, life expec-
tancy remained significant while controlling for all soci-
oeconomic covariates (Table  1), moreover, it explained 
the largest proportion of unique variance (semi-partial 
r2 = 0.24): more than twice the next most significant 

predictor – female literacy (semi-partial r2 = 0.10). Add-
ing life expectancy to a mixed-effect model with socio-
economic predictors resulted in significantly improved 
model fit (χ2

diff = 28.13, DF = 1, p < 0.001). See Fig.  1 for 
visualization.

County‑level
A mixed-effect model of county-level adolescent fer-
tility with life expectancy had a significantly bet-
ter fit than one with socioeconomic predictors only 
(χ2

diff = 16.29, DF = 1, p < 0.001). In a combined model, 
life expectancy remained significant while controlling 

Table 1 Nation-level predictors of adolescent fertility rates using hierarchical linear modeling

Predictors were scaled. Model has a significantly better fit over a similar model without the effect of life expectancy (χ2
diff = 28.138, DF = 1, p < 0.001)

Adolescent Fertility Rates, Nation-Level

Predictors Estimates Confidence Interval p Semi‑partial R2

Marginal R2 = 0.579; Conditional R2 = 0.796

 (Intercept) 52.75 41.65 – 63.86  < 0.001 -
 Total life expectancy -26.16 -35.65 – -16.67  < 0.001 0.245
 GDPpercapitaPPP -2.71 -9.84 – 4.43 0.454 0.003

 Contraceptive prevalence 4.81 -1.46 – 11.09 0.132 0.019

 Female participation 2.54 -2.08 – 7.16 0.278 0.010

 Literacy female -12.09 -19.21 – -4.98 0.001 0.100
 Tertiary education, female 0.03 -7.49 – 7.55 0.993 0.000

Random Effects
 σ2 414.61

 τ00 region 441.23

 ICC 0.52

 N region 18

 Observations 132

Table 2 U.S. County-level predictors of adolescent fertility rates using hierarchical linear modeling

Predictors were scaled. Model has a significantly better fit over a similar model without the effect of life expectancy (χ2
diff = 16.29, DF = 1, p < 0.001)

Adolescent Fertility Rates, County-Level

Estimate Confidence Interval p Semi‑partial R2

Marginal R2 = 0.037; Conditional R2 = 0.048

 (Intercept) 15.72 14.14 – 17.31  < 0.001 -
 Life Expectancy -3.85 -5.72 – -1.98  < 0.001 0.006
 Youth college rates -2.33 -3.65 – -1.00 0.001 0.004
 Female participation in labor force -0.05 -1.67 – 1.56 0.951 0.000

 Rural / urban code 1.04 -0.40 – 2.47 0.156 0.001

 Median household income -1.28 -3.10 – 0.53 0.165 0.001

Random Effects
 σ2 1054.59

 τ00 State 12.04

 ICC 0.01

 N State 51

 Observations 3128
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for county-level covariates: educational attainment, 
female participation in labor force, median income, 
and degree of urbanization (see Table 2, Fig. 2).

Random forests
In random forest models on both nation-level and 
county-level data, life expectancy was estimated across 
500 (national) and 250 (county) randomly generated 
trees among three most important variables for pre-
dicting adolescent fertility (see Table  4 for feature 
importance, Fig. 3 and Fig. S1 for decision trees).

Age at first birth / Childbearing age
Nation‑level
A nation-level mixed effect model predicting wom-
en’s age at first birth (AFB) by life expectancy alone 
accounted for 78.7% of the variance, while an analo-
gous model with five socioeconomic predictors consid-
ered together accounted for 74.5%. A combined model 
with life expectancy and socioeconomic predictors 
had significantly higher model fit than a model with 
socioeconomic indicators only (χ2

diff = 4.26, DF = 1, 
p = 0.03). Life expectancy remained a significant pre-
dictor of AFB, while controlling for all other predictors 
(b = 0.81, CI = 0.01 – 1.61, p = 0.047), along with female 
rates of tertiary education (b = 1.35, CI = 0.58–2.11, 
p = 0.001). See Table S2 and Fig. S2 for details.

