
Deng et al. BMC Public Health         (2024) 24:2368  
https://doi.org/10.1186/s12889-024-19884-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMC Public Health

Spatial analysis of the impact of urban built 
environment on cardiovascular diseases: a case 
study in Xixiangtang, China
Shuguang Deng1, Jinlong Liang1*, Ying Peng2, Wei Liu3, Jinhong Su1 and Shuyan Zhu1 

Abstract 

Background The built environment, as a critical factor influencing residents’ cardiovascular health, has a significant 
potential impact on the incidence of cardiovascular diseases (CVDs).

Methods Taking Xixiangtang District in Nanning City, Guangxi Zhuang Autonomous Region of China as a case 
study, we utilized the geographic location information of CVD patients, detailed road network data, and urban points 
of interest (POI) data. Kernel density estimation (KDE) and spatial autocorrelation analysis were specifically employed 
to identify the spatial distribution patterns, spatial clustering, and spatial correlations of built environment elements 
and diseases. The GeoDetector method (GDM) was used to assess the impact of environmental factors on diseases, 
and geographically weighted regression (GWR) analysis was adopted to reveal the spatial heterogeneity effect of envi-
ronmental factors on CVD risk.

Results The results indicate that the built environment elements and CVDs samples exhibit significant clustering 
characteristics in their spatial distribution, with a positive correlation between the distribution density of environ-
mental elements and the incidence of CVDs (Moran’s I > 0, p < 0.01). Further factor detection revealed that the dis-
tribution of healthcare facilities had the most significant impact on CVDs (q = 0.532, p < 0.01), followed by shopping 
and consumption (q = 0.493, p < 0.01), dining (q = 0.433, p < 0.01), and transportation facilities (q = 0.423, p < 0.01), 
while the impact of parks and squares (q = 0.174, p < 0.01) and road networks (q = 0.159, p < 0.01) was relatively smaller. 
Additionally, the interaction between different built environment elements exhibited a bi-factor enhancement effect 
on CVDs. In the local analysis, the spatial heterogeneity of different built environment elements on CVDs further 
revealed the regional differences and complexities.

Conclusions The spatial distribution of built environment elements is significantly correlated with CVDs to varying 
degrees and impacts differently across regions, underscoring the importance of the built environment on cardiovas-
cular health. When planning and improving urban environments, elements and areas that have a more significant 
impact on CVDs should be given priority consideration.
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Background
Cardiovascular diseases (CVDs) have become one of 
the most common lethal diseases worldwide, with both 
the number of affected individuals and the mortality 
rate continuously rising over the past two decades. Sta-
tistical data reveal that from 1990 to 2019, the number 
of individuals with CVDs globally increased from 271 to 
523 million, while deaths climbed from 12.1 million to 
18.6 million, accounting for approximately one-third of 
the total annual global deaths [1]. The severity of CVDs 
poses not only a global health challenge but also exerts 
immense pressure on the healthcare system and the 
economy [2]. According to the World Heart Federation, 
global medical costs for CVDs are projected to rise from 
approximately 863 billion US dollars in 2010 to 1044 bil-
lion US dollars by 2030 [3]. Thus, it is particularly impor-
tant to deeply explore the mechanisms that influence 
CVDs and to develop effective and sustainable strategies 
to reduce risk and prevent these diseases.

The urban built environment refers to the comprehen-
sive physical structure and man-made surroundings of an 
urban area, including buildings, transportation systems, 
infrastructure, land use planning, and elements of natural 
and artificial spaces [4]. Numerous studies have focused 
on the close connection between the built environment 
and human health, particularly with respect to cardio-
vascular health. Research indicates that the impact of 
the built environment on cardiovascular health is a pro-
cess network structure with various influencing factors, 
including but not limited to factors contributing to CVDs 
such as obesity, diabetes, high blood pressure [5–10], 
environmental issues like traffic noise and air pollution 
[11, 12], as well as aspects of physical exercise, psycho-
logical stress, and lifestyle [13–17], all of which collec-
tively affect the pathogenesis of CVDs [18–20]. Studies 
show that optimizing urban design, such as rational land 
allocation and planning street layouts, can guide people 
to access more life services, cultivate proactive attitudes 
and healthy bodies, thereby reducing the risk of CVDs 
[21, 22]. Urban spatially compact development models 
can encourage physical activity, reducing the risk of car-
diovascular and metabolic issues [23]. In contrast, long 
commutes and high traffic density may lead to chronic 
stress and lack of exercise, increasing the risk of obesity 
and hypertension. Conversely, appropriate intersection 
density, land-use diversity, destination convenience, and 
accessibility might encourage walking, improve health, 
and reduce the risk of obesity, diabetes, hypertension, and 
dyslipidemia, which are cardiovascular-related problems 
[24–26]. The density and accessibility of supermarkets 
have a direct impact on the dietary habits of commu-
nity residents, wherein excessive density may increase 
the risk of obesity and diabetes and correlate with blood 

pressure levels [27]. Urban green spaces and outdoor rec-
reational areas have a positive effect on cardiovascular 
health; green spaces not only offer places for exercise and 
relaxation but also help alleviate stress, improve mental 
states, and enhance air quality, thus mitigating the harm 
caused by air pollution and protecting cardiac and vas-
cular health [28]. Research also indicates that individuals 
residing in areas with high greenery rates are more likely 
to enjoy opportunities that promote physical activity, 
mental health, and healthy lifestyles, thereby minimizing 
CVD risks [29, 30]. In summary, scientific and rational 
urban planning, such as diversified land use, appropri-
ate building density, good street connectivity, convenient 
destinations, short-distance commuting, and beautiful 
environments, are key factors in promoting overall health 
and preventing CVDs.

