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Abstract 

Purpose  Non-pharmaceutical interventions (NPIs) have been the cornerstone of COVID-19 pandemic control, 
but evidence on their effectiveness varies according to the methods and approaches taken to empirical analysis.

We analysed the impact of NPIs on incident SARS-CoV-2 across 32 European countries (March-December 2020) 
using two NPI trackers: the Corona Virus Pandemic Policy Monitor – COV-PPM, and the Oxford Covid-19 Government 
Response Tracker – OxCGRT.

Methods  NPIs were summarized through principal component analysis into three sets, stratified by two waves 
(C1-C3, weeks 5–25, and C4-C6, weeks 35–52). Longitudinal, multi-level mixed-effects negative binomial regression 
models were fitted to estimate incidence rate ratios for cases and deaths considering different time-lags and reverse 
causation (i.e. changing incidence causing NPIs), stratified by waves and geographical regions (Western, Eastern, 
Northern, Southern, Others).

Results  During the first wave, restrictions on movement/mobility, public transport, public events, and public spaces 
(C1) and healthcare system improvements, border closures and restrictions to public institutions (C2) were associated 
with a reduction in SARS-CoV-2 incidence after 28 and 35-days. Mask policies (C3) were associated with a reduction 
in SARS-CoV-2 incidence (except after 35-days). During wave 1, C1 and C2 were associated with a decrease in deaths 
after 49-days and C3 after 21, 28 and 35-days. During wave 2, restrictions on movement/mobility, public transport 
and healthcare system improvements (C5) were also associated with a decrease in SARS-CoV-2 cases and deaths 
across all countries.

Conclusion  In the absence of pre-existing immunity, vaccines or treatment options, our results suggest 
that the observed implementation of different categories of NPIs, showed varied associations with SARS-CoV-2 
incidence and deaths across regions, and varied associations across waves. These relationships were consistent 
across components of NPIs derived from two policy trackers (CoV-PPM and OxCGRT).
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Introduction
The COVID-19 pandemic has triggered a broad range of 
non-pharmaceutical interventions (NPI), i.e. population-
level policies and measures, that aim to prevent and/or 
control SARS-CoV-2 transmission among individuals 
and communities [1]. As the pandemic unfolded, more 
evidence from observational studies emerged, assessing 
the relative importance and contribution of measures 
simultaneously implemented.

A systematic review of the methodologies used to 
assess the effectiveness of NPIs during COVID-19 
identified a scarcity of subgroup analysis, necessary to 
depict differences in effectiveness variation, and also 
calls for studies where variation in methodologies can 
be applied, namely through sensitivity analysis that 
repeat the same analysis with different sets of pub-
licly available NPIs datasets [2]. Other methodological 
shortcomings challenged by the quality of the out-
come data used, which could have been influenced by 
changes in (surveillance) systems capacities, changing 
rules or delayed reporting, and that could be at least 
partly tested by the use of different outcomes within 
the same study, or testing alternate lag periods for 
the impact of NPIs [3]. This may help to identify the 
influence of certain methodological approaches and 
strengthen the evidence in favour of the effectiveness 
of particular NPIs.

Previous studies that included European countries 
found that physical distancing was associated with a 
reduction in COVID-19 incidence [4]. Restrictions on 
gatherings, closing of specific sectors (e.g., restaurants, 
schools, kindergartens, etc.) and closing of some or all 
school levels were also found to reduce the epidemic 
growth rare across the 37 Organisation for Economic 
Co-operation and Development (OECD) members, in 
an early phase (October-December 2020) [5]. Another 
study analysing NPI effectiveness across 30 Euro-
pean countries found that a combination of measures 
involving school closures, banning mass gatherings 
and early closure of commercial businesses was asso-
ciated with reduced infections, but other measures, 
like extensive closure of all non-essential business 
and stay-at-home orders, were not [6]. These efforts 
have been confined to the analysis of single outcomes, 
of single specific measures, single countries, or spe-
cific regions, so there is still need to explore the type, 
combination, or degree of implementation of NPIs 
that has been effective to mitigate the transmission of 
SARS-CoV-2 or associated deaths at population level 
throughout the infection waves. Most data have been 
made publicly available during the COVID-19 pan-
demic, which allows testing different methodologies, 
conducting sensitivity analysis to the effectiveness 

of the same NPIs, even if differently framed, catego-
rised, and recorded, and seek for commonalities within 
subgroups of the population (for example, groups of 
neighbouring, culturally close countries, sharing bor-
ders, climate and other contextual features with poten-
tial pandemic impact). Outcome data availability also 
has its shortcomings, since the quality of reporting 
and recording systems is not assured and bound to 
changes. Hence, subgroup testing, consideration for 
varying timing of effects and analytical approaches 
aiming to rule-out the potential for reverse causation 
are needed.

In this study, we contribute to the rapidly growing 
field of evidence on NPI effectiveness, taking some 
of these methodological concerns into account. We 
exploit the heterogeneity in timing, temporal sequence, 
and combination of measures within and across 32 
European countries as a natural experiment to assess 
which combinations of NPIs have been effective to 
reduce SARS-CoV-2 incidence and associated deaths 
at the population-level in the early phases of the pan-
demic. Furthermore, we investigate subgroups of coun-
tries (according to geographic region) and apply the 
same analysis to two different NPIs data sources.

Methods
Study design
The study design resembles a natural experiment [7], 
in which the populations in countries were repeat-
edly exposed to different timing and combination of 
NPIs which ultimately pursued a common aim: reduc-
ing population-level transmissions of SARS-CoV-2 and 
related deaths. Therefore, the effects on outcomes can 
be studied using each country as their own control, and 
each country for controls of other countries with differ-
ent timing or combination of exposures.