County‑level
For county-level analyses, data on AFB was not publicly 
available; instead, we used age of childbearing (ACB) – 
an imperfect proxy to the onset of reproduction that con-
founds signs of “slow” and “fast” reproductive strategy 
(see Methods for a detailed explanation; Table  S8, Fig. 
S11, S12 for fertility in older mothers as an alternative 
proxy). In a model of ACB, adding life expectancy to soci-
oeconomic indicators resulted in a significantly better 
model fit (χ2

diff = 6.95, DF = 1, p = 0.008). In the combined 
model, life expectancy remained a significant predictor 
(b = 0.19, CI = 0.05–0.33, p = 0.009). See Table S3 and Fig. 
S3 for details.

Random forests
Life expectancy was estimated among the most impor-
tant predictors of nation-level AFB. On the county level, 
it was not among the top three most important predic-
tors of ACB but had a score of 66.4/100 which suggests 
statistical significance (Table 4, Fig. S4, S5).

Fertility rates
Nation‑level
Life expectancy alone accounted for a smaller but com-
parable amount of variance (60.1%) to the five socio-
economic predictors considered together (67.2%). 
Life expectancy significantly improved model fit com-
pared to a model with socioeconomic indicators only 
(χ2

diff = 16.93, DF = 1, p < 0.001) and remained significant 

Table 3 Predictors of individual-level number of children from individual and local features, hierarchical linear model

Predictors were scaled. Model has a significantly better fit over a similar model without the effect of life expectancy (χ2
diff = 4.14, DF = 1, p < 0.041)

Individual Number of Children

Predictors Estimates Confidence Interval p Semi‑partial R2

(Intercept) 1.51 1.43 – 1.59  < 0.001
Life expectancy (county-level) -0.06 -0.12 – -0.00 0.042 0.002
 Rural/Urban Area (county-level) -0.01 -0.06 – 0.05 0.839 0.000

Respondent’s age 0.50 0.44 – 0.56  < 0.001 0.100
 Household income (individual) 0.02 -0.05 – 0.09 0.527 0.000

 Education 0.02 -0.04 – 0.08 0.447 0.000

 Social class 0.05 -0.02 – 0.12 0.140 0.001

 Employment of female in the household -0.02 -0.08 – 0.03 0.437 0.000

 Religiosity -0.05 -0.10 – 0.01 0.106 0.001

Random Effects
 σ2 2.22

 τ00 state 0.03

 ICC 0.02

 N state 50

 Observations 2808

 Marginal  R2 / Conditional  R2 0.105 / 0.118
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above them (b = -0.53, CI = -0.79–-0.28, p < 0.001). See 
Table S4, Fig. S6 for details.

County‑level
On the level of U.S. counties, a model containing 
both life expectancy and socioeconomic indicators 
had a significantly better fit than a similar model with 

socioeconomic predictors only (χ2
diff = 5.17, DF = 1, 

p = 0.023). Life expectancy remained a significant pre-
dictor (b = -2.20, CI = -3.99–0.40, p = 0.016) above soci-
oeconomic indicators (Table S5, Fig. S7).

Fig. 1 Nation-level adolescent fertility as predicted by the strongest ecological predictor – life expectancy (top) vs. by the strongest socioeconomic 
predictor – female literacy rates (bottom). Strength of predictors was defined as the highest partial R2 in a mixed effect model. Graphs depict 
dispersion of nation-level data. Size of dots reflects country’s GDP per capita (PPP), colors code continents. See Supplemental materials for plots 
visualizing the relationship of adolescent fertility with other predictors on the level of world nations
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Random forests
Life expectancy was estimated as the most important 
predictor of fertility rates on both the national and the 
county levels (see Table 4, Fig. S8, S9).

Number of children
Individual level
In a mixed-effect model on individual data, local (county) 
life expectancy was a significant predictor of respondents’ 
number of children after controlling for age, income, edu-
cational attainment, social class, employment of female 
in the household, religiosity and urbanization of the area 

Fig. 2 U.S. county-level adolescent fertility as predicted by the ecological predictor – life expectancy (top) vs. by the strongest socioeconomic 
predictor – youth college rates (bottom). Strength of predictors was defined by the semi-partial R2 in a mixed effect model. Graphs depict 
dispersion of data and slopes of relationship by U.S. regions. Size of dots reflects county’s median household income, colors code for regions. See 
Supplemental materials for plots visualizing the relationship of adolescent fertility with other predictors on the U.S. county level
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Table 4 Feature importance for predicting reproductive outcomes with random forests on three levels of analysis

Feature (variable) importance was estimated across 500/250 random binary trees and scaled relative to the variable of highest importance. For each outcome variable, 
highlighted in bold are three predictors with the highest feature importance. Population density was used in the model of fertility rates, as suggested by prior work