Although numerous studies have focused on explor-
ing the relationship between the built environment and 
CVDs, the specific mechanisms underlying this relation-
ship remain unclear. This knowledge gap is mainly due 
to the complexity of the built environment itself and the 
multifactorial pathogenesis of CVDs. Current research 
mostly concentrates on individual aspects of the built 
environment, such as noise, air pollution, green spaces, 
and transportation [31], lacking consideration for the 
overall complexity of the built environment. Many ele-
ments of the built environment are interactive; for 
instance, pedestrian-friendly urban design may enhance 
physical activity and social interaction, yet it could also 
be counteracted by air and noise pollution caused by 
urban traffic [32]. Therefore, the same element of the 
built environment might have different effects in differ-
ent contexts, adding complexity to the study of the built 
environment. Furthermore, while existing research has 
exhibited considerable depth and breadth in exploring 
the complex and dynamic relationship between the built 
environment and CVDs, many areas still require further 
improvement and deepening. Traditional linear correla-
tion analyses, such as OLS and logistic regression mod-
els, have been widely used to assess the significance level 
between built environment characteristics and CVDs 
mortality rates, and to investigate factors such as inter-
section density, slope, greening, and commercial density 
[33, 34]. However, these methods fall short in addressing 
the complexity and non-linear characteristics of spatial 
data.

Therefore, from a geographical perspective, it is par-
ticularly important to adopt more appropriate meth-
ods to capture the non-stationarity and heterogeneity of 
spatial data and to explore the spatial correlation char-
acteristics between the built environment and CVDs. 
However, current research utilizing spatial models has 
mainly focused on macro-level perspectives, such as 
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national or provincial levels. For example, ŞENER et  al. 
employed spatial autocorrelation models and hot spot 
analysis models to assess the spatiotemporal variation 
characteristics of CVD mortality across multiple provin-
cial administrative regions [35]. Baptista et  al. analyzed 
the impact of factors such as per capita GDP, urbaniza-
tion rate, education, and cigarette consumption on the 
growth trends of CVD incidence using spatial lag and 
spatial error models across different countries or regions 
[36]. Eun et  al. used Bayesian spatial multilevel models 
to measure built environment variables in 546 adminis-
trative districts of Gyeonggi Province, South Korea, and 
evaluated the impact of the built environment on CVDs 
[37]. While these studies have, to some extent, revealed 
the spatial distribution characteristics of CVDs and 
their spatial relationships with environmental features, 
the scope of these studies is often large, and they tend 
to overlook the heterogeneity at the micro-level within 
cities and its specific impact on residents’ health. As a 
result, it is challenging to accurately capture the differ-
ential effects of the built environment on CVD incidence 
across different areas within a city, and many critical 
environmental factors at the micro-geographical scale, 
which are directly related to the daily lives and health of 
residents, may be obscured.

Given this, we focus on Xixiangtang District in Nan-
ning City, China, and construct a research framework 
centered on multi-source data, including the distribu-
tion of CVDs, road networks, and urban POI data. By 
employing KDE to reveal hotspot areas, spatial autocor-
relation analysis to explore spatial dependence, the GDM 
to dissect key factors, and GWR to capture the spatial 
heterogeneity effects, we deeply analyze the complex 
mechanisms by which the urban built environment influ-
ences the incidence of CVDs. Our study aims to answer: 
Is there a significant spatial association between urban 
built environment elements and the incidence rate of 
CVDs? To what extent do different built environment 
elements impact CVDs? And, what are the regional dif-
ferences in the impact of built environment elements on 
CVDs in different areas?

Method
Study area
This study focuses on Xixiangtang District in Nanning 
City (Fig. 1), an important administrative district located 
in the northwest of Nanning City, covering an area of 
approximately 1,276 square kilometers with a perma-
nent population of over one million. As an exemplary 
early-developed area of Nanning City, the built environ-
ment of Xixiangtang not only carries a rich historical and 
cultural heritage but also witnesses the transformation 
from a traditional old town to a modern emerging area, 

forming a unique urban–rural transitional zone. How-
ever, with the acceleration of urbanization, Xixiangtang 
District also faces numerous environmental challenges, 
such as declining air quality, congested traffic networks, 
increasing noise pollution, and continuously rising pop-
ulation density, all of which may pose potential threats 
to residents’ cardiovascular health. Therefore, choosing 
the built environment of Xixiangtang as the core area of 
this study is not only due to its representativeness but 
also because the issues faced by this area are of profound 
practical significance for exploring the health impacts of 
urbanization and formulating effective environmental 
improvement strategies.

Data
The CVD case data is sourced from the cardiovascular 
department’s medical records at Guangxi National Hos-
pital. Located in the southeastern core area of Xixiang-
tang District, near metro stations and densely populated 
areas, the hospital’s superior geographical location and 
convenient transportation conditions greatly facilitate 
patient visits, especially for those seeking high-level car-
diovascular medical services. Although spatial distance is 
an important consideration for patients when choosing a 
medical facility, our study on the spatial distribution pat-
terns of CVDs also takes into account various influencing 
factors, including socioeconomic status, environmental 
factors, patient health conditions, and healthcare-seeking 
behaviors, ensuring the depth and accuracy of the results. 
Additionally, Guangxi National Hospital is one of the few 
top-tier (tertiary A) comprehensive hospitals in Xixiang-
tang District, with its cardiovascular department being 
a key specialty. The department’s outstanding reputa-
tion and wide influence, combined with its advantages in 
equipment, technology, and healthcare costs compared 
to other non-specialized cardiovascular departments in 
the region, make it particularly attractive to patients in 
Xixiangtang, thus rendering the data relatively represent-
ative. To ensure the fairness of our study results, we have 
implemented multiple verification measures, including 
comprehensive data collection, independent evaluation 
of medical standards, rigorous statistical analysis, and 
consideration of healthcare costs.