Data sources
We resorted to the Corona Virus Pandemic Policy 
Monitor (COV-PPM) that prospectively monitors 
and tracks NPIs in 32 countries of the EU27, EEA and 
UK [8]. A total of eight NPI categories (Panel 1) were 
retrieved until December 2020, with different sub-cat-
egories covering relevant areas of societal living. For 
each NPI category exact starting dates and duration 
of implementation are registered in a daily format. A 
detailed description of methods, data validation pro-
cess, and usage options can be found elsewhere [8]. The 
subcategories of retrieved NPIs categories (Panel 1) 
were combined into categorical variables for analysis as 
shown in supplementary material (Panel S1).
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Panel 1: Categories of non-pharmaceutical interventions (NPI)
a) Restrictions to public events, namely in the number of persons allowed 
for indoor/outdoor events (conferences, sports, festivals), for more 
than 1000 persons, less than 1000 persons, more than 50 persons, for any 
number or without specification;

b) Restrictions or closures to public institutions (incl. schools, universities, 
public services), in single cities, at the state level, nationally or with-
out specification;

c) Restrictions and closures in public spaces (incl. shops, bars, gyms, 
restaurants), in single cities, at the state level, nationally or without speci-
fication;

d) Measures affecting public transport (incl. trains, buses, trams, metro), 
in single cities, at the state level, nationally or without specification;

e) Restrictions in movement/mobility, to pedestrians, private cars, 
national aviation, other means or without specification;

f ) Border closures or restrictions applied to travelling by air, land or sea, 
across national borders, for non-nationals from high-risk regions, for all 
non-nationals, for all incoming travellers or without specification;

g) Measures relating to Human Resources reinforcement in health-
care (incl. human resources reinforcement or redistribution, technical 
reinforcement or redistribution, material infrastructural reinforcement 
or without specification);

h) Masks (mandatory or recommended use of facial and nose protection);

To triangulate measures obtained from other NPI 
trackers (and allow a posterior sensitivity analysis of 
models using two distinct exposure measures), we also 
resorted to the Oxford Covid-19 Government Response 
Tracker (OxCGRT) [9], and used the specific categories 
“C1-School closing”, “C2-Workplace closing”, “C3-Cancel 
public events”, “C4-Restrictions on gatherings”, “C5-Close 
public transports”, “C7-Restrictions on internal move-
ment”, “C8-International travel controls” and “H6-Facial 
coverings” (version downloaded on 31.05.2021).

A total of 8512 country-days in 32 countries (see sup-
plementary material Figures S1-8) were analysed strati-
fied by two periods of pandemic waves during 2020 (wave 
1: from calendar week 5 to 25, i.e. 27 January to 15 June; 
wave 2: week 35 to 52, i.e. 24 August to 21 December). 
The daily number of notified SARS-CoV-2 cases and asso-
ciated deaths in each country, were retrieved from the 
WHO [10]. A 7-day smoothed average of reported cases 
was used as main outcome, to accommodate the expected 
week-weekend variation in case notification. Country 
population size (2019) and selected macroeconomic indi-
cators were retrieved from EUROSTAT (https://​ec.​europa.​
eu/​euros​tat/​web/​main/​data/​datab​ase) for the most recent 
period available: Gross domestic product (GDP) per capita 
(Current market prices, million euro, 2019), Health care 
expenditure (Million Euro per habitant 2017), and Popula-
tion density (inhabitants per square kilometre, 2018).

Principal component analysis
A principal component analysis (PCA) was conducted 
to reduce the data collected in the scope of COV-PPM 

(categories shown in Panel 1) into relevant related fac-
tors, reflecting periods when distinct NPIs were simulta-
neously implemented. Principal component analysis, as a 
data reduction technique has been regarded as state-of-
the-art technique to address the challenge of assessing 
multiple co-occurring policies in effectiveness studies. 
The use of PCA, besides aiming to reduce and summa-
rize the number of variables, considers this simultane-
ous implementation of measures (or is useful “when 
everything happens at once”) [11]. The goal of PCA is 
to condense a set of correlated items into a new set of 
uncorrelated variables, called components. For summa-
rizing correlated NPIs due to their joint implementation, 
PCA extracts components where the first component 
explains the maximum variance, and subsequent com-
ponents explain the remaining variance. Each factor, rep-
resenting the loadings of individual variables, measures 
correlations between components and normalized vari-
ables, facilitating interpretation in relation to the original 
variables. Some variables will have stronger correlations 
with one factor, while others will have weaker correla-
tions across multiple factors.

The scree plots and percentage of variance explained 
were analysed for each wave to decide the number of 
components to extract (supplementary material Figure 
S9). Orthogonal varimax rotation was conducted to iden-
tify individual NPIs loadings in each component. Each 
component score was then scaled by 10 and conversed 
into scores with non-negative values and a mean of 50.

A descriptive analysis of (means, standard deviations, and 
within/between country variation over time of NPI catego-
ries and derived component scores obtained with COV-
PPM are shown in supplementary material, Table S1).

The OxCGRT categories of NPIs “C1-School clos-
ing”, “C2-Workplace closing”, “C3-Cancel public events”, 
“C4-Restrictions on gatherings”, “C5-Close public 
transports”, “C7-Restrictions on internal movement”, 
“C8-International travel controls” and “H6-Facial cover-
ings” were entered in a PCA analysis for data reduction, 
following the same procedure implemented for COV-
PPM data. Tables 1 and 2 show the scoring coefficients of 
the resulting components obtained using each NPIs data-
base, respectively. By using PCA applied to both policy 
trackers also enables an easier (side-by-side) comparison 
between NPIs implemented during this period.

Three components per wave, i.e. sets of combinations 
of NPIs, explained 74% of the variance for the first (C1-3) 
wave and 70% of the variation in the second wave (C4-6) 
for COV-PPM categories.

In the first wave, C1 was strongly related with NPIs 
referring to restrictions in movement/mobility (scor-
ing coefficient for orthogonal varimax rotation: 0.6512), 
and, to a lesser extent, related with measures affecting 

https://ec.europa.eu/eurostat/web/main/data/database
https://ec.europa.eu/eurostat/web/main/data/database
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public transport (0.4371), public events (0.3660) and pub-
lic spaces (0.3616). C2 was mainly related with measures 
that aimed at improving the healthcare system (0.7349), 
border closure/travelling restrictions (0.4549) and meas-
ures impacting public institutions functioning (0.3208). 
C3 was related with recommendations or enforcement of 
mask utilization (0.9533).

In the second wave, C4 was related with restrictions in 
public events (0.5822), in public spaces (0.5327), border 
closures/travelling restrictions (0.4218) and public insti-
tutions (0.3271). C5, was related to restrictions to move-
ment/mobility (0.7520), public transport (0.4868) and 
healthcare system improvement measures (0.3126). C6, 
was also primarily related with masks (0.8465).

For the OxCGRT, in wave 1, C1-Ox was related to 
measures on international travel control (0.5901), pub-
lic events restrictions (0.4741), restrictions in gatherings 
(0.3601), school closing (0.3827) and workplace clos-
ing (0.3531). C2-Ox, was related to restrictions on pub-
lic transport (0.7835) and internal movement (0.4520). 
C3-Ox was related to facial coverings (0.9839). In wave 
2, C4-Ox was mainly related to restrictions in gatherings 

(0.4697), facial coverings (0.4339), workplace closing 
(0.4335), cancelation of public events (0.4155), and inter-
nal movement restrictions (0.3678). C5-Ox was primarily 
related to international travel control (0.7167) and C6-Ox 
was related to public transport related measures (0.7948).