Nation-level variables Adolescent fertility (N = 194) Reproductive age (N = 140) Fertility rate (N = 208)

Total life expectancy 100.00 74.64 100.00
Literacy ratio, female 42.96 68.41 52.49

GDP per capita (PPP) 63.63 100.00 78.71
Contraceptive prevalence 18.82 38.80 69.42
Tertiary education, female 14.34 62.13 30.78

Female participation in labor force 0.00 0.00 21.41

Population density - - 0.00

County-level variables Adolescent fertility (N = 3,207) Age of childbearing
(N = 3,209)

Overall fertility (N = 3,210)

 Life expectancy 47.04 66.39 100.00
 Youth college rates 4.38 89.53 33.03
 Adut college rates 39.34 100.00 20.43

 Female participation in labor force 100.00 98.26 61.33
 Median income 41.37 92.09 24.22

 Rural/urban continuum code 32.06 0.00 0.00

 Life expectancy 47.04 66.39 100.00
Individual-level variable Number of children (N = 2,808)

 Age 100.00
 Social class 11.29
 Life Expectancy 9.58
 Education 9.22

 Income 8.43

 Rural 4.16

 Female employment 0.28

 Religiosity 0.00

Fig. 3 Decision tree predicting adolescent fertility rates on the level of U.S. counties (see similar trees for national and individual levels 
in the Supplementary). The model used one mortality risk indicator (life expectancy at birth) alongside five socioeconomic indicators (youth 
and adult college rates, median household income, female participation in labor force, urbanization for the county level). Decision trees are built 
using recursive binary splitting which selects significant predictors (nodes) and finds the optimal splitting threshold value of each, with respect 
to all other predictors in the model; see Methods for details. The top-down order of variables indicates their feature importance, i.e., relevance 
for predicting the outcome



Page 10 of 16Brandt and Maner  BMC Public Health         (2024) 24:2479 

(b = -0.06, CI = -0.12 – -0.00, p = 0.042; see Table 3). This 
combined model had a significantly better fit than one 
with socioeconomic predictors only (χ2

diff = 4.14, DF = 1, 
p < 0.041); respondent’s age was the only other significant 
predictor (b = 0.50, CI = 0.46 – 0.56, p < 0.001). Notably, 
life expectancy was one of two population-level predic-
tors among six individual ones.

Random forest
Life expectancy was among three features of the high-
est importance in predicting the number of children (see 
Table 4).

Population density
Recent work suggests that fertility rates may decrease 
with the increase in local population density [68], so we 
tested models of fertility rates with population density 
among predictors. Nation-level density alone accounted 
for 2% of the between-country variance in fertility rates 
and had no significant effects while controlling for other 
predictors (Table  S6, Fig. S10). On the county level, 
effect of population density was significant, but not after 
accounting for life expectancy or socioeconomic indica-
tors (Table S7, Fig. S11). On the individual level, level of 
urbanization (a proxy to population density), was not a 
significant predictor of the number of children beyond 
other predictors (Table 3).

Discussion
This work provides novel evidence for the relationship 
between mortality and human reproductive outcomes 
on global, local, and individual levels. Consistent with 
life history theory [45], human reproductive timing and 
abundance are linked to local mortality indicators. More-
over, those effects hold while controlling for economic 
and social variables – including education, employment, 
wealth, industrialization, availability of contraception 
– conventionally used to explain human reproductive 
dynamics.

As shown above, the relationship between mortality 
and reproductive outcomes held in mixed-effect models 
after controlling for socioeconomic indicators on all lev-
els of analyses. Machine learning models that allowed for 
nonlinear associations provided a more nuanced picture: 
decision trees demonstrated how life expectancy may 
‘split’ the entire world – and the U.S. as one of its cor-
ners – into clusters of faster" vs. "slower" reproduction. 
Random forests, in turn, suggested that such splitting 
may at times be of higher predictive power than wealth 
or education.

While life history perspectives have previously been 
used to understand human reproduction, the current 

research is the first to apply the same analytic approach 
to data on three levels, including the previously unex-
plored level of U.S. counties, and to tie individual repro-
ductive outcomes to observable mortality threat in local 
environments. While work that uses only nation-level 
indicators may lack the granularity to capture meaning-
ful variability within nations, and work that uses only 
individual-level analyses may lack in-sample variability, 
the current research takes advantage of global, local, and 
individual variance in both mortality and reproductive 
outcomes. Such an approach may be fruitful for further 
exploring the varying fertility dynamics in urban and 
rural areas, different genders and ethnicities, socioeco-
nomic backgrounds, or social strata.