With authorization from Guangxi National Hospital, 
we obtained and analyzed the cardiovascular depart-
ment’s data records. Our study adheres to ethical prin-
ciples and does not involve any operations that have a 
substantial impact on patients. The cardiovascular data 
records include basic patient information (such as age, 
gender, address, etc.), diagnostic information (disease 
type, diagnosis date, etc.), and treatment records. We 
focused on CVD patients diagnosed between January 
1, 2020, and December 31, 2022. Through systematic 
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screening and organization, we constructed a database 
of CVD patients during this period. During the data 
processing procedure, we implemented a rigorous data 
cleaning process, identifying and excluding incomplete, 
duplicate, or abnormal data records. This included check-
ing for missing data, logical errors (such as extremely 
large or small ages), and consistency in diagnostic codes, 
ensuring the quality and reliability of the data. After data 
cleaning, we selected 3,472 valid samples, which are rep-
resentative in terms of disease types, patient characteris-
tics, and geographic distribution. Considering the study 
involves geographic location analysis, we used a text-to-
coordinate tool developed based on the Amap (Gaode) 
API to convert patient address information into precise 
geographic coordinates. Finally, using ArcGIS 10.8 soft-
ware, we visualized the processed case data on a map.

As a multidimensional and comprehensive concep-
tual framework, the built environment encompasses a 
vast and intricate system of elements. Given the acces-
sibility, completeness of data, and the robust foundation 

in current research domains, we have centered our in-
depth analysis on two core components: the urban road 
system and urban POIs. Road data is primarily sourced 
from OpenStreetMap (OSM) and processed using Arc-
GIS 10.8 to filter and handle incomplete records. We 
ultimately selected five types of roads for analysis: high-
ways, expressways, arterial roads, secondary roads, and 
local roads [38]. Urban POI data was selected based on 
existing research and obtained through Amap. Amap is 
a leading map service provider in China, known for its 
vast user data, precise geocoding system, and advanced 
intelligent analysis technology, which accurately cap-
tures and presents the spatial distribution and attrib-
ute characteristics of various urban facilities. We used 
Amap’s API interface and offline map data package to 
obtain the coordinates and basic attributes of POIs in the 
study area, including six key environment elements: din-
ing [39], parks [40], transportation [20], shopping [41], 
sports [42], and healthcare [43] (Table 1). These elements 
significantly reflect the distribution status of the urban 

Fig. 1 Location of study area
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built environment. This comprehensive and detailed data 
provides a solid foundation for further exploring the rela-
tionship between the built environment and cardiovascu-
lar health.

Spatial analysis
Based on existing research findings, we have identified 
key built environment factors that influence the occur-
rence of cardiovascular diseases (CVDs) and meticu-
lously processed the data sourced from [34, 35, 44]. The 
preprocessed data was then subjected to spatial analy-
sis utilizing software tools such as ArcGIS 10.8, Geoda, 
and the Geographic Detector. Through various methods 
including KDE, spatial autocorrelation analysis (encom-
passing both univariate and bivariate analyses), factor 
detection and interaction detection using the Geographic 
Detector, as well as GWR, we aimed to explore the poten-
tial links between the urban built environment and CVDs 
(Fig. 2).

Kernel Density Estimation (KDE)
Before delving into the complex relationship between 
the built environment and CVDs, it is crucial to accu-
rately depict the spatial distribution of these key elements 
within the study area. Given this need, KDE, an advanced 
non-parametric statistical technique, was introduced as 
our core analytical tool. KDE is a non-parametric method 
used to estimate the probability density function of a 
random variable, and we implemented it using ArcGIS 
10.8 software. Compared to other density estimation 
methods, such as simple counting or histograms, KDE 
more accurately reflects the true distribution of spatial 
elements, helping us identify hotspots and cold spots in 
the city with greater precision. The core of this method 
lies in assigning a smooth kernel function to each obser-
vation point, which describes the influence range of the 

observation point on its surrounding space, known as 
bandwidth. The density distribution map of the entire 
area is then obtained by overlaying the kernel functions 
of all observation point [45–47]. In parameter settings, 
we set the cell size to 100 m, based on a comprehensive 
consideration of the study area’s scope, the distribution 
characteristics of geographic phenomena, and compu-
tational resource limitations. This aimed to maintain 
sufficient precision while avoiding excessive computa-
tional burden and amplification of data noise. To further 
refine the analysis and visually present the continuous 
spatial distribution of CVDs, we used the natural breaks 
method to classify the KDE results into five levels. KDE 
visually displays the continuous spatial distribution of 
CVDs, identifying high-risk and low-risk areas, and pro-
vides foundational data support for subsequent spatial 
analyses.

Spatial autocorrelation analysis
Spatial autocorrelation analysis is a statistical method 
used to assess the similarity or correlation between 
observed values in geographic space. We derived the 
point attribute values from the kernel density transfor-
mation and conducted univariate global spatial auto-
correlation analysis, as well as bivariate global spatial 
autocorrelation analysis between built environment fac-
tors and CVDs using Geoda software. Univariate global 
spatial autocorrelation analysis was used to study the 
spatial distribution characteristics of the overall dataset, 
using Moran’s I to evaluate whether the dataset exhibits 
spatial autocorrelation, indicating clustering or disper-
sion trends [48, 49]. Bivariate global spatial autocorre-
lation further analyzed the spatial correlation between 
different indicators [50, 51]. Spatial autocorrelation anal-
ysis helps verify whether the spatial clustering in KDE 
results is significant and preliminarily explores whether 

Table 1 Description of indicators of built environmental factors

Environmental indicators Source Quantity (unit) Indicator description

Road network OSM 692 (lines) Including the distribution of five main types of roads: expressways, express roads, trunk 
roads, secondary roads and branch roads

Catering and food Amap 9905 (individuals) Including the distribution of Chinese food, foreign food, fast food restaurants, snack shops, 
milk tea shops, etc

Parks and squares 191 (individuals) Including the distribution of parks, squares, attractions, zoos, botanical gardens, etc

Shopping and consumption 14,851 (individuals) Including the distribution of department stores, shopping centers, convenience stores, 
commercial streets, markets, etc

Transportation facilities 2659 (individuals) Transportation facilities include the distribution of bus stops, parking lots, subway 
entrances, toll stations, bus stations, etc

Sports and fitness 442 (individuals) Including the distribution of fitness centers, basketball courts, badminton courts, swim-
ming pools, gymnasiums, etc

Medical care 2092 (individuals) Including the distribution of emergency centers, clinics, specialty hospitals, general hospi-
tals, pharmacies, etc
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there is spatial interdependence between environmental 
factors and CVDs.

