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Abstract 

Background Temperature fluctuations can impact the occurrence and progression of respiratory system diseases. 
However, the current understanding of the impact of temperature on acute exacerbation of chronic obstructive 
pulmonary disease (AECOPD) remains limited. Therefore, our study aims to investigate the relationship between daily 
mean temperature (DMT) and the risk of AECOPD hospitalizations within Panzhihua City.

Methods We systematically collected data on AECOPD hospitalizations at Panzhihua Central Hospital from 2015 
to 2020 and meteorological factors across Panzhihua City’s districts. A two-stage analysis method was used to estab-
lish a distributed lag non-linear model to elucidate the influence of DMT on the frequency of admissions for AECOPD. 
Subgroup analyses were conducted by gender and age to identify populations potentially susceptible to the impact 
of DMT.

Results A total of 5299 AECOPD hospitalizations cases were included. The DMT and the risk of AECOPD hospitaliza-
tion showed a non-linear exposure–response pattern, with low temperatures exacerbating the risk of hospitalizations. 
The lag effects of low temperature and relatively low temperature peaked at 2th day, with the lag effects disappearing 
at 16–17 days. Females and elders aged ≥ 65 years were more sensitive to effects of low and relatively low tempera-
ture at lag 0–4 days, while male AECOPD patients exhibited longer lasting lag effects.

Conclusions Low temperatures are associated with an increased risk of AECOPD hospitalizations. Females or elders 
aged ≥ 65 years with chronic obstructive pulmonary disease should pay more attention to taking protective measures 
in cold environments. These findings are crucial for the formulation of public health policies, as they will help signifi-
cantly alleviate the burden of AECOPD and improve respiratory health in the face of climate challenges.
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Introduction
Chronic obstructive pulmonary disease (COPD) is one 
of the most common chronic respiratory disease, sig-
nificantly influenced by environmental factors, and 
currently lacks an effective cure [1]. According to the 
Global Burden of Disease Study (2019), approximately 
250 million people worldwide suffer from COPD [2], 
making it the third leading cause of death globally with 
3.23 million deaths reported in 2019. Notably, nearly 
90% of these deaths occur in low- and middle-income 
countries among individuals under the age of 70 [3]. A 
cross-sectional study conducted in China estimated 
a COPD prevalence rate of 8.6% (n = 50,991) among 
adults aged ≥ 20 years, and around 99.9 million indi-
viduals affected [4]. COPD poses a significant public 
health challenge, significantly impacting global health 
and imposing considerable economic strains. Smoking, 
obesity, malnutrition, and comorbidities have been iden-
tified as precipitants of COPD [5]. Furthermore, expo-
sure to certain environmental factors, such as climate 
change, occupational exposure, and air pollution, also 
contribute to the development of COPD [6]. The acute 
exacerbation of COPD (AECOPD), characterized by an 
abrupt intensification of symptoms, is frequently linked 
to these risk factors. It serves as a principal reason for 
hospital admissions, escalates the likelihood of medical 
complications and mortality, and consequently incurs 
substantial healthcare expenditures [7]. In the United 
States, more than $3.2 billion is spent annually on COPD 
management [8], with AECOPD accounting for 50–75% 
of these expenditures [9].

In recent years, global climate change has emerged 
as a significant environmental public health challenge, 
characterized by the occurrence of global warming 
and frequent extreme weather events. The fluctuations 
in temperature and humidity, coupled an increase in 
extreme weather events, have been proven to affect the 
prevalence and severity of respiratory diseases [10]. Tran 
et  al. emphasized the critical importance of adapting to 
and mitigating climate change to reduce COPD mortal-
ity rates, particularly in regions experiencing significant 
fluctuations in temperature and humidity [1]. Lin et  al. 
investigated the relationship between meteorological fac-
tors and AECOPD in Changhua (Taiwan, China), reveal-
ing a positive correlation between elevated temperature 
and reduced atmospheric pressure with occurrences of 
AECOPD during warming-up seasons. Conversely, they 
observed a positive correlation between decreased tem-
perature and PM10 concentration with AECOPD dur-
ing cooling-down seasons [11]. Notably, there is limited 
research on the impact of climate change factors like 
temperature on AECOPD. Existing studies exhibit con-
siderable variations across different geographical regions 

and populations. Therefore, further research is necessary 
to provide more specific and practical information for 
devising accurate prevention and management strategies.

Numerous studies have demonstrated that the rela-
tionship between temperature and incidence of diseases 
is not linear and may involve lagged effects [12, 13]. The 
Distributed Lag Non-Linear Model (DLNM) is a statisti-
cal tool specifically designed to investigate and quantify 
the delayed and non-linear relationships of variables over 
time. It enables the identification of both short-term and 
long-term impacts of environmental factors on human 
health, making it widely utilized [14, 15]. Hence, our 
study aims to assess the lag effects of temperature on hos-
pital admissions for AECOPD in Panzhihua City, China, 
using the DLNM and multivariate meta-regression anal-
ysis. Our research provides a comprehensive analysis 
of the influence of daily mean temperatures (DMT) on 
AECOPD hospitalization rates in Panzhihua, China. Our 
study provides evidence that temperature changes are 
associated with COPD exacerbations, filling a significant 
gap that has been largely ignored in previous studies. It 
aims to provide a scientific basis for the development of 
comprehensive prevention and control strategies and 
measures for AECOPD.

