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Introduction
Sedentary lifestyles and a lack of physical activity pose 
significant threats to human health, particularly for resi-
dents living in urban areas. As a dominant form of physi-
cal activity, running can not only promote residents’ 
well-being [1, 2], but also reduces the risks of physical 
and mental diseases such as obesity and depression [3, 
4]. Furthermore, running has emerged as one of the most 
popular physical activities, with the number of runners 
consistently increasing and reaching hundreds of millions 
worldwide [5]. Notably, the number of active runners 
of fitness tracker app in China reached to 54.70  million 
in 2022. Therefore, creating a running-friendly city is 
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Abstract
The association between built environment and physical activity has been recognized. However, how and to what 
extent microscale streetscapes are related to running activity remains underexplored, partly due to the lack of 
running data in large urban areas. Moreover, few studies have examined the interactive effects of macroscale built 
environment and microscale streetscapes. This study examines the main and interactive effects of the two-level 
environments on running intensity, using 9.73 million fitness tracker data from Keep in Shanghai, China. Results 
of spatial error model showed that: 1) the explanatory power of microscale streetscapes was higher than that of 
macroscale built environment with R2 of 0.245 and 0.240, respectively, which is different from the prior finding 
that R2 is greater for macroscale built environment than for microscale streetscape; 2) sky and green view indexes 
were positively associated with running intensity, whereas visual crowdedness had a negative effect; 3) there were 
negative interactions of land use Herfindahl–Hirschman index with sky and green view indexes, while a positive 
interaction was observed for visual crowdedness. To conclude, greener, more open and less visually crowded 
streetscapes, can promote running behavior and enhance the benefits of land use mix as well. The findings 
highlight the importance of streetscapes in promoting running behavior, instead of a supplement to macroscale 
built environment.
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becoming more and more important for residents around 
the globe.

Understanding the benefits of favorable streetscapes is 
of great significance. Firstly, streets are widely recognized 
as one of the key venues for people’s running activity, 
and favorable streetscapes have been reported to effec-
tively promote residents’ physical activities such as walk-
ing [6, 7], running [8–10], and cycling [11, 12]. Secondly, 
according to the social-ecological model of physical 
activity, there are hierarchical needs for human physi-
cal activity [13]. That is, neighborhood- and street-level 
built environments satisfy different activity needs, with 
streetscapes meeting higher-order demands such as live-
liness and aesthetics [13]. Thus, exploring the impacts of 
neighborhood built environment, combined with those 
from microscale streetscapes, contributes to a more in-
depth understanding of physical activity. Thirdly, com-
pared to neighborhood built environment elements such 
as the road network, streetscape features are easier and 
more actionable to modify, particularly in the new Era, 
thereby benefiting healthy behavior and the health status 
of urban residents.

However, how and to what extent microscale 
streetscapes can affect people’ running activities have 
not been well understood. Specifically, among studies 
examining the impacts of microscale streetscapes, scant 
attention has been paid to running behavior [9, 14]. Fur-
thermore, among the three types of urban running trails 
by location, very few studies focus on the street [15, 16]. 
Moreover, research on the impact of physical activity has 
predominantly targeted macroscale built environment 
[15, 17, 18], with microscale streetscapes receiving little 
attention [6, 19].

To fill the gaps mentioned above, the present study 
leverages 9.73 million fitness tracker data from Keep, one 
of China’s popular sports-tracking and social platforms, 
to examine the main and interactive effects of macroscale 
built environment and microscale streetscape on running 
intensity in Shanghai, China. Specifically, we address the 
following research questions: (1) How and to what extent 
do microscale streetscape features affect running inten-
sity? (2) Can microscale streetscape enhance the positive 
effect of favorable built environment at macroscale? Our 
contributions are two-fold. Firstly, we enrich the built 
environment-associated running studies by simultane-
ously examining the main and interactive effects of mac-
roscale built environment and microscale streetscape in 
Chinese cities. Secondly, we demonstrate the applicabil-
ity of using the crowdsourced big data for running stud-
ies in large urban areas.