Statistical analysis
Scatter plots were used to explore the temporal change 
in NPIs as measured with COV-PPM and SARS-CoV-2 
incidence (per 100,000) by country (supplementary mate-
rial, Figures S1 – S8). For descriptive purposes, the pro-
portion of observation time in which COV-PPM NPIs 
were in place, and the within and between country vari-
ation therein, was calculated by country and wave (sup-
plementary material, Table S1).

A panel analysis was implemented to analyse the effect 
of NPIs on daily SARS-CoV-2 incidence and associ-
ated deaths by calculating incidence rate ratios (IRR) 
and corresponding 95% confidence intervals (CI). The 
IRR estimates hence quantify the relative difference in 
SARS-CoV-2 incidence or associated deaths for a one-
unit change in component scores over time (a) between 

Table 1  Scoring coefficients for orthogonal varimax rotation, non-pharmaceutical interventions (Corona Virus Pandemic Policy 
monitor - COV-PPM)

Wave 1 Wave 2
Variable Component 1 Component 2 Component 3 Component 4 Component 5 Component 6

Public events 0.3660 0.1656 0.1253 0.5822 -0.1659 0.0838

Public institutions 0.2989 0.3208 -0.0227 0.3271 0.2379 0.1034

Public spaces 0.3616 0.2070 0.1225 0.5327 -0.0887 0.1383

Public transport 0.4371 0.0344 0.0079 0.1726 0.4868 0.0261

Movement/mobility 0.6512 -0.2768 -0.1401 -0.1384 0.7520 0.0805

Border closure/Travelling 0.0899 0.4549 0.1454 0.4218 0.0453 -0.2899

Healthcare system improvement -0.1475 0.7349 -0.1385 0.1995 0.3126 -0.3943

Masks -0.0305 -0.0443 0.9533 0.0606 0.0765 0.8465

Table 2  Scoring coefficients for orthogonal varimax rotation, non-pharmaceutical interventions (Oxford Covid-19 Government 
Response Tracker - OxCGRT)

Wave 1 Wave 2
Variable Component 1-Ox Component 2-Ox Component 3-Ox Component 4-OX Component 5-Ox Component 6-Ox

School closings 0.3827 0.1556 0.0308 0.2754 -0.4226 0.0660

Workplace closing 0.3531 0.2041 -0.0144 0.4335 0.0738 0.0609

Cancel public events 0.4741 -0.0304 0.0566 0.4155 0.2938 0.1879

Restrictions in gatherings 0.3601 0.1686 0.0718 0.4697 0.2355 0.0026

Public transport -0.0856 0.7835 -0.0693 0.1060 -0.0906 0.7948

Internal Movement 0.1370 0.4520 0.0762 0.3678 -0.3494 0.1022

Int Travel control 0.5901 -0.2933 -0.1088 0.0910 0.7167 -0.0308

Facial coverings -0.0118 -0.0248 0.9839 0.4339 -0.1738 -0.5600
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countries, comparing countries with different NPI com-
ponent scores, and (b) within countries, comparing varia-
tion in respective NPIs implemented and their stringency 
(simultaneous presence of categories of each measure).

Different model specifications fitted to the data were 
tested (Supplementary material, Table S2 and descrip-
tion). A multi-level mixed-effects negative binomial 
model with country as random-intercept showed the best 
model fit according to lowest Akaike (AIC) and Bayes-
ian Information Criteria (BIC) (supplementary material, 
Table S2).

The analysis was guided by a causal diagram (Fig.  1), 
illustrating the potential causal/non-causal pathways 
(dashed lines) from NPIs implementation to outcomes 
over time. Crude models were fitted including the com-
ponents obtained by PCA, illustrated as C1-C3 for wave 
1 and C4-C6 for wave 2 and the outcome (left section of 
the graph, with dashed lines linking to Incidence at T1 
and showing the “immediate” or baseline effects). Models 
were further adjusted for one of five time-lagged variables 
of the same components in five separate models, respec-
tively (crude model, and models adjusted for 7-, 14-, 21-, 
28-, and 35-days lag of each component, respectively). 
The crude models (no lag) show the immediate associa-
tion with the outcome of each component, adjusted for 
the effect of one another. In other words, we added the 
term with no-lag in the models to adjust for the presence 

of a “baseline” or crude effect, that would allow to meas-
ure the independent effect of each added variable, i.e., 
variables with the effect of measures after 7-, 14-, 21-, 
28, and 35- days, adjusted for the “immediate” associa-
tion present at NPI implementation. The IRR estimates 
obtained from the further adjusted models show the 
independent lagged association of each component (rep-
resented in Fig. 1 as the straight lines from Components 
C1-C6 up to their removal, horizontally, on the right 
side), i.e. adjusted for the non-lagged association of each 
component with the outcome (incidence or deaths) and 
the lagged association of the other components (repre-
sented in the right section of Fig. 1, as straight lines from 
Components C1-C6 to Incidence at Tx). The lags con-
sidered for deaths were 21-, 28-, 35-, 42-, and 49-days. 
The choice for 7-days increasing lagged-association was 
based on SARS-CoV-2 natural history and the existing 
literature [12, 13].

All models further included time (in days) as discrete 
variable to consider secular trends by unobserved vari-
ables (or any time-varying aspect unrelated to NPIs), the 
population size (as offset), and country (as random inter-
cept). NPIs have often been implemented reactively fol-
lowing a rapid increase in SARS-CoV-2 cases, and have 
been lifted, likewise, following a rapid decline in inci-
dence raising issues of reverse causation when studying 
their impact on infection dynamics. Therefore, a variable 

Fig. 1  Causal diagram
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for the change in the rate of SARS-CoV-2 incidence from 
7 days before (see calculation below) was entered in all 
models to account for potential reverse causation, i.e. 
preceding increase or decrease in incidence rates impact-
ing the timing and stringency of NPIs implementation.

The mixed-effects negative binomial models with 
Yit ∼ NB(yit , d) , where Yit are the observed and yit the 
corresponding mean number of cases or death Covid-19 
cases or deaths, and d the dispersion parameter.