This evidence has implications for the current eco-
nomic and demographic understanding of human fertil-
ity. An examination of mortality alongside education, 
contraception, female employment, and urbanization 
emphasizes the predictive power of the former, showing 
that it explains a unique portion of variance, even after 
controlling for socioeconomic indicators. At the same 
time, socioeconomic factors, such as education and 
income, remain robustly significant on all levels of analy-
sis, across linear and nonlinear models. Thus, we do not 
conclude that socioeconomic factors matter less: instead, 
we suggest that they may operate at a different ‘level of 
explanation.’ Using a Nobel-prize winning taxonomy [69], 
socioeconomic factors may serve as proximate mecha-
nisms underlying immediate behavioral changes – the 
“how” of the human reproductive slowdown. But behind 
those proximate mechanisms may reside the “why” – a 
more ultimate biological process that involves the adap-
tive calibration of human developmental systems to fea-
tures of local environments.

This evidence addresses critiques of “ecological fallacy” 
raised against previous findings in the field [67]. We find 
that the key pattern holds across multiple levels of analy-
ses, from nations to counties to individuals. Thus, it may 
be premature to dismiss nation-level analysis of human 
reproduction only because they use large-scale popula-
tion aggregation. We propose U.S. counties as a local unit 
that may strike a proper balance between population-
level variability and individual-level granularity. It must 
be noted, however, that variability in mortality condi-
tions in the U.S. is considerably lower than the world’s 
(for U.S. life expectancy in years, SD = 2.38, for the world, 
SD = 8.90), thus, county-level analysis does not represent 
the true global range of human ecological conditions.

Previous work compared performance of economic 
versus mortality models – for example, in explaining the 
demographic transition in Matlab, Bangladesh [70], and 
dismissed mortality as a weaker explanation for fertility 
dynamics. In our work, however, mortality serves as an 
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important predictor of reproductive behavior after con-
trolling for socioeconomic variables on three different 
levels of analysis. A possible explanation is that analysis 
of a narrow subset of human population (one rural area 
in one developing country) may have limited the vari-
ability in ecological conditions, thus reducing the poten-
tial association between mortality and reproduction. In 
contrast, all nations of the world and all urban and rural 
areas of one country may have enough variability in mor-
tality risk to capture such an association.

This research has broader implications for social poli-
cies addressing reproductive issues. High adolescent fer-
tility, a pressing issue in lower-income areas because of its 
negative effects on women’s human capital, is commonly 
viewed as resulting from poor access to contraception 
and insufficient educational opportunities [71, 72]. Not-
withstanding these factors, it can also be conceptualized 
as a biologically adaptive response to unpredictable ecol-
ogies with cues of higher riskiness. In the current work, 
mortality was the strongest predictor of adolescent fertil-
ity across both world nations and U.S. counties. Although 
adolescent fertility can have dysfunctional consequences 
for women, their families, and the larger society, it may 
be reproductively adaptive: having children sooner helps 
young women ensure their reproductive success when 
their environments threaten survival to reproductive age. 
Social policies addressing adolescent pregnancies may 
therefore benefit from reducing local morbidity and mor-
tality rates (e.g., through investment in health and safety 
initiatives), in addition to increasing access to contracep-
tion and education.

For higher-income societies, the fertility decline and 
older age of childbearing might represent a biologi-
cally adaptive response to stabilizing ecologies, in which 
humans delay reproduction and have fewer offspring in 
favor of higher-quality childcare later in life. Such ‘slow’ 
reproductive trajectory allows to reap maximum genetic 
benefits in safe and predictable ecologies. Social poli-
cies encouraging fertility through economic incentives 
have often been less successful than expected, possibly 
because they fail to address the biological mechanisms 
suggested by life history theory. One such mechanism 
suggested by prior research could be physiological cali-
bration of human reproductive systems through neu-
roendocrinal changes in early ontogeny [73–75].

Limitations and future directions
The current research should be considered in light of 
its methodological limitations. First, although sugges-
tive, this work is correlational and cross-sectional, thus 
hindering our ability to generate causal claims about the 
effect of ecological variables on reproductive behavior. 
In theory, reverse causality is possible: e.g., adolescent 

fertility and younger age at birth may drive mortality 
through health complications in teenagers.