Materials and methods
Data resources
The hospitalization data of 5299 AECOPD cases between 
January 2015 and December 2020 were obtained from 
the case database of Panzhihua Central Hospital. These 
patients resided in Panzhihua, Renhe District, Miyi 
County, and Yanbian County. Key data collected included 
admission dates, disease diagnoses, gender, age, and 
place of residence. The study included both initial and 
recurring AECOPD cases, adhering to established stand-
ards for COPD diagnosis and treatment. Exclusion cri-
teria were applied to patients diagnosed with asthma or 
other known respiratory diseases, as well as those with 
uncontrolled severe inflammation or complications in 
other systems. This study was conducted in compliance 
with the latest revision of the Declaration of Helsinki.

The meteorological data for this study were obtained 
from the Panzhihua, Renhe, Yanbian, and Miyi meteoro-
logical stations (Fig. 1). The primary data included DMT, 
daily average relative humidity, and daily average air pres-
sure for the four districts and counties of Panzhihua City, 
spanning from January 2015 to December 2020.

Research methods
Descriptive analysis of meteorological factors
In this study, meteorological factors were character-
ized by their minimum value (Min), 10th percentile 
 (P10), 15th percentile  (P15), 50th percentile  (P50), 90th 
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percentile  (P90), 95th percentile  (P95), and maximum 
value (Max). These percentiles were used to describe 
the distribution of meteorological factors. Furthermore, 
Spearman rank correlation analysis was conducted to 
examine the correlations among the meteorological 
factors.

Two‑stage analysis method to examine the impact of DMT 
on AECOPD hospitalization
DLNM can flexibly characterize the relationship between 
exposures (such as temperature, air pollutants, etc.) 
and health outcomes over time [16]. The adoption of a 
two-stage analysis method can effectively improve the 

Fig. 1 The location of meteorological factor monitoring stations in the study. Notes: Miyi (26°9166’N latitude and 102°1166’E longitude), Yanbian 
(26°6833’N latitude and 101°85’E longitude), Panzhihua (26°5833’N latitude and 101°7166’E longitude), Renhe (26°4975’N latitude and 101°7573’E 
longitude). Drawing using ArcGIS10.2
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stability and reliability of effect estimates in regions with 
small samples, thereby enhancing the model’s adapt-
ability [17, 18]. Given the absence of reports on the 
relationship between DMT and the risk of hospitaliza-
tion for AECOPD patients in Panzhihua City, this study 
employed a two-stage analysis based on DLNM to inves-
tigate the impact of DMT on AECOPD hospitalizations 
across the district and counties of Panzhihua City.

In the first stage, we used the R package “dlnm” to build 
DLNM for each district and county. DLNM can flexibly 
describe the nonlinear and delayed effect relationship of 
exposure–response in time series data [19]. The quasi-
Poisson function was employed as the link function to fit 
the exposure–response relationship between the DMT 
and the hospitalization count for AECOPD. To account 
for the confounding effects of other meteorological fac-
tors such as relative humidity and atmospheric pressure, 
natural cubic spline functions of daily average relative 
humidity and atmospheric pressure were included in the 
model. To eliminate the influence of long-term patterns 
on short-term associations, a cubic spline function of 
time was incorporated into the model. Additionally, the 
model considered the day of the week effects and holiday 
effects. The final expression is as follows:

Here, E(Yt) is the expected value of daily hospitaliza-
tion count for AECOPD exacerbations on day t, α is the 
intercept, Tempt, l represents the cross-basis of DMT and 
lagged time, β is the coefficient for Tempt, l, NS denotes 
the natural cubic spline function, df represents degrees of 
freedom, pre is daily average atmospheric pressure, rh is 
daily average relative humidity, time is the time variable, 
DOW accounts for day of the week effects, and holiday 
represents holiday effects. Based on previous research 
indicating temperature lag effects, the longest lag time 
selected was 21 days [20]. According to the quasi-like-
lihood for Akaike’s information criterion (Q-AIC) and 
prior research results, the degrees of freedom for daily 
average atmospheric pressure and relative humidity were 
set to 3, and the annual degrees of freedom for the time 
trend variable were set to 7 [21].

In the second stage, the R package “mvmeta” was 
employed to combine the DLNM results from four dis-
tricts obtained in the first stage, in order to derive the 
overall exposure–response relationship for Panzhihua 
City. The R package “mvmeta” performs random-effect 
meta-analysis, which can effectively handle heteroge-
neity by allowing for variation in effect sizes between 
studies and incorporating this variation into the model 
[22, 23]. Given the heterogeneity in population size 
and effect magnitude among the study regions, the 

log[E(Yt)] = α+βTempt,l+NS(rh, df )+NS(pre, df )+NS(time, df )+DOW+holiday

Best Linear Unbiased Prediction (BLUP) analysis from 
the mvmeta algorithm was introduced to fit the meta-
analysis results. BLUP provides the best effect estimate 
by weighing the overall fixed effect and the regional 
observed effect. When there are fewer regional research 
data, the total variability increases, making the estimate 
of the region more dependent on the overall average 
estimate [22, 24]. This approach results in a more reli-
able exposure–response relationship between DMT and 
AECOPD risk for Panzhihua City as a whole [25].