Literature review
Effects of microscale streetscape on running
Some prior studies have indicated that certain features 
of microscale streetscape can affect running activity. In 
general, most of running studies concentrate on eye-
level greenness [6, 19], and reported that greener and 
more open streetscapes are more likely to promote run-
ning behavior [8, 15, 20], whereas streets that are visu-
ally crowded, dense and excessively interrupted have a 
negative effect [9, 10, 16]. However, such studies are quite 
limited, making the research question of how and to what 
extent microscale streetscapes can affect people’ running 
activities have not been well understood.

The insufficient understanding of microscale 
streetscape effects is partly due to the lack of running 
data in large urban areas. Traditionally, approaches used 
to collect running data mainly included field surveys, 
questionnaires, and running diaries [21–23]. These meth-
ods are usually limited by high costs, small samples sizes, 
as well as limited geographical areas, which may lead to 
biased results [8, 24]. In response, open crowdsourced 
fitness tracker data provide great potential to alleviate 
these limitations. In particular, running data collected 
from mobile fitness apps, are superior in large data vol-
ume, precise GPS-based trajectories, and broad geo-
graphic coverages [10, 25].

The limited examination of the impacts of microscale 
streetscapes, may also stem from the challenges in mea-
suring microscale streetscapes across large spatial areas. 
Typically, microscale streetscapes are measured through 
methods such as expert evaluations and respondent sur-
veys [26, 27]. These methods are resource-intensive and 
time-consuming, but also hard to measure some factors, 
such as green view index [28]. Recent advances in com-
puter vision techniques represented by deep learning and 
the increasing available street view images (SVIs), help 
alleviate these deficiencies. SVIs are superior in large data 
volume, broad spatial coverage, and low costs in terms 
of time and money. Computer vision techniques allow 
for automatic recognition of image content such as trees 
and walls, which together advances the measurement of 
microscale streetscapes.

Several recent attempts have used crowdsourced run-
ning data and street view images to examine the effects of 
microscale streetscapes [10, 17, 29]. Particularly, a study 
using running data from Strava in Boston, USA, found 
that street environment is significantly associated with 
the amount of running [8]. This research also highlighted 
that the collective impact of microscale streetscapes 
is similar to that of macroscale built environment [8]. 
Similarly, combining route check-in data from Keep and 
machine learning approach, a study conducted in Bei-
jing of China indicated significant associations of road 
running intensity with neighborhood built environment 
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and microscale streetscapes [9]. However, such studies 
remain limited.

Apart from the unclear impacts of microscale 
streetscapes, several efforts and further work are 
required. Firstly, among studies examining the impacts 
of microscale streetscapes, most focus on walking and 
overall physical activity [6, 28, 29], with scant attention 
paid to running behavior [9, 14], despite its great health 
benefits and distinct requirements for street environment 
compared to those of other physical activities. Secondly, 
among the three types of urban running trails by loca-
tion, most studies focus on parks and playgrounds [30–
32], with fewer addressing streets [15, 16], even though 
streets are usually more accessible than parks.

Thirdly, research on the impact of physical activity has 
predominantly focused on macroscale built environment, 
with microscale streetscapes receiving little attention. 
Most studies focus on built environment at neighbor-
hood level [15, 17, 18]. Although there is a handful of 
studies consider microscale streetscapes, they usually 
concentrate on part of the five-dimension framework of 
street environment [24], with a particular emphasis on 
eye-level greenness [6, 19]. Thus, the impacts of other 
streetscape characteristics such as height-to-width ratio, 
sky view factor and street furniture [8, 12, 15], have 
largely not been well understood.

Interactive effects of macroscale built environment and 
microscale streetscapes
A large body of studies have indicated the significant 
associations between built environment and physical 
activities [10, 23, 29]. However, there are inconsistent 
findings on the effect of built environment, especially at 
the neighborhood level [33]. This is partly due to that 
there may be interactions between multi-level built envi-
ronments, including the moderation role of microscale 
streetscapes [12, 29]. Understanding the moderation 
effect of microscale streetscapes is not only an essential 
methodological issue in the field of environmental health 
[34], but also important and instructive for developing 
effective interventions in built environment, thus to bet-
ter encourage healthy behaviours.