This study focuses on life expectancy as a single aggre-
gate variable. This limits our ability to identify specific 
sources of mortality and their varying effects in different 
environments. Future research would benefit from inves-
tigating specific effects of extrinsic mortality risks, such 
as famine, diseases, or healthcare availability, on human 
reproduction. It would also benefit from employing lon-
gitudinal designs to explore the link between changes in 
mortality and corresponding changes in reproduction 
over time.

Effects of mortality risk are often confounded with that 
of socioeconomic status, as life expectancy correlates 
highly with SES on all levels of analysis [76, 77]. While 
the current work controls for effects of the main socio-
economic variables, such as income, education, social 
class, and wealth on both on individual and population 
levels, there still may be socioeconomic variance left 
unaccounted for.

Due to the aggregated nature of most data used in this 
work, we were not able to robustly distinguish between 
male and female reproductive outcomes, while prior 
evidence suggests that they can vary significantly [78, 
79]. Moreover, newly emerging evidence suggests that, 
beyond extrinsic factors, human reproductive behavior 
has a strong genetic component [80, 81]. Future work 
would benefit from analyzing additional groups of factors 
and examining their weights in accounting for the vari-
ability in human reproduction.

Conclusions
The above evidence may suggest (although not causally 
establish) a possible explanation for why adolescent fer-
tility remains an issue in regions with high mortality, as 
well as why no developed country in the world has seen 
its fertility rates rise to its mid-twentieth century levels, 
despite massive efforts taken by some world govern-
ments. The biological calibration of human reproduc-
tive timing might impose a glass ceiling on the effect of 
socioeconomic incentives. As it is for other animal spe-
cies, humans may adjust their reproductive behavior to 
fit with the survival threat in their local ecology. Social 
and health policies governing human reproduction, 
whether they seek to boost or constrain fertility, may 
thus benefit from incorporating a focus on mortality risk, 
both addressing it as a potential “accelerator” of human 
reproduction in riskier regions of the world with high 
mortality, and accounting for the natural “slowdown” 
of reproduction humans may adopt in stabler and safer 
ecologies.
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Methods
Summary
We synthesized 17 large public datasets from trusted 
sources to obtain (1) nation-level data on reproduc-
tion, mortality, and socioeconomic progressivity from 
217 world economies, (2) county-level data from 3,242 
counties and equivalents in the United States, (3) 
person-level reports on similar indicators from 2,808 
respondents. On all three levels, we applied hierarchi-
cal linear modeling and random forests with K-fold 
cross-validation [82] to examine predictors of peo-
ple’s aggregate reproductive timing and abundance 
operationalized as: (1) adolescent fertility rates, (2) 
population-averaged age of childbearing, and (3) pop-
ulation-averaged or individually reported number of 
children.

At each level, we used two groups of predictors: (1) 
socioeconomic indicators including wealth, partici-
pation of females in workforce, access to contracep-
tion and education, urbanization, or industrialization, 
and (2) local mortality risk level operationalized as life 
expectancy at birth. Other measures of mortality were 
considered, such as risk for different age ranges (e.g., 
mortality in infants under 1, children aged 1 to 4, ages 
5 to 9, etc.). However, there is no consensus in the lit-
erature on what age is most critical: as suggested by 
theoretical models [83], comparative analyses [45], and 
experimental data [43], variation in life history traits is 
not limited to child mortality and has also been linked 
to adult mortality. Total life expectancy was chosen in 
this work because it provides a cumulative measure of 
mortality across age ranges and does not confine the 
analysis to any one age range. Notably, age-specific 
mortality measures are all highly correlated with one 
another and with total life expectancy (see Tables S10, 
S11 in the Supplement).

Depending on the level of analysis, we used the most 
relevant variable to represent the theorized predic-
tor, e.g., GDP per capita (PPP) reflected wealth on the 
national level, median household income represented 
wealth on the county level, while reported household 
income was used on the individual level (see Table S1 for 
variables).

For each reproductive outcome we examined (1) 
the explanatory power of a hierarchical linear (mixed-
effect) model with socioeconomic predictors alongside a 
similar model with one mortality risk predictor, and (2) 
the explanatory power of individual variables in com-
bined models including all the above indicators. Across 
machine learning analyses, we compared predictors by 
their (1) top-down order in decision trees built using 
recursive binary splitting, (2) average feature importance 
throughout 500/250 trees of the random forest.