Lagged effects analysis of AECOPD hospitalization risk 
at different temperatures
The relative risk (RR) refers to the ratio of the risk of hos-
pitalization for AECOPD caused by exposure to a given 
temperature to the risk at the minimum risk temperature 
[25]. The R package “dlnm” transforms the linear predic-
tors (log[E(Yt)]) for each temperature and lag day into risk 
values using an exponential function. After determining 
the minimum risk value, RR represents the ratio of the 
risk value at each temperature and lag day to the low-
est risk value. In this study, we observed that the risk of 
hospitalization for AECOPD was minimized at an DMT 
of 31.7°C. Using 31.7°C as the reference, the RR at each 

temperature was calculated and the exposure–response 
curve was drawn. The RR of hospitalization for AECOPD 
was calculated for exposure to low temperature  (P5), rela-
tively low temperature  (P10), relatively high temperature 
 (P90), and high temperature  (P95) with a lag time rang-
ing from 0 to 21 days. Lag-effect curves were plotted to 
elucidate the impact of high and low temperature on the 
risk of AECOPD hospitalizations. Finally, stratified analy-
ses were conducted based on gender and age (< 65 years 
and ≥ 65 years) to identify populations more sensitive to 
DMT. The study employed a two-sided test with a signifi-
cance level of 0.05.

Model robustness assessment
After adjusting the degrees of freedom for the time vari-
able, the exposure–response curves of DMT and the risk 
of AECOPD admissions were drawn. The robustness of 
the model was evaluated based on the consistency of its 
trends.

Results
Basic characteristics of AECOPD patients
A total of 5,299 hospitalized AECOPD patients from four 
districts/counties in Panzhihua from 2015 to 2020 were 
included. Upon analyzing the baseline information of 
these patients, their ages ranged from 30 and 101 years. 
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Specifically, 12.21% (647) of the patients aged < 65 years, 
while 87.79% (4,652) were aged ≥ 65 years. Additionally, 
75.77% (4,015) of the patients were male, and 24.23% 
(1,284) were female (Table  1). Among the four regions, 
Panzhihua had the largest number of hospital admissions, 
accounting for 55.56% (2,944) of total admissions, while 
Miyi County and Yanbian County had fewer AECOPD 
admissions (Table  1). The daily hospitalization infor-
mation across the four regions revealed that the daily 
hospitalization count ranged from 0 to 10 individuals 
(Supplementary Table  1). Furthermore, the distribution 

of AECOPD patients’ hospitalization time showed that 
the number of hospitalizations was higher in January and 
December and lower from April to September each year. 
A rising trend in hospitalizations was observed start-
ing from September (Fig. 2). These findings suggest that 
AECOPD is more prevalent in winter and less prevalent 
in summer in Panzhihua.

Analysis of meteorological factors in Panzhihua City 
from 2015 to 2020
Panzhihua City, situated in the southern region of 
Sichuan Province, China, is located at approximately 
26°23’N latitude and 101°43’E longitude. The city exhib-
its a subtropical monsoon climate characterized by 
concentrated summer precipitation and relatively arid 
winters. It maintains a consistently warm temperature 
throughout the year, featuring brief, scorching summers 
and mild winters. The median DMT in Panzhihua City is 
21.9℃ (range: 4.2–34.2℃), while the median daily aver-
age atmospheric pressure stands at 880.3 hPa (range: 
857.8–902.6 hPa). Additionally, the median daily aver-
age relative humidity is 62% (range: 12%-100%) (Table 2). 
Spearman correlation analysis was conducted to exam-
ine the interplay between these meteorological factors, 

Table 1 Basic characteristics of AECOPD patients

Area Panzhihua Renhe 
District

Miyi County Yanbian 
County

Total

Number 2944 1528 488 339 5299

Gender

 Male 2282 1144 351 238 4015

 Female 662 384 137 101 1284

Age

 < 65 269 180 107 91 647

 ≥ 65 2675 1348 381 248 4652

Fig. 2 Trend of monthly hospitalization number of patients with AECOPD in Panzhihua City

Table 2 Distribution of meteorological factors in Panzhihua City from 2015 to 2020

DMT Represents daily mean temperature, DMAP Represents daily mean atmospheric pressure, DMRH Represents daily mean relative humidity

Variables Min P5 P10 P50 P90 P95 Max

DMT/℃ 4.2 12.1 13.3 21.9 27.8 29.5 34.2

DMAP/hPa 857.8 866.5 869.1 880.3 888.8 891.0 902.6

DMRH/% 12 26 30 62 81 86 100
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revealing significant negative correlation between DMT 
and both daily mean atmospheric pressure as well as 
daily mean relative humidity (Fig.  3). Considering that 
lower relative humidity and higher atmospheric pres-
sure are associated with an increased risk of AECOPD 
[26], both variables were considered as confounding fac-
tors for subsequent analysis on the impact of DMT on 
AECOPD hospitalizations.