According to the Ecological Model of Physical Activ-
ity, theoretically, one’s running behaviour is not only 
affected by multi-level factors, including the intraper-
sonal, interpersonal, organizational, community, physi-
cal environment and policy levels, but also determined 
by the interactions among indicators at different levels 
[34]. Empirically, various moderators affecting the effect 
of macroscale built environment on physical activ-
ity have been explored. These include socioeconomic, 
demographic and psychosocial factors [34–36], as well 
as microscale streetscapes [10, 29, 37]. In particular, a 
Chinse study indicated that there are positive effects of 

the interactions between macroscale built environment 
and streetscape features, particularly the interactive 
effect between road connectivity and sky view index and 
building frontage [29]. However, such studies examining 
the moderation effects of streetscapes are quite limited. 
It still remains unknown how microscale streetscapes can 
strengthen or diminish the benefits of favourable built 
environment to promote physical activity.

Materials and methods
Research area
We examined the main and interactive effects of mac-
roscale built environment and microscale streetscapes 
on running intensity in Shanghai, China. Shanghai is one 
of the four first-tier cities in China. As shown in Fig. 1, 
our research area encompassed the region defined by the 
Center Ring Highway of the city. The average active users 
of the Keep app in Shanghai amounted to 4.43  million 
in 2023, with a total of exercise times reaching approxi-
mately 9.73  million in the same year. Moreover, the 
terrain and climate of the research area selected are con-
ducive, providing favorable conditions for running activi-
ties for residents in Shanghai. Therefore, Shanghai was 
selected for the examination in the present study.

Running intensity of street segment
The variable of running activity is the running intensity of 
street segment. It is defined as the total times of running 
for each street segment divided by its length. This defi-
nition aligns with the operationalization in prior studies 
[9–11], aiming to mitigate the issue of potentially higher 
times of running in longer street segments than shorter 
ones. At the same time, this study is to understand how 
and to what extent microscale streetscapes shape resi-
dents’ running behavior, so street segments intersected 
by roads were selected as the analysis unit in this work.

Data on running activity were acquired from Keep in 
September 2023. Similar to Strava, which is popular in 
Western cities, Keep is among the most utilized sports-
tracking and social platforms in China. Its average active 
users reached 36.40  million per month, with a total of 
times for exercise approximately hitting 2.10  billion in 
2022. In total, we collected 545 running routes with a 
total of 9.73  million running times within the research 
area, accounting for 59.08% of the total times of physical 
activities. Each geo-referenced record of running route 
includes information on GPS-based route and the num-
ber of running times without any personal information. 
Ultimately, there are totally 882 street segments as analy-
sis samples in the present study.

Microscale streetscape indicators
The measurement of microscale streetscapes was con-
ducted through the framework of urban design qualities 
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at street level [24], which outlines five quality aspects 
related to people’s perceptions and sensations, i.e. image-
ability, enclosure, scale, transparency, and complexity. 
For each category, it can be measured through one or 
more.

This framework is effective in classifying street built 
environment, since the majority of the significant fac-
tors reported in physical activities including running well 
match the 5Ds categories [8–10]. Hence, the framework 
has been increasingly used in built environment-associ-
ated physical activity studies [38–40]. Table S1 presented 
the measurement of microscale streetscape in details for 
this work. Briefly, according to the framework and prior 
research [28, 38, 41], imageability was usually measured 
by crowd concentration index and greenery within a 
street segment. Enclosure was evaluated by sky view 
factor and building-to-street ratio. Scale was normally 
measured through public-facility convenience index and 
non-motorized vehicle interference. Transparency was 
determined by the proportion of walls on the same side 
of the street, and street complex was gauged by two fac-
tors, i.e. streetscape complexity and visual crowdedness.

These variables of microscale streetscapes were mea-
sured through a combination of massive street view 
images (SVIs) and computer vision technology. As 
depicted in Fig.  2, SVIs were acquired from the Baidu 
Street View Image Application Programming Interface 
(https://map.baidu.com). Sampling points were extracted 
at 50 m intervals, along with road segment acquired from 
the Baidu Map (https://map.baidu.com). Each sampling 
point featured four street view images at different head-
ings, i.e. 0°, 90°, 180° and 270° (Fig. 2). The size of images 

was set to 600 × 400 pixels. In total, 11,396 points with 
45,584 images were collected for this study.