For country i = {1, . . . , 32} , and day t = {1, . . . , 280} 
the rate ηit = log Y it

Pi
 of average number of cases or 

deaths yit , and population size Pi used as an offset log(Pi) 
was specified on a logarithmic scale as:

where β0 is the intercept, β1 is the coefficient of the 
identifier variable for days dayt , β2 to β4 are the coef-
ficients for the three component scores Cxit of each 
wave, where component identifier x = {1, 2, 3} used 
for modelling the first wave (i.e. C1it , C2it and C3it ), 
and x = {4, 5, 6} used for modelling the second wave 
(i.e. C4it , C5it and C6it ). k and n are the lower and upper 
limit of summation for the respective value set of x . β5 
to β7 are the coefficients for the temporal lagged com-
ponent scores C_laggedxi(t−j) using different com-
ponent identifier x for the first and second wave (see 
above), while lagging the respective component score by 
j-days (for cases j = {7, 14, 21, 28, 35} , and for deaths 
j = {21, 28, 35, 42, 49} ), which were entered in separate 
models for each level of j. In other words, β5 to β7 can be 
thought to represent the trend in incidence after (j-days 
of ) implementation of the respective NPIs.
β 8 is the coefficient for the change in rate 

Rate_changeit in Covid-19 incidence 7 days before, i.e. 
Rate_changeit = Yit/Yit−7 (entered in models for cases 
and deaths). γi is the random effect modelled using 
exchangeability among countries, and log(Pi) is the coun-
try population size entered as offset.

GDP, healthcare expenditure per capita, and popula-
tion density were further tested as covariates, but not 
included in the final models since they did not improve 
model fit nor change the magnitude or direction of con-
sidered effects (supplementary Tables S12 and S13).

The final models were additionally stratified accord-
ing to geographical regions in Europe: Southern (Portu-
gal, Spain, Italy, Greece and Cyprus), Western (Belgium, 
Netherlands, France, Germany, Ireland, United Kingdom 
and Austria), Eastern (Czech Republic, Slovakia, Slove-
nia, Poland, Romania, Hungary and Bulgaria), Northern 

ηit = β0+β1dayt +

y=4,x=n
∑

y=2,x=k

βyCxit +

y=7,x=n
∑

y=5,x=k

βyC_laggedxi(t−j)+β8Rate_changeit +γi

(Norway, Sweden, Finland and Denmark) and Other 
regions (Croatia, Estonia, Iceland, Latvia, Lithuania, Lux-
embourg, Malta, Switzerland and Liechtenstein).

All analysis were conducted using Stata 16® [14], visu-
alisations were performed with R programming language 
4.1.2. Geographic data for maps were retrieved from 
Eurostat [15].

Results
Descriptive analysis
Across all countries, a total of 1,614,594 COVID-19 
cases and 178,369 associated deaths were analysed dur-
ing the first wave and 18,471,042 cases and 328,426 

deaths during the second wave (Fig.  2). The timing of 
NPI implementation and the proportion of days during 
the observation period in which measures were in place 
across countries varied widely within and between coun-
tries during the two infection waves. In wave 1, restric-
tions to public events, public institutions, and public 
spaces were the most widely used measures (Fig. 2, and 
supplementary material Table S1). In wave 2, these meas-
ures were partly relaxed, while mask policies, restrictions 
to travelling and border closures, and movement/mobil-
ity restriction became more prominent (Fig.  2). Within 
and between country variation in NPIs remained high 
with the exception of masks where variation (especially 
within countries) was lower (supplementary material, 
Table S1).

NPI effects on SARS‑CoV‑2 incidence
Incidence rate ratios (IRR) for the lagged-effects of the 
PCA-components of NPIs derived from COV-PPM, con-
sidering a 7, 14, 21, 28 and 35 days-lag across all coun-
tries and stratified by waves and regions are presented in 
Fig. 3.

Considering the findings across all countries dur-
ing the first wave, the NPI combination C1 (movement/
mobility, public transport, public events, public spaces) 
was significantly associated with a reduction in SARS-
CoV-2 incidence in models considering a 28-days and 
35-days lagged effect (adjusted for the baseline effect): 
IRR, 95%CI = 0.995, 0.992–0.999 for the 28-day-lagged 
variable, 0.994, 0.990–0.997 for 35-day-lag). C2 (health-
care system improvement, border closures and restric-
tions in public institutions) revealed the same pattern as 
C1 across all countries, with significant association with 
lower incidence, IRR after 21-days (0.993, 0.987–0.998), 
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28-days (0.987, 0.982–0.992) and 35-days (0.984, 
0.979–0.988).

C3 (masks) was associated with lower incidence in the 
non-lagged model (IRR = 0.962, 0.955–0.969) and for all 
the time-lags considered except for a 35-days lag.

In southern countries during the first wave (Fig.  3), 
C1 was associated with a reduction in incidence after 
28-days, while C2 was associated with higher incidence 
after 7, 14, 21 and 28 days-lag. C3 was associated with 
lower SARS-CoV-2 incidence for all time-lags considered 
except after a 28 and 35-days lag.

In Western countries, C1 and C2 were associated with 
lower incidence after 28 and 35 days, while C3 was sig-
nificantly associated with a reduction in incidence for all 
time-lags considered.

In the Eastern region, C1 and C3 were significantly 
associated with a reduction in incidence rates for all lags 
considered (except C1 for “no-lag” effect), while C2 was 
associated with an increase in incidence for all lagged 
variables.

In Northern countries, C1 showed associations with 
an increase in incidence rates for 14, 21 and 28-days lag, 
while C2 and C3 were significantly associated with a 
decrease in incidence for all lags considered (except C2 

after 7 days and after 35 days-lag, where no significant 
association was observed).

In the remaining countries analysed as residual group 
(Croatia, Estonia, Iceland, Latvia, Lithuania, Luxem-
bourg, Malta, Switzerland and Liechtenstein), C1 and C2 
were significantly associated with lower incidence after 
28 and 35 days while C3 was significantly associated with 
lower incidence after 14, 21 and 28 days.

Results of all full models estimates (i.e., including 
estimates for non-lagged effects for all models and cor-
responding 95% confidence intervals, CI) are shown in 
supplementary material (Tables S3, S4 for all countries 
and Table  S8, S9, stratified by geographical regions and 
S12, S13 adjusted for GDP, healthcare expenditure and 
population density).

In the second wave (Fig.  3), restrictions in public 
events, public spaces, border closures and restrictions 
in public institutions (C4) had no significant association 
with incidence for any of the time-lags considered in all 
countries (except for the association with an increase in 
incidence in the non-lagged variable).