The impact of DMT on AECOPD hospitalizations
To investigate the association between DMT and 
AECOPD hospitalizations, we constructed an exposure–
response curve to examine the relationship between 
DMT and the risk of AECOPD hospitalization. We found 
that the risk of AECOPD hospitalization was lowest 
when the DMT was 31.7°C. Therefore, 31.7°C was used 
as the reference point for calculating RR values in sub-
sequent analyses. Our analysis revealed a nonlinear asso-
ciation between lower temperatures and increased risk of 
AECOPD hospitalization (Fig.  4). Notably, DMT above 
21.7°C did not significantly impact AECOPD hospitali-
zation risk. However, below this threshold temperature, 
significant differences in RR values were observed. The 

highest RR value was recorded at a temperature of 4.2°C, 
reaching 15.008 (95% CI: 7.179 ~ 31.377) (Fig. 4).

Lagged effects of DMT on AECOPD hospitalizations
To investigate the lagged effects of DMT on the risk of 
hospitalization for AECOPD, we constructed a three-
dimensional graph illustrating the relationship between 
RR and lag days, as well as variations in DMT. The find-
ings revealed that exposure to low temperatures was 
associated with an increased short-term risk of hospi-
talization for AECOPD, reaching its peak within 0–5 
days before gradually declining. Although exposure to 
high temperatures had a relatively smaller impact on the 
risk of hospitalization for AECOPD, it also exhibited a 
transient lagged effect (Fig.  5). Consequently, this study 
further analyzed the lagged effects of both low and high 
temperatures on the risk of hospitalization for AECOPD.

Lag-response curves (Fig.  6) were employed to inves-
tigate the delayed effects of various temperature levels, 
including low (12.1°C), relatively low (13.3°C), relatively 
high (27.8°C), and high (29.5°C), on the AECOPD hos-
pitalizations. The findings revealed that both low tem-
perature and relatively low temperature exhibited 

Fig. 3 Spearman correlation among meteorological factors. Notes: DMT represents daily mean temperature, DMAP represents daily mean 
atmospheric pressure, DMRH represents daily mean relative humidity; blue indicates a positive correlation, red indicates a negative correlation, 
and *** represents P < 0.001
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prolonged lagged effects on AECOPD. Following expo-
sure to low temperature, a significant and maximum RR 
was observed at 2th day lag period (RR = 1.101, 95% CI: 
1.009 ~ 1.202). Subsequently, the RR gradually declined 
and disappeared entirely by the 17th day. Similarly, the 

impact of relatively low temperature on AECOPD hos-
pitalizations persisted for an extended duration. with a 
significant RR observed at a lag 2th day following expo-
sure to this condition (RR = 1.098, 95% CI: 1.011 ~ 1.193), 
disappearing by the 16th day in its entirety. However, 

Fig. 4 Exposure–response relationship between DMT and relative risk of AECOPD hospitalization in Panzhihua City based on BLUP adjustment. 
Notes: The gray dashed lines represent the exposure–response curves adjusted with BLUP corresponding to the four districts/counties in Panzhihua 
City. The red solid line represents the overall exposure–response curve of Panzhihua City after conducting multiple meta-regression analysis 
and applying BLUP adjustment. The gray shaded area indicates the 95% confidence interval

Fig. 5 Three-dimensional graph of the risk distribution for AECOPD hospitalizations across different lag periods and DMT
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no significant delayed effects were observed for either 
relatively high temperature or high temperature on the 
AECOPD hospitalizations (Table 3).

The impact of DMT on AECOPD hospitalizations based 
on gender stratified analysis
The gender-stratified revealed that both low and rela-
tively low temperature had significant impact on 
AECOPD hospitalizations in both sexes. In the female 
population, the RR values for low and relatively low 
temperature reached their maximum at lag 3–4 days, 
surpassing those observed in males. This suggested that 
females faced a higher risk of AECOPD hospitalization 
within 0–4 days when exposure to low and relatively low 
temperature. In contrast, the effect of low and relatively 
low temperature on male AECOPD patients persisted for 
a longer duration, becoming significant effects from a lag 
at 4th day, reaching a peak at 3th day, and persisting until 
16th day. No significant effects of relatively high tempera-
ture and high temperature on AECOPD hospitalizations 
were observed in both groups (Table 4).

The impact of DMT on AECOPD hospitalizations in different 
age groups
The age-stratified revealed that both low and relatively 
low temperature had a significant impact on AECOPD 
hospitalization in individuals aged ≥ 65 years. Conversely, 
in the age group < 65 years, temperature did not have a 
significant effect on the risk of AECOPD hospitaliza-
tion. When compared to the temperature associated 
with the lowest risk, low temperature at lag of 2th day 

exhibited the RR for AECOPD hospitalization in indi-
viduals aged ≥ 65 years, reaching 1.128 (95% CI: 1.025–
1.242). Subsequently, this Lag effect gradually diminished 
and became insignificant by 17–21 days. In individuals 
aged ≥ 65 years, the Lag effect of relatively low tempera-
ture on AECOPD hospitalization was similar to that of 
low temperature, albeit with RR values were relatively 
lower than the impact of low temperature. No signifi-
cant effects of relatively high temperature on AECOPD 
exacerbation hospitalizations were observed across dif-
ferent age groups (Table 5). Interestingly, high tempera-
ture showed a slight protective effect in people aged > 65 
years.