Subsequently, the DeeplabV3 algorithm was used 
to classify the physical features of Street View Images 
(SVIs), in combination with the Cityscapes dataset which 
provides the labels of the objects of cityscapes for each 
pixel in the SVIs. DeeplabV3, a popular computer vision 
technique, has been widely used to measure the eye-level 
features of microscale streetscapes [42, 43], while the 
Cityscapes dataset is among the most prominent datasets 
for extracting object classes of cityscapes in urban scenes. 
As reported, the mean intersection over union and pixel-
wise accuracy for semantic segmentation achieved were 
82.88% and 84.56%, respectively [44, 45]. Then, the pixel 
ratio of physical feature for each sampling point, was cal-
culated by averaging the values of pixel ratios from the 
four images with different headings. Finally, the objec-
tive feature for each road segment, was determined by 
averaging the pixel ratios of sampling points within the 
same segment. Table S1 details the measurements of 
microscale streetscape variables, and Fig. 3 illustrates the 
distributions of several microscale streetscape factors.

Macroscale built environment indicators
Built environment at the macroscale was measured 
through the widely recognized 5Ds framework, namely 
density, diversity, design, destination accessibility, and 
distance to transit [46]. This framework is effective in 
measuring built environment at the macroscale, since 
most of the significant variables reported in health stud-
ies are applicable to the 5D categories [8, 9, 23]. Hence, 
the 5Ds framework has been widely in built environment-
associated health studies at the macroscale, particularly 

Fig. 1 Research area (Left) and spatial distributions of running intensity (Right)
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for the neighborhood environment [12, 14, 28]. Table S1 
outlined the measurement of macroscale built environ-
ment in details for the present study. Briefly, as in many 
studies [16, 20], a buffer with a radii of 500  m around 
road segment was established to evaluate macroscale 
built environment. This buffer size was selected, because 
it is close to that of blocks in Shanghai [12] and the com-
munity–life cycles for 10  min in many Chinese cities 
[47]. Besides, the 500 m buffer was usually used in prior 
research, which benefits a comparison of results among 
different studies [9, 48]. Population density and average 
building height were utilized to assess density, which 
represents its two important aspects, i.e. people and 
building. Design was measured through density of road 
intersections as well as road connectivity, which charac-
terizes the dimensions of accessibility and connectivity, 
respectively.

Diversity was evaluated using land use Herfindahl–
Hirschman index, i.e. Land use HHI, with values ranging 
from 0 to 1 [49]. The smaller the value of Land use HHI, 
the higher mixed degree of different land uses. Destina-
tion accessibility was determined by the distance to the 
nearest park and river. Distance to transit was assessed in 
terms of proximity to the nearest metro station and den-
sity of bus stops. Of the 5Ds variables, population data 
were acquired from the EasyGo platform (https://heat.
qq.com/bigdata/index.html), which depicts a real-time 
spatial distribution of populations. Data on road network 
and points of interests (POIs), were obtained from the 
Baidu Maps (https://map.baidu.com). Figure 4 shows the 

spatial distributions of several built environment factors 
at macroscale.

Statistical analysis
The Variance Inflation Factor (VIF) was computed for 
both macroscale built environment and microscale 
streetscape factors to avoid multicollinearity, leaving 
those with a VIF lower than 10, based on the criterion 
widely used in many studies [8, 28, 50]. Thus, macroscale 
built environment included nine factors, i.e. popula-
tion density and average building height (density), land 
use HHI (diversity), road connectivity and density of 
road intersections (design), distance to nearest metro 
station and density of bus stations (distance to transit), 
and distance to nearest park and river to evaluate (des-
tination accessibility). For microscale streetscapes, fac-
tors comprised crowd concentration index and greenery 
(imageability), sky view factor and building-to-street 
ratio (enclosure), public-facility convenience index and 
non-motorized vehicles interference (scale), streetscape 
complexity and visual crowdedness (complex), and 
transparency.