Restrictions in movement/mobility, public transport 
and healthcare system improvement measures (C5) were 
significantly associated with lower incidence following 

Fig. 2  Proportion of days during the observation period in which NPIs were in place (Wave 1 - weeks 5–25, and Wave 2 – weeks 35–52), 
and cumulative incidence and mortality rates per 100,000 of SARS-CoV-2, in 32 countries (EU-27, EEA, UK). Legend: (1), (2), (3) and (4), refer 
to the simultaneous presence of sub-categories in place for each non-pharmaceutical intervention (i.e., 1: if at least one of the subcategories 
was present, 2: if at least two of the subcategories were simultaneously present, 3: if 3 subcategories were simultaneously present, and 4: if 4 
subcategories were simultaneously present)
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21-days (0.990, 0.986–0.994) 28-days (0.980, 0.976–0.984) 
and 35-days (0.975, 0.971–0.979). C6 (positively related 
with masks, but, although showing a weaker relationship, 
negatively related to border closure/travelling restric-
tions and healthcare system improvements) unfolded sig-
nificant associations with an increase in incidence for all 
time-lags considered, with the point estimate showing a 
decrease in magnitude with increasing lagged days.

In the Southern region, C4 was significantly associated 
with lower incidence in the non-lagged model and after 
7- and 14-days, but showed no significant associations 

for the remaining lags considered. C5 and C6 was signifi-
cantly associated with lower incidence after 21 (for C5), 
28 and 35-days.

In the Western region, C4 measures were associated 
with an increase in incidence when considering all time-
lags except the 21-days. C5 was significantly associated 
with lower incidence for all the time lags considered 
while C6 showed no significant association with inci-
dence for all the time lags considered.

In the Eastern region, the components C4-C6 showed 
a trend of associations suggesting lower incidence 

Fig. 3  Incidence Rate Ratios (IRR) and 95% CI for the lagged-effects (7, 14, 21, 28 and 35 days) on SARS-CoV2 incidence of the three principal 
component (PCA) scores of NPIs, N = 20,085,636 SARS-CoV-2 cases in 32 countries during the first and second waves of infections (March-December 
2020), by region. All countries: includes all countries of EU27, EEA and UK; Southern: Portugal, Spain, Italy, Greece and Cyprus; Western: Belgium, 
Netherlands, France, Germany, Ireland, United Kingdom and Austria; Eastern: Czech Republic, Slovakia, Slovenia, Poland, Romania, Hungary 
and Bulgaria; Northern: Norway, Sweden, Finland and Denmark; Other: Croatia, Estonia, Iceland, Latvia, Lithuania, Luxembourg, Malta, Switzerland 
and Liechtenstein. Within each regional stratum and column for time lags, IRR estimates represent the independent effects of C1- C3 (wave 1) 
and C4-C6 (wave 2), i.e. mutually adjusted for one another, and additionally adjusted for the immediate effect of each component (no lag), time, 
7-day rate change in incidence, and country as random intercept
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according to the increase in time-lag considered, with 
significant associations with a reduction in incidence for 
C6 after 14, 21, 28 and 35 days and for C4 and C5 after 28 
and 35 days.

In the Northern region, C4 and C5 were significantly 
associated with lower incidence after 21, 28 and 35 days, 
and C6 showed an association with an increase in inci-
dence for all the time-lags considered.

In the “other” regions, C4 and C5 showed no significant 
associations on SARS-CoV-2 incidence (except for C4 

after 14 days associated with lower incidence), while C6 
showed a significantly association with higher incidence 
for all time-lags analysed.

Associated deaths
Considering all countries in the first wave (Fig.  4), 
C1 was associated with an increase in deaths after a 
21-,28-, and 35-days lagged association (IRR, 95%CI 
for no lag = 1.124, 1.119–1.129, for 21-days lag = 1.037, 
1.033–1.040, for 28-days = 1.019, 1.015–1.022, for 

Fig. 4  Incidence Rate Ratios (IRR) for the lagged-effects (21, 28, 35, 42 and 49 days) on incident SARS-CoV-2 associated deaths of the three principal 
component (PCA) scores of NPIs, N = 506,795 deaths in 32 countries during the first and second waves of infections (March-December 2020), 
by region. All countries: includes all countries; Southern: Portugal, Spain, Italy, Greece and Cyprus; Western: Belgium, Netherlands, France, Germany, 
Ireland, United Kingdom and Austria; Eastern: Czech Republic, Slovakia, Slovenia, Poland, Romania, Hungary and Bulgaria; Northern: Norway, 
Sweden, Finland and Denmark; Other: Croatia, Estonia, Iceland, Latvia, Lithuania, Luxembourg, Malta, Switzerland and Liechtenstein. Within each 
regional stratum and column for time lags, IRR estimates represent the independent effects of C1- C3 (wave 1) and C4- C6 (wave 2), i.e. mutually 
adjusted for one another, and additionally adjusted for the immediate effect of each component (no lag), time, 7 day rate change in incidence, 
and country as random intercept
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35-days-lag = 1.008, 1.004–1.011), which then turned 
into an association with a decrease in deaths after 
49-days (0.994, 0.991–0.997). C2 showed the same 
trend as C1, associated with an increase in deaths for 
no-lag (1.060, 1.053–1.067), 21-days (1.014, 1.009–
1.018), 28 days (1.007, 1.002–1.012) and with a decrease 
after 49-days (0.990, 0.986–0.995). C3 was significantly 
associated with lower deaths for all the time lags con-
sidered across all countries, except after 42 and 49 days, 
when estimates were non-significant.

In the Southern region during the first wave, a sig-
nificant (p < 0.01) association with a reduction in deaths 
was only noted for C1 after a 49-days lag, and the same 
C1 was associated with an increase in the non-lagged 
variables and after 21 and 35 days. C2 also showed sig-
nificant associations with an increase in deaths after 21 
and 28 days. C3 was significantly associated with lower 
deaths in the non-lagged model and in models lagged at 
21, 42 and 49 days.

In the Western region, C1 showed a significant asso-
ciation with an increase in deaths in non-lagged model 
and was significantly associated with lower deaths after 
28, 35, 42 and 49 days, while C2 was significantly asso-
ciated with lower deaths after 28, 35 and 42 days. C3 
was significantly associated with a reduction in deaths 
for all time lags considered.

In the Eastern region, C1 was associated with an 
increase in deaths in the “no-lag” model, but with a 
reduction in deaths for all the time-lags considered. C2 
was associated with an increase in deaths for all time-
lags (including the non-lagged model). C3 was associ-
ated with a reduction in incident deaths after 21, 28, 35 
and 42 days.

In the Northern region, C1 was associated with an 
increased deaths in the non-lagged model and after 
21 and 28 days. C2 was associated with an increase in 
deaths in the non-lagged model and was significantly 
associated with a reduction in deaths after 21 and 28 
days. C3 was significantly associated with lower inci-
dent deaths in the non-lagged model and after 21, 28 
and 35 days lag, but was associated with an increase in 
deaths after 42 and 49 days (although with large confi-
dence-intervals for the latter two estimates).