Levels of analyses
We examined variability in human reproduction, as well 
as ecological and socioeconomic features on three levels: 
1) world countries (here referred to as ‘nations’ to avoid 
confusion with ‘counties’); 2) U.S. counties or county 
equivalents; 3) individuals.

Nation-level data included 217 world economies per 
World Bank Development Indicators: https:// datat opics. 
world bank. org/ world- devel opment- indic ators/. County-
level data covered 3,242 U.S. Census areas includ-
ing 3,006 counties, 14 boroughs and 11 census areas in 
Alaska, the District of Columbia, 64 parishes in Louisi-
ana, Baltimore city, MD, St. Louis city, MO, part of Yel-
lowstone National Park in Montana, Carson City, NV, 
41 independent cities in Virginia, 78 municipalities of 
Puerto Rico, 3 main islands of the United States Virgin 
Islands, Guam, 4 municipalities of the Northern Mari-
ana Islands, 3 districts and 2 atolls of American Samoa, 9 
islands of the U.S. Minor Outlying Islands.

Individual level data included 2,808 survey responses 
of Americans residing in 363 different counties collected 
as part of World Values Survey (Wave 7, U.S. subset). At 
each level, the units were nested within larger geographi-
cal entities to account for shared variance: world nations 
were nested within 22 world regions (by the International 
Organization for Standardization (ISO) classification); 
counties and individuals – within 57 states and territories 
of the United States.

Data
For each level of analysis, we synthesized several large 
public datasets from trusted sources that contained sec-
ondary de-identified aggregated data. For the nation-
level analyses, the datasets included: World Bank 
Development Indicators, United Nations World Fertil-
ity Report, United Nations Economic Commission for 
Europe Statistical Database, Organization for Economic 
Cooperation and Development Family Database, United 
Nations Industrial Development Organization report. 
For U.S. county-level analyses, the datasets included: 
U.S. Census (American Community Survey), Institute 
for Health Metrics and Evaluation: Global Health Data 
Exchange, Center for Disease Control and Prevention’s 
data on infant mortality rates, Bureau of Labor Statistic 
data on labor participation, U.S. Department of Agricul-
ture Atlas of Rural and Small Town America and data on 
education, income, and population. For individual level, 
the datasets included World Values Survey (Wave 7, U.S. 
subset) and county-level data from above sources. Links 
to original datasets, as well as preprocessed datasets used 
in the analyses, are publicly available at OSF: https:// osf. 
io/ qtf84/.

https://datatopics.worldbank.org/world-development-indicators/
https://datatopics.worldbank.org/world-development-indicators/
https://osf.io/qtf84/
https://osf.io/qtf84/
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For nation-level analyses, data were aggregated for 
years 2000–2020 to eliminate year-to-year fluctua-
tions and missing cases. For U.S. county-level analyses, 
depending on the variable, data were either aggregated 
for years 2016–2020 (to match a standard 5-year aggrega-
tion cycle of Census data collection). For individual level, 
data came from years 2017–2021 (the most recent wave 
of World Values Survey). Datasets were merged using 
standardized ISO country codes (on the national level) 
and FIPS codes (on the county and individual levels).

Variables
We focused on 20 variables suggested by the mainstream 
demographic paradigm of human fertility and life history 
theory (see Table S1 for measurement details on each var-
iable;; items enumerated with an S refer to Supplemental 
materials). As dependent variables we used (1) adolescent 
fertility rates, (2) age of birth of the first child (or average 
age of childbearing for county-level analyses), (3) fertil-
ity rates, (4) individually reported number of children. 
As socioeconomic predictor variables we used: on the 
level of world’s nations, (5) contraceptive prevalence, (6) 
share of women in tertiary education, (7) female literacy 
rates, (8) female participation in the workforce, (9) gener-
alized economic prosperity measured as GDP per capita 
(PPP). On the county level, (10) educational attainment 
measured as youth and adult college rates and/or percent 
of population with a bachelors’ degree, (11) female par-
ticipation in labor force, (12) median household income, 
(13) degree of urbanization. On the individual level, (14) 
educational attainment, (15) social class, (16) household 
income, (17) employment of female in the household, 
(18) religiosity, (19) age. To assess mortality risk, on all 
three levels of analyses we used (20) local life expectancy 
at birth (see Table  S1 for sources of data and measure-
ment units for all analyzed variables). For predictor varia-
bles that correlate at > 0.7 (see Table S2) we ran additional 
multicollinearity checks, making sure variance inflation 
scores were not above 2.5.