Sensitivity analysis
To evaluate the robustness of the model, we adjusted 
the time series degrees of freedom ranging from 6 to 9, 
to control the temporal trends (Fig. 7). It indicated that, 
under different degrees of freedom, the relationship 
between temperature and the RR of AECOPD hospitali-
zations exhibited similar trends. This suggested the reli-
ability of the model.

Discussion
This study is the first comprehensive investigation and 
analysis of the relationship between DMT and AECOPD 
hospitalization in Panzhihua, a city in southwestern 
China. There was a non-linear exposure–response 
relationship between DMT and AECOPD hospitaliza-
tion, and low DMT significantly increased the risk of 
AECOPD hospitalization. Furthermore, we elucidated 

Fig. 6 Lag-response curves for the impact of different DMT on AECOPD hospitalizations. Notes: Dashed lines indicate the 95% confidence interval
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the lag effects of low DMT, revealing that the Lag effect 
of low DMT was limited to 2–17 lag days after exposure. 
Notably, the extent of the lag effect of low temperature 
varied greatly depending on gender and age.

The proportion of male AECOPD hospitalizations was 
significantly higher than that of females. This dispar-
ity can largely be attributed to a markedly higher preva-
lence of smoking among males. Analysis by Liu et al. of 
the nationally representative 2018 China Health Lit-
eracy Survey revealed a significantly higher smoking 
rate among males than females in the population aged 
20–69 (47.6% vs. 1.9%) [27]. Considering that smoking 
is a primary cause of COPD [28], this may be one of the 
reasons for the differences in AECOPD hospitalizations 
in different gender subgroups. Additionally, there was a 
significant increase in the number of AECOPD hospi-
talized AECOPD patients aged ≥ 65 years compared to 
those ≤ 65 years. Which can be attributed to age-related 
decline in physical function exacerbating their conditions 
and necessitating hospitalization.

To date, several studies have suggested a correlation 
between temperature and the incidence and mortality of 

COPD [6, 29]. However, limited epidemiological research 
has specifically focused on the association between DMT 
and AECOPD. A significant finding of our study was the 
identification of a non-linear relationship between DMT 
and hospital admissions for AECOPD. We observed 
that low DMT increasing the risk of AECOPD hospi-
talization, with no effect observed when DMT exceeded 
21.7℃. Interestingly, our results were inconsistent with 
previous studies conducted in Taiwan, China [11], which 
reported an elevated risk of AECOPD with both increas-
ing and decreasing temperature. Several mechanisms 
have been proposed to explain the increase in pulmonary 
diseases during colder temperature. Firstly, low tempera-
ture increased the risk of respiratory infections [30]. Sec-
ondly, cold conditions exacerbated airway inflammation, 
a pivotal factor in the genesis and progression of COPD 
[31, 32]. Additionally, cold air can induce bronchocon-
striction leading to breathing difficulties and worsening 
condition, thereby increasing the risk of hospitalization 
and mortality [33]. Nevertheless, it is important to note 
that the impact of temperature on COPD varies signifi-
cantly across different regions [11, 34–36].

Table 3 Lag effects of DMT on AECOPD hospitalizations

RR represents relative risk
a Represents statistically significant results

Lag days (d) Low temperature (12.1℃) Relatively low temperature 
(13.3℃)

Relatively high temperature 
(27.8℃)

High temperature 
(29.5℃)