The results of spatial autocorrelation analysis include 
the Moran’s I index, which directly reflects the strength 
and direction of spatial autocorrelation, as well as key 
indicators such as p values and Z values, together con-
structing a comprehensive quantitative system for eval-
uating spatial autocorrelation. In the results of spatial 
autocorrelation analysis, when the p-value is less than 
0.01, the confidence level reaches 99%, and the Z value 
is greater than 2.58, the null hypothesis can be rejected, 
indicating that the research results are highly reliable. 
The degree of spatial clustering of variables is measured 
by Moran’s I. The range of Moran’s I is [-1, 1]; if Moran’s 
I > 0, it indicates positive correlation, with higher values 
indicating stronger clustering; if Moran’s I < 0, it indi-
cates negative correlation, with lower values indicating 
stronger clustering; and if Moran’s I = 0, the variables are 
not clustered and show a dispersed distribution, with the 
correlation weakening as the value approaches 0 [52].

The GeoDetector method (GDM)
We analyzed the processed kernel density attrib-
ute data using the GDM to parse the influence of the 

built environment on CVDs and uncover the underly-
ing driving factors. The geographic detector tool was 
developed by a team led by Researcher Jinfeng Wang 
at the Institute of Geographic Sciences and Natural 
Resources Research, Chinese Academy of Sciences 
[53]. The GDM mainly includes factor detection, inter-
action detection, risk area detection, and ecological 
detection, and it has been widely applied in multiple 
fields. We used the factor detection function to evalu-
ate the impact of environmental factors on the distri-
bution of CVDs and utilized the interaction detection 
function to analyze the interaction between different 
environmental factors [54, 55]. The purpose of the 
factor detector is to detect the extent to which inde-
pendent variables explain the spatial differentiation 
of the dependent variable. It quantifies the influence 
of independent variables on the spatial distribution 
of the dependent variable to reveal which factors are 
the main contributors to the spatial distribution differ-
ences of the dependent variable. However, the impact 
of built environment elements on CVDs may not be 
determined by a single factor but rather by the syn-
ergistic effect of multiple built environment factors. 
Therefore, through the means of interaction detection, 

Fig. 2 Research framework
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we further analyzed the synergistic impact of pairs of 
built environment elements on the spatial distribution 
of CVDs.

In this analysis, the q value was used as a quantita-
tive indicator of the influence of environmental factors 
on CVDs, with values ranging between [0,1]. A higher 
q value indicates a more significant influence of the 
environmental factor, whereas a lower q value indi-
cates a smaller influence. Additionally, a significance 
level of p < 0.01 further emphasizes the reliability of 
these factors’ significant impact on the distribution of 
CVD samples.

Geographically Weighted Regression (GWR)
However, while the GDM can reveal the overall impact 
of built environment elements on CVDs, its limitation 
lies in its difficulty to finely characterize the specific 
differences and dynamic changes of these impacts 
within different geographic spatial units. To address 
this shortcoming, we introduced the GWR model 
through the spatial analysis tools of ArcGIS 10.8 soft-
ware for local analysis. This model dynamically maps 
the distribution and variation trajectory of regression 
coefficients in geographic space, incorporating the key 
variable of spatial location into the regression analysis. 
In this way, the GWR model can reveal the spatial het-
erogeneity of parameters at different geographic loca-
tions, accurately capturing the relationships between 
local variables, thus overcoming the limitations of 
traditional global regression models in handling spa-
tial non-stationarity [56, 57]. Compared to traditional 
global regression models, the GWR model excels 
in reducing model residuals and improving fitting 
accuracy.

When interpreting the results of the GWR model, it 
is necessary to consider the regression coefficients,  R2 
(coefficient of determination), and adjusted  R2 com-
prehensively. The dynamic changes in regression coef-
ficients in space reveal the complex relationships 
between independent and dependent variables at dif-
ferent geographic locations, with their sign and magni-
tude directly reflecting the nature and intensity of the 
impact. Although the  R2 value, as an indicator of the 
model’s goodness of fit, focuses more on local effects in 
the GWR, its variation still helps to assess the explana-
tory power of the model in each area. These compre-
hensive indicators together form a thorough evaluation 
of the GWR model’s performance. Through a compre-
hensive evaluation of the GWR model results, we can 
more precisely capture the relationships between local 
variables, revealing the specific impact of environmen-
tal factors on CVD risk within different regions.

Results
Kernel density distribution characteristics
By applying kernel density analysis, the spatial distribu-
tion pattern of CVD samples and various built environ-
ment elements was detailed, effectively capturing their 
spatial density characteristics. The obtained kernel den-
sity levels were divided into five tiers using the natural 
breaks method and arranged in descending order, as 
shown in Fig. 3. Analysis results indicate that high-den-
sity areas of elements such as shopping, dining, trans-
portation facilities, and medical care are mainly focused 
in the southeastern part of the city, i.e., the city center. 
The high-density areas of the road network extend along 
the southern Yonjiang belt and appear patchy in the city 
center. Dense areas of parks are mostly near the southern 
riverside areas, while high-density distributions of sports 
facilities extend in the southeastern and central regions. 
Overall, the distribution pattern of these environmental 
factors reveals that Xixiangtang District’s development 
trend mainly extends from southeast to northwest, indi-
cating that the northeastern part of the region is rela-
tively underdeveloped, with a sparse population and a 
lack of various infrastructure layouts. Additionally, kernel 
density distribution characteristics show that high-inci-
dence areas of CVDs are concentrated in the southeast, 
highly coinciding with the high-density areas of most 
built environment elements.