Furthermore, each group of factors, namely macroscale 
built environment and microscale streetscapes, was 
separately included in the Ordinary Least Square model 
(OLS). This is to compare their individual contributions 
to running behaviour. Subsequently, both groups were 
combined to evaluate their collective effects on running.

Fig. 2 Segmentation of street view images to measure streetscape factors
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1) OLS model 1: Macroscale built environment 
(MBE) ~ running intensity (dependent variable)

2) OLS model 2: Microscale streetscapes 
(MS) ~ running intensity (dependent variable)

3) OLS model 3: MBE + MS ~ running intensity 
(dependent variable)

Moreover, a spatial autocorrelation model was developed 
due to the potential of spatial autocorrelation. OLS has 
been widely used to understand the effect of built envi-
ronment on healthy behavior, partly due to its superiority 
in interpretability. As indicated in previous studies [8, 16, 
51], however, people’s physical activities, such as walk-
ing and running, were influenced by their surrounding 
neighborhoods and were also spatially autocorrelated. 

Hence, Moran’s I was estimated to examine whether 
spatial autocorrelation exists. If so, the robust Lagrange 
Multiplier (LM) test was used to determine the type of 
spatial interaction. Usually, there are three types of spa-
tial effects, i.e. spatial error (SEM), spatial lag (SLM) and 
both (SAC). In the present study, both Moran’s I and the 
spatial error effect were significant, which indicated the 
existence of spatial dependence and the need to use SEM 
to control the effect of spatial autocorrelation. Similar to 
the approach with OLS, each of the two groups, i.e. mac-
roscale built environment and microscale streetscapes, 
was separately added and then combined in the SEM to 
compare their individual and collective effects on run-
ning behavior.

Fig. 3 Spatial distributions of several microscale streetscape factors

 



Page 7 of 15Guo et al. BMC Public Health         (2024) 24:2251 

4) SEM model 1: Macroscale built environment 
(MBE) ~ running intensity (dependent variable)

5) SEM model 2: Microscale streetscapes 
(MS) ~ running intensity (dependent variable)

6) SEM model 3: MBE + MS ~ running intensity 
(dependent variable)

At last, the interactions between microscale streetscape 
and macroscale built environment elements were exam-
ined through the OLS Model 3 and SEM Model 3, 
respectively. The two models included the variables of 
macroscale built environment and microscale streetscape 
together. This is partly due to the potential interactions 
between the two-level factors reported in some stud-
ies [12, 29, 37]. This is also because the improvement in 
R2 was small in the present study, when incorporating 
both levels of built environment factors in the model 
simultaneously. We aimed to understand whether favor-
able microscale streetscapes can enhance the benefits of 
each of the two macroscale elements, i.e. land use mix 
and road accessibility. Three microscale streetscape fea-
tures were targeted, including sky view index, green view 
index, and visual crowdedness.

Results
Descriptive analysis
The summary statistics and Pearson’s correlation analy-
sis for running intensity, macroscale built environment 
and microscale streetscapes, are presented in Table  1; 
Fig.  5. The standard deviation of running intensity was 
41.501 times/km, suggesting a considerable variation in 
running intensity among runners. Substantial differences 
were also observed in macroscale built environment 
and microscale streetscapes. In particular, the standard 
deviations for green view index, visual crowdedness and 
sky view factor were 0.122, 1.830 and 0.111, respectively, 
indicating great variations in microscale streetscape fac-
tors. With regards the correlations between the pair-
wise macroscale built environment and microscale 
streetscapes, as shown in Fig.  5, most presented low to 
moderate correlations, with coefficients ranging from 
− 0.52 to 0.56. This further confirmed the absence of mul-
ticollinearity between the two-level indicator pairs.