RR 95%CI RR 95%CI RR 95%CI RR 95%CI

0 0.762 0.634 ~ 0.917 0.780 0.647–0.94 0.965 0.905–1.029 0.954 0.863–1.055

1 1.003 0.929 ~ 1.083 1.010 0.942–1.084 1.023 0.992–1.056 0.986 0.946–1.028

2 1.101 1.009 ~ 1.202a 1.098 1.011–1.193a 1.032 0.999–1.067 1.008 0.963–1.056

3 1.090 1.041 ~ 1.141a 1.082 1.033–1.133a 1.015 0.994–1.036 1.020 0.993–1.048

4 1.077 1.035 ~ 1.121a 1.066 1.024–1.110a 1.003 0.984–1.022 1.024 0.997–1.053

5 1.072 1.026 ~ 1.120a 1.060 1.016–1.106a 0.997 0.978–1.017 1.023 0.994–1.054

6 1.072 1.031 ~ 1.115a 1.061 1.022–1.101a 0.996 0.979–1.013 1.019 0.993–1.046

7 1.074 1.043 ~ 1.107a 1.064 1.034–1.094a 0.997 0.984–1.011 1.013 0.992–1.033

8 1.076 1.051 ~ 1.101a 1.067 1.044–1.090a 0.999 0.989–1.010 1.006 0.991–1.022

9 1.075 1.051 ~ 1.100a 1.067 1.044–1.090a 1.001 0.990–1.011 1.001 0.987–1.015

10 1.072 1.046 ~ 1.099a 1.065 1.040–1.090a 1.001 0.990–1.012 0.996 0.982–1.011

11 1.068 1.040 ~ 1.096a 1.060 1.033–1.088a 1.001 0.989–1.013 0.993 0.977–1.009

12 1.061 1.033 ~ 1.090a 1.054 1.026–1.082a 1.000 0.989–1.012 0.990 0.975–1.006

13 1.053 1.026 ~ 1.081a 1.046 1.019–1.073a 0.999 0.988–1.011 0.988 0.973–1.004

14 1.044 1.019 ~ 1.069a 1.036 1.012–1.061a 0.998 0.987–1.009 0.987 0.973–1.001

15 1.033 1.012 ~ 1.055a 1.025 1.005–1.046a 0.996 0.986–1.006 0.986 0.974–0.998

16 1.022 1.003 ~ 1.040a 1.014 0.996–1.031 0.994 0.985–1.003 0.986 0.975–0.997

17 1.009 0.991 ~ 1.029 1.001 0.984–1.018 0.991 0.982–1.001 0.986 0.975–0.997

18 0.997 0.974 ~ 1.020 0.988 0.967–1.009 0.989 0.977–1.000 0.986 0.973–1.000

19 0.984 0.954 ~ 1.014 0.974 0.947–1.002 0.986 0.972–1.000 0.987 0.969–1.005

20 0.970 0.932 ~ 1.010 0.960 0.926–0.996 0.983 0.965–1.001 0.988 0.965–1.011

21 0.957 0.910 ~ 1.006 0.946 0.904–0.991 0.980 0.958–1.002 0.988 0.960–1.018
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A study in Hangzhou, China, revealed a non-linear 
association between temperature and COPD mortal-
ity, characterized by an inverse J-shaped pattern. both 
extreme low and high temperature increased the risk of 
COPD deaths, with the impact of low temperature being 
greater than that of high temperature [34]. Similarly, two 
studies in the United States also found that during hot 
summers, an increase in temperature was associated with 
a rise in hospital admissions for COPD and increased 
mortality rates among elderly COPD patients [37, 38]. 
The specific mechanisms underlying the heightened 
risks of COPD due to high temperature remain unclear. 
One possible explanation is that high temperature may 
increase the concentration of air pollutants, such as par-
ticulate matter, nitrogen oxides, sulfur oxides, and ozone 
precursors. The synergistic effect between high tempera-
ture and air pollution could potentially increase the risk 
of respiratory diseases [39]. Moreover, certain pathogens 

including viruses and bacteria may thrive more effec-
tively in high-temperature environments leading to the 
development or exacerbating respiratory diseases [40].

However, we observed that high temperature had no 
effect on the overall risk of AECOPD hospitalization, but 
showed a slight protective effect in the group ≥ 65 years 
old, which may be related to the mild climate of Pan-
zhihua City. The highest temperature in Panzhihua City 
during the observation period did not exceed 34.2℃. 
Therefore, this result does not contradict previous stud-
ies. Zhang et  al. assessed the impact of environmental 
temperature on AECOPD in Beijing, China, and found 
a significant positive correlation with low temperature, 
not high temperature [41]. This variation could be attrib-
uted to a combination of factors including geographical 
and climatic differences. Numerous studies have dem-
onstrated the influence of seasons on the mortality rates 
of respiratory diseases, with the heightened mortality 

Table 4 Lag effects of DMT on AECOPD hospitalizations in different gender groups at different lag days

RR Represents relative risk
a Represents statistically significance

Lag days (d) Low temperature (12.1℃) Relatively low temperature 
(13.3℃)

Relatively high temperature 
(27.8℃)

High temperature 
(29.5℃)