In the “other” countries, C1 and C2 showed ini-
tially significant associations with increased number 
of deaths (no-lag). C1 unfolded significant associa-
tions with reduced number of deaths after 28, 35 and 
42 days, while C2 unfolded significant associations with 
reduced number of deaths for all the time-lags consid-
ered. C3 was significantly associated with a reduction 
in incident deaths after 21 and 28 days, but turned into 
significantly associated with an increase in deaths after 
42 and 49 days.

During the second wave in all countries (Fig. 4), C4 was 
significantly associated with a reduction in deaths only in 
the non-lagged model (IRR, 95%CI = 0.994, 0.991–0.998), 
and showed a significant association with increased 
number of deaths after 28 days (1.004, 1.001–1.007). C5 
was significantly associated with a reduction in incident 
deaths after 28, 35, 42 and 49 days (having started associ-
ated with increased deaths in the non-lagged model). C6 
showed significant association with increased deaths for 
all lags considered.

In Southern countries, C4 was significantly associated 
with a reduction in deaths in the non-lagged model and 
after 42 and 49 days. C5 was associated with increased 
number of deaths in the non-lagged model, but was sig-
nificantly associated with a reduced number of deaths for 
all the time-lags considered. C6 showed an association 
with increase, and turned into a significant association 
with a decrease after 28, 35, 42 and 49 days.

In the Western region, C4 showed significant associa-
tions with an increase in deaths for all time-lags except 
after 21, 42 and 49 days. C5 was associated with an 
increase in deaths in the non-lagged model, but was sig-
nificantly associated with a reduction in incident deaths 
for all time-lags considered thereafter, while C6 did 
not reveal any significant associations on deaths in this 
groups of countries.

In the Eastern region, C4 was significantly associated 
with a reduction in deaths following 28, 35, 42 and 49 days, 
while C5 was significantly associated with a reduction in 
the number of deaths after 28 and 35 days. C6 was signifi-
cantly associated with lower deaths for all time-lags.

In the Northern region, C4 was significantly associated 
with lower deaths for all time-lags analysed. C5 was also 
significantly associated with lower deaths for all time-lags 
except after 42 days (non-significant) and 49 days. C6 
was associated with an increase in deaths for all time-lags 
(no-lag, 21, 28 and 35-days) that turned into a significant 
association with a decrease in deaths after 49 days.

In the group of “Other” countries analysed, C4 did not 
show any significant association, while C5 was significantly 
associated with an increase in deaths in the non-lagged 
model and after 49 days. C6 showed an association with an 
increase in deaths for all the time-lags considered.

Supplementary tables S5, S6 show all estimates 
obtained from models fitted for all countries, tables S10, 
S11 show these stratified by country groups and tables.

Sensitivity analysis
The analysis using NPIs collected by OxCGRT showed 
similar results to those obtained with NPIs collected by 
COV-PPM for all countries and in the analysis stratified 
by region, for cases and deaths, Figs. 5 and 6 (supplemen-
tary Figure S10 and S11 show IRR estimates and 95% CI).
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During the first wave, C1-Ox and C2-Ox, were posi-
tively associated with incident cases of SARS-CoV-2 
when considering their “non-lagged” associations, and 
then showed significant negative associations after 
21-days, across all countries (supplementary Figure S10). 
C3-Ox revealed a significant negative association dur-
ing the first wave for the non-lagged association, which 
turned into a significant positive association follow-
ing 21, 28 and 35 days. During the second wave, C4-Ox 
revealed a significant positive direct (i.e., non-lagged) 

association, that turned into a significant negative asso-
ciation for all time-lags analysed, again across all coun-
tries, and C5-Ox was significantly negatively associated 
with cases for all time-lags considered. During the sec-
ond wave, C6-Ox was initially negatively associated with 
incident cases (no-lag) and also after 35 days, across all 
countries.

The stratification according to regions obtained using 
OxCGRT components, in general suggested similar 

Fig. 5  Heat map comparing estimates obtained with COV-PPM and OxCGRT for models predicting incident cases of SARS-CoV-2 (i.e., Fig. 3 
and Figure S16 – only colour codes)
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patterns as those obtained with the components summa-
rised using COV-PPM’ group of measures, as shown in 
Fig. 5.

Regarding deaths (supplementary Figure S11) and 
across all countries, C1-Ox and C2-Ox were posi-
tively associated during the first wave considering a 
“non-lagged” association, while C3-Ox showed a nega-
tive “non-lagged” association. During this wave, C2-Ox 
turned to a negative association following 21, 28 and 35 
days, while C1-Ox showed positive associations for 21, 
28 and 35 days, that unfolded to significantly negative 

association after 42 and 49 days. C3-Ox showed signifi-
cant positive associations after 21, 28 and 35 days.

During the second wave, C4-Ox and C6-Ox showed a 
positive “non-lagged” association that became negative 
after 21 days (C4-Ox) and 35 days (C6-Ox) and remained 
significant for the following time-lags analysed, across all 
countries. C5-Ox was negatively associated with deaths 
across all countries for all the time-lags analysed. Again, 
the regional stratification showed patterns of associa-
tions similar to those obtained with COV-PPM, shown in 
Fig. 6).

Fig. 6  Heat map comparing estimates obtained with COV-PPM and OxCGRT for models predicting deaths of SARS-CoV-2 (i.e. Fig. 4 and Figure S17 
– only colour codes)
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Discussion
In this study we analysed the impact of NPIs, prospec-
tively recorded across 32 European countries, on SARS-
CoV-2 incidence and deaths during two pandemic waves 
of 2020 using principal components derived from two 
different NPI trackers (COV-PPM and OxCGRT) as 
exposures. During the first wave of infection, the three 
component factors (summarizing the effects for all the 
NPIs analysed) were associated with a reduction in the 
incidence of SARS-CoV-2 across all countries, albeit with 
varying time lags. In the second wave, only restrictions 
to movement/mobility, public transport and healthcare 
system improvements (C2) were significantly associated 
with a reduction in incident cases across all countries.

Regional stratification allowed to differentiate the pat-
terns of these associations for each wave, and showed, for 
example, that the component C3 related to “masks” was 
consistently associated with lower incidence of SARS-
CoV-2 cases in all regions during the first wave. How-
ever, such associations with reduced incidence were only 
noted in the Southern and Eastern regions during the 
second wave, while an inverse association was found in 
all other regions for at least one of the time-lags consid-
ered (adjusted for all other NPI effects).

For deaths, our results suggest that most measures were 
associated with a time-lagged decrease in mortality. An 
exception was C3 (masks) during the second wave, which 
showed an association with increased number of deaths 
when considering all countries. Only in Southern and 
Eastern regions (and Northern after 49 days) were masks 
significantly associated with lower deaths, showing again 
the importance of regional variation in NPI impacts.