Spatial Autocorrelation Characteristics
To explore the spatial relationship between urban built 
environment elements and the distribution of CVDs, spa-
tial autocorrelation analysis was performed using Geoda 
software [58]. The study involved univariate and bivari-
ate global spatial autocorrelation analyses (Table 2). The 
results of the analysis passed the significance level test 
at 0.01, with p values below 0.01 and Z values exceeding 
2.58, achieving a 99% confidence level. This reinforces the 
reliability of the spatial autocorrelation results.

Univariate analysis is used to evaluate the clustering 
or dispersion status of feature points in space. In uni-
variate analysis, the Moran’s I value of the road network 
was 0.957, which significantly indicates a clustering 
trend in its spatial distribution. Moran’s I values for other 
built environment elements, such as parks, transporta-
tion facilities, sports and fitness, and medical care, all 
exceeded 0.9, while the Moran’s I values for shopping and 
dining also surpassed 0.8. By comparison, the Moran’s 
I value for CVD samples was 0.697, approaching 0.7, 
revealing significant aggregation. Overall, the clustering 
nature of the built environment elements and CVD sam-
ples in Xixiangtang District implies that these elements 
are not randomly deployed but follow some patterns of 
hierarchical assembly.
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Bivariate analysis, on the other hand, is used to evalu-
ate the spatial correlation between different environ-
mental factors and CVDs. Bivariate analysis further 
revealed the spatial interaction between environmental 
factors and CVDs. The results show that all considered 

environmental elements exhibited significant positive 
correlation with CVDs. The spatial association between 
medical care elements and CVDs was the strongest, with 
a Moran’s I value of 0.431, surpassing the significant 
threshold of 0.4. Additionally, the Moran’s I values for 

Fig. 3 Distribution of nuclear density of each element in the study area

Table 2 Spatial autocorrelation results of each element in the study area

Element Univariate Bivariate

Z Value p Value Moran’s I Z Value p Value Moran’s I

Shopping and consumption 81.98 0.001 0.847 45.178 0.001 0.364

Catering and food 81.855 0.001 0.838 47.976 0.001 0.391

Road network 91.06 0.001 0.957 11.693 0.001 0.088

Parks and squares 94.931 0.001 0.945 17.371 0.001 0.131

Transportation facilities 86.863 0.001 0.917 47.677 0.001 0.389

Sports fitness 90.687 0.001 0.944 44.84 0.001 0.355

Medical care 86.698 0.001 0.908 52.82 0.001 0.431

Cardiovascular disease 68.837 0.001 0.697
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dining, transportation facilities, shopping, and sports and 
fitness were all over 0.3. Road networks and parks, on the 
other hand, showed relatively weaker correlations with 
CVDs, with Moran’s I values around 0.1, indicating that 
in that region, the spatial connection between these built 
environment elements and CVDs is comparably weak.

Geodetector results analysis
A detailed analysis of the impact of various environ-
mental factors on CVDs was achieved through the fac-
tor detection model of the GDM. According to the factor 
detection results shown in Table 3, significant differences 
in the impact of environmental factors on the distribu-
tion of CVD samples were observed. The analysis results 
indicate that the environmental factors influencing the 
distribution of CVDs, in descending order of impact, are: 
healthcare services > shopping > dining > transportation 
facilities > sports and fitness > parks and squares > road 
networks. Specifically, healthcare services lead with a q 
value of 0.532, indicating that the spatial distribution of 
healthcare services has the most significant impact on the 
spatial distribution of CVDs. This highlights the impor-
tance of a high-density layout of healthcare facilities in 
the prevention and treatment of CVDs and suggests that 
individuals at risk for CVDs tend to prefer living in areas 
with convenient access to medical services [59].

Subsequently, shopping, dining, and transportation 
facilities all have q values exceeding 0.4, reflecting their 

significant effects on the urban built environment’s 
clustering characteristics and regional commercial 
vitality. The concentration of human traffic brought 
about by these factors may, while increasing residents’ 
lifestyle choices, also lead to certain psychological bur-
dens and declining air quality, thereby indirectly plac-
ing a burden on the cardiovascular system. In contrast, 
parks and squares and road networks have relatively 
low q values (both less than 0.2), suggesting that the 
incidence of CVDs is lower in areas concentrated with 
these environmental elements, likely related to their 
ecological and transportation benefits.

Subsequently, interaction detection was used to ana-
lyze the synergistic impact of pairs of built environment 
elements on the spatial distribution of CVDs. From the 
results shown in Table 4, it is evident that any two built 
environment elements exhibit a bi-factor enhancement 
effect on CVDs, suggesting that the combined influence 
of two built environment elements exceeds the effect of 
a single element. Among these, the interaction between 
healthcare services and shopping has the great-
est impact on CVDs, with a value of 0.571. This indi-
cates that CVDs patients or high-risk individuals tend 
to prefer living in areas rich in healthcare resources 
and convenient for shopping, as they can more easily 
access health services and daily necessities. Conversely, 
the interaction between road networks and parks and 
squares has the weakest impact on CVDs, with a value 
of 0.313. This suggests that their combined effect in 
reducing CVD risk is relatively limited, possibly due to 
the negative impacts of road networks, such as traffic 
congestion and air pollution, which may offset some of 
the health benefits provided by parks and squares. This 
result further validates an important point: the impact 
of the built environment on CVDs is not driven by a 
single element but by the synergistic effects of multiple 
environmental factors working together.