Fig. 4 Spatial distributions of characteristics of macroscale built environment
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OLS regression for main effects of macroscale built 
environment and microscale streetscapes
Table  2 presents the results of OLS regressions on the 
main effects of the two-level built environment effects. 
The F-statistic was significant for macroscale built envi-
ronment (Model 1), microscale streetscapes (Model 2) 
and the both (Model 3), suggesting their significant roles 
in influencing running intensity. Regarding the explana-
tory power, the R2 of microscale streetscapes was higher 
than that of macroscale built environment, with the val-
ues of 0.113 and 0.096, respectively. When the two-level 
built environments were combined in the model, the 
R2 improved to 0.186. The majority of macroscale built 
environment and some of microscale streetscape ele-
ments, were significantly associated running intensity. 
The top three factors for the formal were density of road 
intersections, distance to the nearest park and land use 
HHI, with absolute coefficients of 0.458, 0.258 and 0.203, 
respectively. For microscale streetscapes, the green view 

index was the most significant, followed by the sky view 
index and crowd concentration index, with coefficients of 
0.684, 0.465 and 0.255, respectively.

SEM regression for main effects of macroscale built 
environment and microscale streetscapes
The SEM results of the main effects of macroscale built 
environment, microscale streetscapes and both com-
bined, are shown in Table 3; Fig. 6. In general, there was 
a considerable increase in the goodness-of-fit for each 
of the three models upon accounting spatial autocorre-
lation (spatial error). Specifically, Moran’s I on residuals 
was significant (P < 0.001), with values decreasing from 
0.161 to -0.001 for macroscale built environment, from 
0.188 to -0.007 for microscale streetscapes, and from 
0.162 to -0.005 for both combined (Table 3; Fig. 6). This 
indicates not only the existence of spatial autocorrelation, 
but also the effectiveness of SEM in mitigating this issue, 
as evidenced by Moran’s I close to 0. Regarding the R2, it 
increased from 0.096 to 0.240 for macroscale built envi-
ronment, from 0.113 to 0.245 for microscale streetscapes, 
and from 0.186 to 0.314 for the both. Notably, the 
increase in R2 was more pronounced for macroscale built 
environment than microscale streetscapes. This suggests 
that the SEM model captured more spatial error interac-
tion within the macroscale built environment.

Compared to that of macroscale built environment 
(R2 = 0.240) and microscale streetscapes (R2 = 0.245), the 
explanatory power of combining the two group factors, 
did not show a considerable improvement (R2 = 0.314) in 
either the OLS or SEM model. This is partly due to the 
potential of interactions between the two-level factors. 
With regards to parameter estimates, the magnitudes 
of many environmental variables shifted significantly, 
when spatial error interaction was considered. This indi-
cates the potential bias in OLS in the situation of spatial 
autocorrelation. In particular, the absolute coefficients 
increased for green view index from 0.741 to 0.796 and 
for sky view index from 0.318 to 0.391, but decreased for 
crow concentration index from 0.221 to 0.190.

Interactions between macroscale built environment and 
microscale streetscapes
Table  4 exhibits the results of the interaction between 
macroscale built environment and microscale 
streetscapes. In general, there were significant interac-
tive effects of land use Herfindahl–Hirschman index 
with sky view index, green view index and visual crowd-
edness. Specifically, the interactions with the first two 
streetscape factors were negatively associated with run-
ning intensity, whereas a positive interaction was noted 
with visual crowdedness in either the OLS or SEM 
model. This indicates that greener, more open and less 
crowded urban streetscapes, can amplify the benefits of 

Table 1 Descriptive statistics of running intensity and two-level 
built environment elements
Variables Mean SD Min Median Max
Running intensity 11.047 41.501 0.001 1.273 634.584
Macroscale built 
environment
Population density a 1.082 0.482 0.024 1.070 3.030
Average building 
height

20.831 8.322 3.700 19.233 79.750

Land use HHI a 6.970 9.400 0.250 3.710 87.280
Road connectivity 3.414 0.362 2.250 3.393 5.050
Density of road 
intersections

2.897 0.744 2.000 3.000 4.000

Distance to nearest 
metro

2.662 1.709 0.010 2.411 8.950

Density of bus stops 0.799 0.639 0.000 0.688 4.880
Distance to nearest 
park

2.855 1.721 0.000 2.589 10.690

Distance to nearest 
river

3.023 2.426 0.000 2.656 13.750

Microscale 
streetscapes
Green view index 0.243 0.122 0.010 0.233 0.620
Crowd concentration 
index