We obtained consistent results when analysing the asso-
ciations between NPIs and SARS-CoV-2 cases and deaths 
using the OxCGRT NPI tracker as exposure (compared to 
using COV-PPM), with some exceptions. NPIs were asso-
ciated with a reduction in cases and deaths, and the excep-
tions to this pattern observed according to geographical 
regions, were congruent when comparing both NPIs track-
ers: for example, during wave 1, COV-PPM’ C2 (healthcare 
system improvements, border closures) and OxCGRT’ 
C1-Ox (international travel control, public events, schools, 
workplace restrictions) did not suggest an association 
consistent with a reduction in cases in the Eastern region, 
and also did not suggest a reduction in deaths in the same 
region (except C1-Ox, but only after 49 days). The same 
was seen for C6 (masks) and C5-Ox (facial coverings), but 
also for C6-Ox (public transport measures), which were 
not associated with a reduction in cases in the Northern 
region during wave 2. For C3 (masks) and C3-Ox (facial 
coverings) during wave 1 and across all countries, an asso-
ciation with a reduction in cases was initially observed, 
which disappeared after 35 days using COV-PPM data and 

which turned positive after 28 and 35 days with OxCGRT, 
and a very close pattern was noticed for deaths during this 
wave. However, during the second wave, across all coun-
tries, only C5-Ox (facial coverings), did suggest an associa-
tion with a reduction in cases and deaths.

Overall, the negative associations observed between 
NPIs on SARS-CoV-2 incidence (i.e., the associations 
with a reduction in incidence, expressed as IRR below the 
unit) suggests that the pandemic control strategies were 
linked with a reduction, at least partially, of the incidence 
across these countries at population-level. It should be 
noted that our observations of “what might have worked” 
may only be valid for the observed periods in 2020, i.e., 
where the population was immunologically naive, had 
no access to vaccination and was faced with a respira-
tory virus with a comparable natural course of diseases or 
similar reproduction rate. With the emergence and roll-
out of COVID-19 vaccines, the suggested inference of 
our effectiveness estimates beyond this time period may 
be limited. However, in case of escape variants that evade 
immunity acquired through vaccines or previous infec-
tions, the knowledge generated from this study could 
inform the design and combination of future NPIs to pro-
tect immunologically naive populations against the threat 
of respiratory virus.

Our results concur with and add to previous obser-
vations of the effect of physical distance interventions 
imposed across 149 countries, which were associated 
with a reduction in COVID-19 incidence [4]. 

The recommended or compulsory use of masks seemed 
to be consistently associated with a reduction in SARS-
CoV-2 cases and deaths at the population-level accord-
ing to our findings, with such association during the 
first wave of infection being noticeable for all the time-
lagged associations considered and across all countries. 
This is in line with a review showing the potential effec-
tiveness of mask utilization in community settings, par-
ticularly in the case of specific mask types (i.e. medical 
types), [16] with a recent review on the effectiveness of 
NPIs to reduce SARS-CoV-2 transmission [17] and with 
a cluster-randomized trial conducted in Bangladesh that 
showed the community-level effect of masks distribu-
tion on SARS-CoV-2 cases [18]. However, a re-analysis 
of this trial data showed that its results were not free of 
relevant bias (unblinding, ascertainment bias, and bias-
susceptible endpoints), which made its results consistent 
only with a modest or having no direct effect on COVID 
related outcomes [19]. Also, an updated Cochrane review 
on physical interventions to interrupt or reduce the 
spread of respiratory viruses (including mostly studies 
from previous epidemics or pandemics), did not con-
clude for a reduction in respiratory viral infection with 
the use of medical or surgical masks [20].
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The fact that “masks” were not consistently associated 
with a reduction in the number of SARS-CoV-2 cases 
during the second wave across all countries may be due 
to the homogeneity of this measure during this period, 
with almost all countries (except Northern countries) 
recommending the use of facial masks in that time period 
so that variance was substantially reduced and proper 
counterfactuals were lacking in the second wave to detect 
the effect of the measure. Notwithstanding, we decided 
to show such associations to reinforce the congruency of 
results, i.e. that an effect would not be so apparent under 
such homogenous circumstances, as was the case.

The stratified analysis by waves also revealed differ-
ent magnitudes of associations for the same compo-
nents, i.e. the same set of combinations of NPIs, included 
when comparing waves. These differences may be due 
to organizational safety measures and individual protec-
tive behaviours in place already during the first wave, 
thus reducing the additional effect of newer implemen-
tations, as previously suggested [21]. Again, this can also 
help explain the seemingly strong association observed 
for recommended or mandatory use of “masks” in the 
Northern region during the first wave, reflecting the late 
and looser approach taken to NPIs implementation in 
some of the countries in this region.

Other measures, such as border closures or travelling 
restrictions, as part of other NPIs, seemed associated 
with a reduction incidence, particularly in the first wave, 
but not in all regions. Their effectiveness may strongly 
depend on the timing of implementation, which is also in 
line with the results of a Cochrane review that included 
mainly modelling studies suggesting that such measures 
may lead to a reduction in the number of new cases, 
although with large uncertainty and when implemented 
at the beginning of the outbreak [22]. Travel restric-
tions were also analysed using the ECDC categorization 
of NPIs for the European region [1], showing different 
impacts, dependent on the starting date and on the com-
bination of NPIs in which they have been implemented 
[23] (e.g., quarantine of incoming travellers, enforcement 
of hygiene concepts and limitations to and from specified 
high-risk regions).

Across all waves and regions, the analysed NPI com-
ponents also showed non-significant or significant 
associations with higher incidences or deaths. These 
non-significant associations may suggest that the respec-
tive measures had no measurable effect at the popula-
tion level, when adjusted for the immediate effect and 
the co-occurrence of other NPI combinations. However, 
this does not allow the inference that a given measure is 
completely ineffective at a smaller scale (e.g. in a given 
region or town of a country) or at the individual-level. 
Although we adjusted for the 7-day preceding change 

rate in incidence, reverse causation for the immediate 
(non-lagged) effects that show associations with higher 
incidences and deaths cannot be completely ruled out as 
it is more likely that measures were taken because of high 
infections rates or deaths, and not that measures caused 
higher infections and deaths. In the lagged models, posi-
tive associations (i.e. IRR above the unit, or associated 
with an increase) on incidence or deaths may mean that 
the measures were not able (e.g. possibly due to improper 
design, implementation, stringency, or adherence) to 
translate into a measurable change in pre-existing rising 
trends of infections or deaths, which were the likely rea-
son for measures’ implementation. The results from mod-
els fitted only with the lagged effects on incidence across 
all countries (without the immediate effect variables, 
results not shown), support our interpretation by show-
ing the same pattern of associations. However, we cannot 
rule out residual confounding by other unmeasured vari-
ables that may well lie in the causal chain explaining the 
association between NPIs and the outcomes [24]. Never-
theless, the use of two different exposures (despite also 
the uncertainty about the delay between NPIs implemen-
tation), constitutes an attempt to reduce the potential 
bias stemming from the use of different outcomes (e.g. 
incomplete cases, different testing capacities), which has 
been rarely tested in other studies [2].