Table 3 Geographical detector factor detection results

Environmental indicators q Value P Value

Catering and food 0.433 0.001

Road network 0.159 0.001

Parks and squares 0.174 0.001

Shopping and consumption 0.493 0.001

Transportation facilities 0.423 0.001

Sports and fitness 0.355 0.001

Medical care 0.532 0.001

Table 4 Geographic detector interactive detection result

Environmental indicators Catering 
and food

Road network Parks and 
squares

Shopping and 
consumption

Transportation 
facilities

Sports and 
fitness

Medical care

Catering and food 0.433

Road network 0.460 0.159

Parks and squares 0.473 0.313 0.174

Shopping and consumption 0.522 0.513 0.533 0.493

Transportation facilities 0.486 0.445 0.477 0.544 0.423

Sports and fitness 0.474 0.437 0.392 0.533 0.465 0.355

Medical care 0.540 0.552 0.568 0.571 0.547 0.548 0.532



Page 10 of 16Deng et al. BMC Public Health         (2024) 24:2368 

Geographically weighted regression analysis
The GDM revealed the influence of built environment 
factors on CVDs. To further uncover the spatial hetero-
geneity effects of built environment elements on CVDs 
in different regions, we employed the GWR model. To 
ensure the rigor of the analysis, we conducted multicol-
linearity detection for all built environment elements 
before establishing the model. We confirmed that the 
Variance Inflation Factor (VIF) values for all elements 
did not exceed the conventional threshold of 5, effec-
tively avoiding multicollinearity issues and ensuring the 
robustness of the model results. The GWR model results 
showed that the model’s coefficient of determination  R2 
was 0.596, and the adjusted  R2 was 0.575, indicating that 
the model could adequately explain the relationships 
between variables in the study. The analysis results also 
highlighted the spatial non-stationarity of the effects 
of built environment elements, manifested by different 
degrees of variation and fluctuation characteristics, as 
shown by the coefficient magnitudes and their dynamic 
changes in spatial distribution in Table 5.

Looking more closely at the details, as demonstrated in 
Fig. 4, the regression coefficients of the dining elements 
fluctuated relatively little, ranging from -0.372 to 0.471, 
reflecting a relatively balanced spatial effect. Moreover, 
although this factor’s impact in the Xixiangtang District 
showed both positive and negative aspects in different 
areas, more than half of the analysis units indicated posi-
tive values, especially in the southern and northeastern 
parts of the Xixiangtang District. In contrast, the high-
incidence areas of CVDs in the eastern part and areas in 
the north showed negative correlations.

The GWR coefficients and their fluctuations for parks 
were significant, ranging from -69.757 to 35.43, indicat-
ing significant spatial differences in their impact on the 
distribution of CVDs. Specifically, the spatial distribution 
of positive and negative impacts was nearly 1:1, reveal-
ing the complexity of its effects. In high-incidence areas 
of CVDs, the distribution of parks showed a significantly 
negative correlation with disease distribution, while a 

significant increase in positive correlation was observed 
north of the significantly negative regions. This implies 
the presence of other moderating factors influencing the 
direction of the impact of parks on CVDs.

The regression coefficients and fluctuations for shop-
ping were the smallest among the seven environmental 
factors, confined to a range of -0.093 to 0.219, suggesting 
a high consistency in its spatial effects. In the Xixiang-
tang built-up area, nearly two-thirds of the spatial units 
yielded positive impacts. Particularly in the northern, 
northeastern, southern, and southeastern regions, the 
positive impacts of shopping were especially pronounced.

The regression coefficients and fluctuations for trans-
portation facilities were relatively large, ranging from 
-0.487 to 7.363. For the Xixiangtang District, nearly 
three-quarters of the analysis units displayed positive 
spatial impacts, with the largest positive value areas con-
centrated in the southeastern part. However, areas with 
negative impacts from transportation facilities were rela-
tively fewer, suggesting a clear positive correlation with 
the distribution of CVDs.

The fluctuation range for sports and fitness regression 
coefficients was also broad, from -10.578 to 33.256. The 
analysis indicated that only a quarter of the analysis units 
in the Xixiangtang District had a positive correlation. The 
most significant positive values were located near the 
high-density areas for CVDs, suggesting that sports and 
fitness facilities might have a positive correlation with the 
disease distribution in these areas. Meanwhile, the inten-
sity of the negative correlation increased north of the 
areas with significant positive values, potentially pointing 
to other factors’ potential moderating effects on the rela-
tionship between sports and CVDs.

The regression coefficients and their fluctuations for 
healthcare were relatively small, ranging from -1.235 to 
3.352. In the Xixiangtang District, the vast majority of 
analysis units showed a positive correlation, especially in 
the northern regions. The southern areas exhibited nega-
tive correlations, highlighting potential differences in 
medical resources in that region.

Table 5 GWR operation result

Environmental indicators Mean Minimum Upper quartile Median Lower quartile Maximum

Catering and food 0.002 -0.372 0.086 -0.002 -0.079 0.471

Parks and squares -5.434 -69.757 0.532 -0.509 -6.958 35.430

Shopping and consumption 0.010 -0.093 0.031 0.008 -0.010 0.219

Transportation facilities 0.871 -0.487 0.703 0.135 0.040 7.363

Sports and fitness 0.492 -10.578 0.037 -0.329 -1.010 33.256

Medical care 0.590 -1.235 1.032 0.109 -0.029 3.352

Road network -426.409 -7905.743 10.468 -28.629 -238.995 411.617
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Fig. 4 Spatial distribution of regression coefficient of built-up environmental factors
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Of all the built environment elements, road networks 
had the largest range of regression coefficients and fluc-
tuations, swinging from -7905.743 to 411.617, demon-
strating extremely strong spatial variability. Only a small 
portion of the spatial units in the Xixiangtang District 
showed positive correlations, while the significantly neg-
ative regions were mostly concentrated in high-incidence 
areas for CVDs. This phenomenon was similar to the 
negative correlation distribution trend of parks, point-
ing to a significantly negative correlation between park 
distribution and the distribution of CVDs. Notably, the 
effect of road networks was opposite to transportation 
facilities, which could be related to the connectivity of 
the road network and traffic congestion conditions, fac-
tors that could influence the incidence of CVDs.