RR 95%CI RR 95%CI RR 95%CI RR 95%CI

Female

 0 0.650 0.338–1.249 0.652 0.332–1.283 1.094 0.96–1.246 1.151 0.923–1.434

 1 1.104 0.899–1.356 1.111 0.909–1.357 1.090 1.022–1.163a 1.058 0.966–1.158

 2 1.265 0.911–1.756 1.270 0.908–1.775 1.063 0.995–1.136 1.027 0.935–1.129

 3 1.170 1.001–1.367a 1.169 0.994–1.375 1.030 0.993–1.068 1.027 0.977–1.081

 4 1.098 1.013–1.189a 1.092 1.011–1.181a 1.006 0.972–1.041 1.024 0.977–1.072

 5 1.063 0.967–1.169 1.055 0.965–1.153 0.992 0.956–1.030 1.014 0.964–1.067

Male

 0 0.802 0.653–0.985 0.824 0.679–0.999 0.926 0.862–0.995 0.897 0.802–1.005

 1 0.978 0.876–1.092 0.985 0.893–1.086 1.005 0.973–1.038 0.965 0.920–1.012

 2 1.058 0.946–1.184 1.053 0.953–1.165 1.025 0.989–1.061 1.003 0.951–1.058

 3 1.066 1.013–1.122a 1.057 1.007–1.109a 1.011 0.990–1.033 1.018 0.989–1.048

 4 1.068 1.013–1.126a 1.057 1.006–1.111a 1.002 0.981–1.023 1.025 0.995–1.055

 5 1.072 1.007–1.140a 1.061 1.001–1.123a 0.998 0.976–1.020 1.026 0.994–1.059

 6 1.075 1.017–1.137a 1.065 1.012–1.121a 0.998 0.979–1.018 1.024 0.995–1.053

 7 1.078 1.036–1.122a 1.069 1.031–1.109a 1.001 0.986–1.016 1.020 0.998–1.042

 8 1.080 1.051–1.110a 1.072 1.045–1.100a 1.004 0.992–1.016 1.015 0.998–1.031

 9 1.079 1.052–1.106a 1.072 1.046–1.098a 1.006 0.994–1.017 1.010 0.995–1.026

 10 1.076 1.045–1.107a 1.070 1.040–1.100a 1.006 0.994–1.019 1.006 0.989–1.023

 11 1.070 1.036–1.106a 1.065 1.032–1.099a 1.006 0.993–1.019 1.002 0.984–1.020

 12 1.063 1.027–1.101a 1.058 1.024–1.094a 1.005 0.991–1.018 0.998 0.980–1.017

 13 1.055 1.020–1.091a 1.050 1.016–1.084a 1.003 0.990–1.016 0.995 0.977–1.013

 14 1.045 1.014–1.077a 1.040 1.010–1.070a 1.000 0.988–1.012 0.992 0.975–1.008

 15 1.034 1.009–1.061a 1.028 1.003–1.054a 0.997 0.986–1.008 0.989 0.974–1.003

 16 1.023 1.002–1.044a 1.016 0.995–1.037 0.993 0.983–1.003 0.986 0.973–0.999

 17 1.010 0.990–1.031 1.003 0.983–1.022 0.989 0.979–0.999 0.983 0.97–0.996
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observed during the hot summer months and cold winter 
periods warranting significant attention [42, 43]. Douglas 
et  al. compared latitude with seasonal variations in all-
cause mortality, highlighting the significant and intricate 
roles of climatic conditions, sunlight duration, and other 
environmental factors in the fluctuations of respiratory 
diseases [44]. Additionally, population adaptability might 
also contribute to these differences. A study investigating 
temporal changes in population adaptability to heat and 
cold revealed a decrease in susceptibility to high temper-
atures and heatwaves; however, no significant reduction 
in mortality due to cold was observed [45]. Our study 
only observed a slight protective effect of high tempera-
ture on AECOPD hospitalization, possibly because resi-
dents have a better adaptability to summer temperature.

The impact of temperature on disease incidence is not 
instantaneous and often exhibits a lag effect. Previous 

studies have shown that the lag effect of low tempera-
ture usually lasts longer, while high temperature either 
have no lag effect or a shorter one [15, 37]. The impact 
of low DMT on AECOPD was stronger than that of 
high DMT, both in terms of the number of hospital 
admissions and the duration of the lag effect in this 
study. Specifically, low DMT exhibited a more enduring 
lag effect. Multiple studies have reported higher num-
bers of AECOPD admissions during winter [11, 46]. 
These studies suggested that in colder months, more 
proactive monitoring and treatment of COPD patients 
should be implemented. Public awareness should also 
be raised with measures provided to reduce the risk 
of AECOPD. Additionally, medical resource allocation 
should be adjusted according to temperature trends to 
provide adequate healthcare services for the potential 
increase in AECOPD patients.

Table 5 Lag effects of DMT on AECOPD hospitalizations in different age groups at different lag days

RR Represents relative risk
a Represents statistically significant results

Lag days (d) Low temperature (12.1℃) Relatively low temperature 
(13.3℃)

Relatively high temperature 
(27.8℃)

High temperature 
(29.5℃)