Further explorations, e.g. through structural equation 
models, are needed to more clearly elucidate the causal 
pathways related to NPIs and pandemic control, such as 
the role of the weather, seasonality, or media communi-
cation, political discourses, individual behaviour, social 
support networks, or trust.

Strengths and limitations
We used a standardized procedure to monitor and code 
NPIs taken across Europe and resorted to a natural 
experiment approach [25], which stands as a suitable and 
strong research design to monitor the measures taken to 
control the pandemic. Implemented in a panel design, 
each country serves as its own control while cross-
national differences are considered simultaneously. Our 
estimates are, however, limited by the fact that they do 
not disentangle the effect of each NPI individually, but 
assessed the independent effect of three sets of NPI com-
binations that explained a high proportion of the variance 
across Europe (although each individual NPIs has differ-
ent loadings in each component, as shown in Table  1). 
In other words, the use of principal component analysis 
to summarize data means that we can only refer to the 
effect of the group of related measures in each compo-
nent, limiting the attribution of direct effects to specific 
categories of NPIs. For example, C1 corresponds to peri-
ods when packages of NPIs have been implemented, with 
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stronger emphasis on movement/mobility, public trans-
port, public events, public spaces, and less contribution 
of the other NPIs (although, they were still present, but 
with a lower contribution to the summary of the vari-
ance represented by the component). If C1 and C2 both 
associate with a decrease in incidence, it indicates that 
the correlated variables summarized in each component 
relate to the change in incidence. While we cannot isolate 
the specific effect of individual measures like mobility 
restrictions, we can state that such measures relate more 
to a higher score in Component 1. If this component is 
negatively associated with incidence decrease, it implies 
that the variance summary of the related variables is 
linked to this change in incidence. Conversely, the oppo-
site applies for an increase in incidence. Despite this limi-
tation, a principal component analysis is regarded state of 
the art to address the challenge of multiple co-occurring 
policies in effectiveness studies [11]. Furthermore, NPIs 
were implemented as “packages” of combined measures 
in all countries, which hinders the possibility of analysing 
their individual association with n incidence rates. Future 
studies should analyse the independent effects of indi-
vidual NPIs, and also explore the use of other outcome 
measures such as the reproduction number.

We further cannot rule-out the possibility of misclas-
sification of NPIs, particularly within some of the sub-
categories of the measures established. Furthermore, 
we did not account for the heterogeneity in the baseline 
status of, for e.g., healthcare infrastructure, that could 
determine a larger or smaller association for any particu-
lar measure to improve the healthcare system response. 
However, the congruency in the association of some of 
the NPIs summarized in the stratified analysis by regions, 
is in favour of an independent effect across different con-
stellations of systems, despite the needed (and legitimate) 
simplification by attributing the same meaning to each 
group of NPIs for each of the 32 countries.

Other structured data collection efforts are being 
developed by different consortia, categorizing NPIs 
across the globe using different criteria and aggregation 
levels and updated with different periodicity [26–29], 
allowing to further assess NPIs effectiveness. We con-
ducted a sensitivity analysis with selected NPIs covered 
in the OxCGRT [9], and obtained patterns that confirm 
our findings, despite the inevitable differences in NPIs 
categorisations.

The use of notified cases and deaths might be a fur-
ther limitation of this study, due to potential changes 
in national notification processes or testing intensity, 
for example, which can directly impact these outcomes. 
However, the use of different lag periods to meas-
ure the associations between NPIs and different out-
comes (including the analysis with “no-lags” provided as 

supplement), and the congruency in the results obtained 
using the two different exposures, can also be seen as a 
sensitivity analysis to the potential bias imposed by out-
come data quality, as previously suggested by authors 
calling for rigorous impact analysis in this field [3]. None-
theless, further testing should be done in subsequent 
studies, to rule-out any impact of changes in surveillance 
system, case ascertainment, or cause of death attribution 
rules, for example.

An analysis conducted with the “Stringency index” 
of NPIs proposed in the scope of the OxCGRT, showed 
that the timing of restrictive measures implementa-
tions seems crucial to mitigate SARS-CoV-2 incidence 
[30], but strategies did not have the same effect in all the 
countries with available data. Another analysis relating 
the “Stringency Index” aggregated at the continental 
level, with COVID-19 Case-fatality Rates (CFR) world-
wide, did not observe a statistically significant associa-
tion between the Index and COVID-19 CFR [31]. The 
authors found that stricter measures were associated 
with higher CFR in high-income countries with active 
testing policies (testing anyone symptomatic or testing 
open to public), suggesting that more restrictive (lock-
down) measures might hit the most vulnerable groups 
harder [31]. Other research also found that more strin-
gency in NPIs led to fewer deaths [32]. Such results 
obtained with the OxCGRT also suggest the need for 
further research that considers socioeconomic (and 
inequality) aspects of the measures taken for pandemic 
control.

As NPIs are implemented and withdrawn dynamically, 
attempts to track these interventions need to embrace 
a continuous effort within an appropriate monitoring 
framework [21]. A modelling effort conducted for 16 dif-
ferent countries, suggest that implementation of dynamic 
interventions (i.e., alternating between periods of NPIs 
enforcement followed by periods of relaxation), might 
not be ideal [33]. In another analysis, the combination of 
physical distancing measures implemented with varying 
intensity and timing (border controls, restriction on mass 
gatherings, lockdown type measures) seem to be effective 
if implemented early (about two weeks before the 100th 
case), although individual effect is hard to disentangle 
since several measures were implemented very close to 
one another [34].

Changes in NPIs effectiveness across time are 
expected since their stringency changes (e.g. from rec-
ommendations to impositions with envisaged punish-
ment for noncompliance), measures are refined (e.g., 
continuous adaptation of infrastructures to ensure 
social distance, new air ventilators/purifiers) and the 
population also adapts to and evolves in the way meas-
ures are understood and followed. The effectiveness 
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may hence be very time- and context-dependent. This 
adds to the complexity in the understanding of NPIs’ 
effectiveness, and substantiates the research challenges 
ahead to provide relevant information for public health 
decision-making.
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