Discussion
This study reveals a high-density aggregation of CVDs 
and various built environment elements in the south-
eastern part of the study area, i.e., the urban central area. 
Through spatial statistical analysis, all examined envi-
ronmental elements and CVDs showed high Moran’s I 
values, indicating significant clustering in their spatial 
distribution. Furthermore, the positive spatial correlation 
between these environmental elements and CVDs cor-
roborates the deep connection between the urban built 
environment and the incidence of CVDs.

Geodetector analysis reveals significant differences in 
the impact of different built environment elements on 
CVDs. Healthcare facilities had the most influence, fol-
lowed by shopping, dining, and transportation facilities, 
while parks and road networks had relatively weaker 
impacts. Notably, the occurrence of CVDs is not only 
related to individual built environment elements but 
likely results from the combined effects of multiple ele-
ments. Further interaction detection analysis confirmed 
this hypothesis, finding that the joint impact of any two 
environmental elements was stronger than any individual 
element, showing a clear dual-factor enhancement effect. 
Specifically, the interaction between healthcare and 
shopping had the most significant impact on the distri-
bution of CVDs, while the combined effect of road net-
works and parks was the least. By delving into individual 
factors and their interaction effects, this study reveals a 
comprehensive view of the impact of the built environ-
ment on CVDs, highlighting the complex relationships 
and differences between environmental elements and the 
occurrence of diseases.

The GWR model was used to analyze in detail 
how built environment elements affect CVDs in dif-
ferent regions, aiming to gain a deep understand-
ing of the local effects of the built environment. The 
research results showed the regression coefficients of 

built environment elements and their range of varia-
tion. Specifically, the regression coefficients for dining 
exhibited relatively stable trends in spatial distribu-
tion. Although the overall impact was moderate, slight 
fluctuations revealed a slightly enhanced positive cor-
relation in specific areas such as densely commercial 
or culturally vibrant dining regions. Particularly in the 
southern and northeastern parts, the combination of 
diverse dining options and frequent dining consump-
tion patterns showed a slight positive correlation with 
CVD risk. This reflects the complex impact of dietary 
habits, food composition, and intake levels on cardio-
vascular health [60, 61].

The regression coefficients for parks and squares 
showed relatively large fluctuations in spatial distribu-
tion, indicating significant regional heterogeneity. This is 
mainly due to factors such as differences in regional pop-
ulation density and per capita park and square area. In 
our study, the southeastern region, which is a high-inci-
dence area for CVDs, exhibited negative regression coef-
ficients for parks and squares. This is because this region 
is the central urban area with a high population density, 
leading to a significant shortage of per capita green space, 
thus showing a negative correlation. Conversely, in the 
northern region, where population distribution is more 
balanced and parks and squares are more abundant, the 
per capita green space is relatively sufficient. Therefore, 
CVD patients have more access to green spaces and exer-
cise areas, showing a positive correlation [29].

The regression coefficients for shopping consumption 
showed the smallest fluctuations in spatial distribution. 
The positive and negative effects were not significantly 
different, with the positive effects being notably concen-
trated in the northern, northeastern, and southern com-
mercial thriving areas. Compared to other regions, these 
areas might have relatively well-developed commercial 
facilities or superior shopping environments. This could 
indirectly affect CVD risk through various dimensions, 
such as physical exertion from walking or cycling during 
shopping and the regulation of psychological states like 
satisfaction and pleasure after shopping [44].

The regression coefficients for transportation facili-
ties showed a significant positive correlation in high-
incidence areas of CVDs, with notable fluctuations. This 
deeply reveals the direct and important impact of traf-
fic conditions, especially congestion and pollution, on 
cardiovascular health across different regions. In traffic-
dense areas such as city centers and transportation hubs, 
high traffic volume, severe congestion, and increased 
noise and air pollution collectively pose major threats to 
residents’ cardiovascular health. This not only directly 
harms the cardiovascular system through accumulated 
psychological stress and exposure to air pollution but 
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also further exacerbates the risk due to a lack of exercise 
opportunities [62].

The regression coefficients for sports and fitness facili-
ties exhibited a high degree of heterogeneity in spatial 
distribution, showing a significant positive correlation in 
the southeastern high-incidence area for CVDs, which 
gradually shifts to a negative correlation towards the 
outer regions. This deeply reflects the regional differ-
ences in the allocation of sports and fitness facilities, resi-
dents’ exercise habits, and participation rates. In areas 
with well-developed urban facilities and strong resident 
awareness of physical activity, the positive effects of 
sports and fitness activities on cardiovascular health are 
particularly significant. These activities effectively reduce 
CVD risk by enhancing physical activity, optimizing 
cardiopulmonary function, and lowering body fat per-
centage. However, in areas with relatively scarce sports 
facilities and poor exercise habits among residents, nega-
tive impacts may be observed, highlighting the potential 
threats to public health due to uneven distribution of 
sports resources and a lack of exercise culture [63].

The regression coefficients for healthcare services 
showed regional differences in spatial distribution. In the 
northern region, due to the lower population density, the 
abundance and superior quality of per capita healthcare 
resources have a significant positive effect on residents’ 
cardiovascular health. In contrast, the southern region, 
with relatively scarce resources or limited service qual-
ity, fails to fully realize the potential benefits of health-
care services. This disparity not only reveals the current 
uneven distribution of healthcare resources but also 
emphasizes the importance of enhancing the equaliza-
tion of healthcare services [64]. The positive impact of 
healthcare on CVDs is primarily achieved through effi-
cient prevention, precise diagnosis, and timely treatment. 
Its effectiveness is influenced by multiple factors, includ-
ing the sufficiency of medical resources, service quality, 
residents’ healthcare-seeking behavior, medical policies, 
and technological advancements.