Note that on the level of the U.S., mortality has limited 
variability compared to the world: the range of life expec-
tancy averages across U.S. counties is 66.8–86.8  years, 
SD = 2.38 while the range for worldwide national aver-
ages is 54.3–85.2 years, SD = 8.89.

For age of birth of the first child, there is no source 
that consistently gathers and reports data on all world 
countries [71]. To increase the sample size on the level 
of nations, data on these indicators were collected from 
multiple sources: United Nations Economic Commission 
for Europe Statistical Database reporting data from 2019 
and United Nations World Fertility Report reporting 
data from 2012 or latest available. We only included data 
coming from 2000 to 2020. Whenever more than one 

data point per country was available, they were averaged. 
Among countries that had data points from two different 
decades, these data correlated at r = 0.88.

On the county level, data on the age of birth of the first 
child was not available; instead, we used cohort-weighted 
age of women at all births for a given period of time. 
As mentioned in the Main text, such an indicator is an 
imperfect proxy to life history strategy as it confounds a 
larger number of offspring – usually, a sign of a “faster” 
strategy – with older age – a sign of a “slower” strategy. 
For example, a woman who had her first child at age 18 
(Case 1) and thus demonstrated a relatively early repro-
ductive onset, at least for a developed country, may 
further have children at ages 23, 26, and 29 – thus, her 
average age of childbearing (24) will be higher than that 
of a woman who had one child at age 23 (Case 2). While 
by the conventional life history criteria, Case 1 clearly 
represents a faster reproductive strategy than Case 2, 
estimating by age of childbearing would lead us to con-
sider Case 2 a faster one.

Analytic approach

Mixed effect models We used hierarchical linear (mixed 
effect) modeling to predict each reproductive outcome 
using the following types of predictor variables: (1) 
socioeconomic indicators, (2) life expectancy, (3) both 
sets of variables together. We compared the variance 
explained by each model; then, for each pair of models, 
we conducted a χ2 difference test of model fit to evalu-
ate whether each set of indicators explained significant 
amount of variance while controlling for the other set. 
We also report semi-partial r2 for each individual pre-
dictor in the model. Units of analyses (nations, coun-
ties) were nested within larger geographical areas (world 
regions, U.S. states) to account for variance shared with 
neighboring units.

Decision trees and random forests Because linear mod-
els work with sample averages, they provide limited 
insight into the structure of predictors and their relation-
ships. To provide a more nuanced picture, we applied a 
non-parametric machine learning algorithm known as 
decision tree (Rokach & Maimon, 2005) to predict each 
reproductive outcome from mortality and socioeconomic 
predictors considered together. For each outcome vari-
able, we then built a random forest [82] to obtain a more 
robust (as compared to a single tree) estimate feature 
importance of individual predictors. Random forest is a 
classification algorithm that construes a large number of 
uncorrelated (or minimally correlated) decision trees. A 
decision tree, in turn, relies on a classification algorithm 
known as recursive binary splitting: it identifies variables 
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(conventionally called “features”) that significantly pre-
dict the outcome variable and recursively split the data 
by a certain threshold of each predictor, with respect to 
all other predictors in the model. Every split breaks the 
available data down into two classes in such a manner 
that the data between the two classes are maximally dif-
ferent from each other, whereas the data within classes 
are maximally similar. The decision tree algorithm finds 
the optimal sequence of predictors (features) and their 
splitting thresholds. A random forest, in turn, constructs 
a large number of such trees that, because of their lack of 
intercorrelation, provides both more accurate predictions 
and more robust feature importance estimates. To keep 
the trees as independent as possible, random forests use 
bagging (simulating multiple datasets by removing and 
repeating random observations from the original data-
set) and feature randomness (randomly sampling a sub-
set of features and using only this subset to create a tree). 
Assessing feature importance is a way to obtain relatively 
robust estimates for the explanatory power of predictor 
variables across a large sample of simulated datasets. In 
the above analyses, feature importance was calculated 
across 500 trees of the random forest for nation-level 
analyses and 250 trees for county-level and individual-
level analyses (due to limited computational resources). 
Feature importance of each predictor is measured in rela-
tive units scaled to the feature of the highest importance 
that is assigned a value of 100.
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