RR 95%CI RR 95%CI RR 95%CI RR 95%CI

< 65

 0 1.697 0.886–3.251 1.598 0.879–2.906 0.904 0.751–1.089 0.840 0.627–1.127

 1 1.000 0.744–1.345 0.987 0.744–1.311 0.996 0.915–1.084 0.969 0.858–1.094

 2 0.833 0.583–1.19 0.838 0.599–1.172 1.020 0.931–1.116 1.008 0.881–1.154

 3 0.854 0.734–0.992 0.859 0.746–0.99 1.005 0.954–1.058 0.995 0.925–1.070

 4 0.893 0.773–1.032 0.897 0.782–1.03 0.996 0.947–1.046 0.988 0.923–1.058

 5 0.933 0.776–1.122 0.935 0.785–1.113 0.995 0.944–1.049 0.992 0.921–1.068

≥ 65

 0 0.701 0.570–0.861 0.725 0.581–0.905 0.968 0.905–1.036 0.964 0.868–1.071

 1 0.998 0.924–1.078 1.009 0.939–1.083 1.025 0.99–1.062 0.986 0.943–1.030

 2 1.128 1.025–1.242a 1.124 1.023–1.236a 1.033 0.995–1.072 1.006 0.956–1.058

 3 1.116 1.061–1.174a 1.106 1.048–1.166a 1.014 0.991–1.038 1.021 0.99–1.0520

 4 1.098 1.054–1.144a 1.085 1.041–1.131a 1.001 0.982–1.022 1.027 0.997–1.057

 5 1.089 1.042–1.138a 1.075 1.031–1.122a 0.995 0.976–1.015 1.025 0.995–1.056

 6 1.085 1.042–1.129a 1.072 1.032–1.113a 0.993 0.976–1.011 1.019 0.993–1.046

 7 1.083 1.050–1.116a 1.072 1.041–1.103a 0.994 0.981–1.008 1.011 0.991–1.031

 8 1.081 1.056–1.107a 1.072 1.047–1.097a 0.996 0.985–1.007 1.003 0.988–1.018

 9 1.078 1.053–1.104a 1.070 1.046–1.094a 0.997 0.987–1.008 0.996 0.982–1.010

 10 1.073 1.046–1.101a 1.066 1.039–1.093a 0.989 0.977–1.001 0.991 0.975–1.006

 11 1.067 1.038–1.097a 1.060 1.032–1.089a 0.998 0.986–1.009 0.987 0.970–1.004

 12 1.060 1.030–1.090a 1.053 1.024–1.082a 0.998 0.986–1.01 0.984 0.967–1.001

 13 1.051 1.023–1.080a 1.045 1.017–1.072a 0.998 0.985–1.01 0.982 0.966–0.999a

 14 1.042 1.016–1.068a 1.035 1.010–1.060a 0.997 0.985–1.009 0.982 0.967–0.997a

 15 1.032 1.010–1.054a 1.024 1.003–1.046a 0.996 0.985–1.007 0.982 0.969–0.995a

 16 1.021 1.002–1.040a 1.013 0.995–1.031 0.994 0.984–1.004 0.983 0.971–0.994a

 17 1.009 0.991–1.028 1.001 0.983–1.019 0.993 0.983–1.002 0.984 0.972–0.996a

 18 0.998 0.975–1.021 0.988 0.967–1.01 0.991 0.981–1.001 0.986 0.972–1.001
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In the subgroup analysis, we observed a higher suscep-
tibility to the effects of low DMT in patients aged ≥ 65, 
which is consistent with previous research findings [26, 
47]. This increased vulnerability can be attributed to age-
related declines in bodily functions, respiratory function, 
weakened immunity, and a higher likelihood of comor-
bidities, rendering them more sensitive to low DMT [48]. 
Additionally, we noted that under low DMT conditions, 
females exhibited a higher RR. However, conflicting stud-
ies suggest that females are more affected by high tem-
peratures and less affected by low temperatures compared 
to males [49, 50]. The gender differences in response to 
temperature changes might be associated with social and 
behavioral factors, study design, and population choices, 
but the precise reasons require further investigation. 
Interestingly, the lag effect of low DMT persisted longer 
in males than in females. This could be due to men being 
more prone to cardiovascular diseases, with low DMT 
increasing cardiovascular stress and thus exerting a more 
extended impact on men [51].

In summary, this study had the following two 
key highlights. Firstly, we employed the advanced 

statistical method of a distributed lag non-linear 
model, enabling us to conduct a comprehensive analy-
sis of the impact of different temperature and lag times 
on the risk of hospitalization due to AECOPD. Sec-
ondly, the statistical analysis was based on a substan-
tial dataset from 2015–2020, and encompassing four 
districts in Panzhihua City. This extensive data cover-
age enhances the reliability and generalizability of our 
findings. However, there are certain limitations in this 
study. Firstly, the scope of our research was limited 
to Panzhihua City; therefore, its applicability to other 
regions with distinct climatic characteristics may be 
constrained. Secondly, there might be unidentified or 
uncontrolled factors that could affect the accuracy of 
the results. Additionally, existing literature suggested 
interactions among diurnal temperature range, relative 
humidity, and atmospheric pressure, which heighten 
COPD risk [26, 52]. In our study, we only analyzed 
relative humidity and atmospheric pressure as con-
founding factors. Future research should aim at further 
investigate the correlation between humidity, atmos-
pheric pressure and AECOPD.

Fig. 7 Exposure–response curves of temperature and AECOPD hospitalizations under different degrees of freedom. Notes: The gray area represents 
the 95% confidence interval
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Conclusion
This study revealed an association between lower DMT 
and increased AECOPD hospitalizations in Panzhihua, 
China. The lag effects of low (12.1°C) and relatively 
low (13.3°C) DMTs were evident from the second day 
and persist for over two weeks. Furthermore, our find-
ings indicate that females and patients aged over 65 are 
particularly susceptible to the adverse effects of low 
DMT on AECOPD. This study not only provide new 
insights into how low temperatures impact AECOPD 
hospitalization rates but also highlight the vulnerabil-
ity of specific groups, which is crucial for the formula-
tion of public health strategies. Our findings highlight 
the importance of environmental factors in the man-
agement of chronic diseases, urging future research to 
explore the broader impact of environmental health.
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