The road network and transportation facilities together 
constitute the urban transportation system. In the pro-
cess of transportation planning, we advocate for the 
continuous optimization of the road network layout, 
reserving space for future traffic growth, and utilizing 
intelligent technology to optimize traffic signal manage-
ment to alleviate congestion. Meanwhile, in the densely 
populated eastern and southeastern areas, we emphasize 
enhancing the convenience of public transportation by 
adding routes and optimizing station locations, making 
it the preferred mode of travel for residents. Addition-
ally, measures such as the construction of sound barri-
ers and green belts are implemented to effectively reduce 
noise and air pollution caused by public transportation. 

Furthermore, we actively promote green travel methods 
such as cycling and walking by building a comprehensive 
network of bike lanes and pedestrian paths, thereby pro-
moting public health and environmental protection [20].

These findings provide a more comprehensive under-
standing of the complex interactions between built 
environment elements and CVDs. Therefore, it is essen-
tial to balance the integrated impact of these factors in 
urban planning and public health interventions. Based 
on a comprehensive analysis of existing research and our 
study’s results, we propose the following viewpoints.

Firstly, healthcare is the primary factor influencing the 
distribution of CVDs. Living near medical institutions 
offers substantial benefits to cardiovascular patients, 
not only enhancing the accessibility of medical services 
but also helping to quickly respond to emergency medi-
cal situations, providing a sense of security for patients. 
We suggest establishing additional medical centers in 
the densely populated southeastern region to ensure that 
community members can easily access high-quality med-
ical services [65].

Secondly, shopping and dining are the next most 
important factors affecting the spatial distribution of 
CVDs. Although the spatial variation of these factors 
is not significant, their long-term cumulative impact 
should not be overlooked. We recommend that future 
urban renewal or renovation efforts reasonably control 
and plan the density of commercial areas, especially in 
the eastern region. This requires ensuring that residents 
can enjoy convenient shopping services to meet their 
daily needs while avoiding the increased living costs and 
stress caused by excessive commercial concentration. 
Additionally, it is necessary to strengthen the manage-
ment of dining environments, including encouraging din-
ing establishments to offer more healthy food options, 
such as low-sugar, low-fat, and high-fiber dishes. It is also 
important to increase the availability of healthy dining 
options by establishing healthy restaurants and vegetar-
ian eateries, while reasonably controlling and optimiz-
ing the layout and number of high-sugar and high-fat 
food outlets within communities to reduce health risks 
induced by frequent exposure to such foods [66].

Road networks and transportation facilities together 
form the city’s transportation system. In transportation 
planning, we advocate for the continuous optimization 
of road network layouts, reserving space for future traffic 
growth, and leveraging intelligent technology to optimize 
traffic signal management to alleviate congestion. Addi-
tionally, enhancing the convenience of public transpor-
tation by adding routes and optimizing stops can make 
it the preferred mode of travel for residents. Comple-
menting this with the construction of sound barriers and 
green belts can effectively reduce noise and air pollution 
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caused by public transportation. Furthermore, promot-
ing green travel methods such as cycling and walking by 
building a comprehensive network of cycling lanes and 
walking paths can foster both health and environmental 
benefits [20].

Sports and fitness facilities, along with parks and 
squares, are essential for improving residents’ quality of 
life and promoting healthy lifestyles. During planning, 
sports and fitness facilities should be reasonably distrib-
uted, especially in the northern part of the study area, 
to ensure that all communities have convenient access 
to exercise amenities. Diverse fitness facilities cater-
ing to different age groups and exercise needs, such as 
basketball courts, soccer fields, and fitness equipment 
zones, should be provided to meet the varied exercise 
requirements of different groups. Additionally, parks 
and squares, as crucial spaces for residents’ leisure and 
entertainment, should be planned with a harmonious 
balance of ecology and landscape. In densely populated 
and space-constrained southeastern areas, small green 
spaces, leisure seating, and children’s play facilities can be 
added to provide residents with a pleasant environment 
for relaxation and nature interaction [67].

We have explored the mechanisms by which environ-
mental elements impact CVDs and proposed suggestions 
for optimizing the urban built environment, but this 
paper still has certain limitations. The impact of the envi-
ronment on health and disease is complex, and due to 
time and resource constraints, it was not possible to con-
sider and analyze all potential variables comprehensively, 
which may have some impact on the research results. 
To further deepen the study of the relationship between 
the built environment and cardiovascular health, future 
research could consider the following aspects: first, 
expand the scope of research, collecting and analyzing 
data from different cities and regions to better under-
stand geographical differences in the impact of the built 
environment on cardiovascular health; second, enhance 
the scientific nature of the research methods, using more 
objective and precise methods for data collection and 
analysis to improve the reliability and accuracy of the 
research; and finally, deepen the study of the mecha-
nisms between the built environment and cardiovascular 
health, exploring biological and psychological mecha-
nisms to better understand their relationship.

Conclusion
Focusing on the built-up area of Xixiangtang in Nan-
ning City as the research area, this study delves into the 
intrinsic connection between the urban built environ-
ment and CVDs, uncovering several findings. Utiliz-
ing hospital cardiovascular data and urban POI data, 
and employing spatial analysis techniques such as KDE, 

spatial autocorrelation analysis, geodetectors, and GWR, 
we systematically assessed the extent and mechanisms 
through which various built environment elements 
impact CVDs. The results show a significant positive 
correlation between the urban built environment and 
CVDs. Particularly, healthcare facilities, shopping ven-
ues, restaurants, and transportation facilities have signifi-
cant effects on the incidence and distribution of CVDs. 
The spatial aggregation of these elements and the dense 
distribution of CVDs demonstrate significant consist-
ency, further confirming the close link between the built 
environment and CVDs. Simultaneously, we discovered 
spatial heterogeneity in the impact of different built envi-
ronment elements on CVDs. This indicates that in plan-
ning and improving the urban environment, elements 
and areas with a greater impact on CVDs should be con-
sidered specifically.
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