0.003 0.003 0.000 0.002 0.030

Sky view factor 0.293 0.111 0.020 0.289 0.620
Building-to-street 
ratio

0.980 0.701 0.030 0.853 6.210

Public-facility conve-
nience index a

0.051 0.076 0.000 0.024 0.875

Non-motorized ve-
hicles interference a

0.100 0.170 0.000 0.039 1.399

Street complexity 1.487 3.531 0.030 0.833 58.770
Visual crowdedness a 3.159 1.830 0.015 2.902 9.409
Transparency a 0.018 0.119 0.000 0.000 2.289
a for value = original value/100;
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land use mix in promoting running intensity. That said, 
neighborhoods with mixed land use and greener, more 
open and less crowded streetscapes, are more conducive 
to running behavior. Moreover, the greatest interaction 
was observed for sky view index, followed by green view 
index, and then visual crowdedness, with absolute coeffi-
cients of 0.287, 0.238 and 0.161 in the OLS model. A sim-
ilar pattern of results can be observed in the SEM model. 
Regarding road accessibility operationalized by density of 
road intersections, no significant interactions was found 
for any of the three streetscape factors in neither the OLS 
nor SEM model.

Regarding the mechanism linking visual crowded-
ness to running, one potential explanation is that street 
built environment such as less visual crowdedness, is 
usually associated with favorable perceptions of safety 
and comfort [52, 53], which can then, ultimately, pro-
mote healthy behavior and status [54–56]. It is reported 
that mixed land use can encourage physical activity for 
human beings [8, 28, 33]. Thus, street built environment 
such as less visual crowdedness, can enhance the benefits 
of mixed land use to promote physical activity, includ-
ing running behavior [12, 29]. This argument is also 
confirmed in the present study. Specifically, there were 

negative effects of land use HH and visual crowdedness, 
but a positive impact was observed for the interaction of 
the two indicators. This means that neighborhoods with 
mixed land use and less crowded streetscapes, are more 
conducive to running behavior.

Discussions
Contributions of macroscale built environment and 
microscale streetscape features to running intensity
Our findings reveal that the contribution of microscale 
streetscapes was higher than that of macroscale 
built environment in explaining running behavior. In 
our study, the explanatory power of macroscale and 
microscale groups in SEM regression, reached 0.240 
and 0.245, respectively. This finding has two-fold impli-
cations. On one hand, it supports the argument that 
there is a great significance of incorporating microscale 
streetscapes in interpreting healthy behaviors [9, 28]. In 
other words, macroscale built environment alone is not 
sufficient to have an in-depth understanding of the rela-
tionship between built environment and physical activity. 
On the other hand, it underscores the important role of 
microscale streetscapes in promoting running activity, 

Fig. 5 Pearson’s correlation of macroscale built environment and microscale streetscapes; * for P < 0.1, ** for P < 0.05 and *** for P < 0.01
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instead of a supplement to macroscale built environment 
as reported in some studies [12, 57].

The finding of the greater explanatory power of 
microscale streetscape than macroscale built environ-
ment in explaining running, is not in line with that of 
many prior studies [12, 14, 57]. The mechanisms for the 
greater explanatory power of microscale streetscapes in 
interpreting running activity are highly complex. There 
are two potential explanations. One is that eye-level 
street view images (SVIs) can more accurately represent 
the actual environment that people experience, feel and 
sense. Usually, SVIs are taken at pedestrians’ perspec-
tive, and thus can more accurately capture the complex 
interactions of street objects that collectively shape one’s 
visual stimuli [28, 58]. However, this is hard for the two-
dimensional measurements of macroscale built environ-
ment derived using GIS. The second explanation may 
be that some streetscape factors may serve as proxies 
for certain built environment elements at macroscale in 
explaining running behavior, such as green view index 
acting as the proxy of employment density and intersec-
tion density reported in prior studies [28, 57]. This is also 
evidenced by moderate correlations between macroscale 
and eye-level factors observed in the present study. For 

example, the green view index was significantly associ-
ated with population density, land use HHI and distance 
to the nearest park, with absolute Pearson coefficients of 
0.531, 0.243 and 0.235, respectively.

We found that combining macroscale built environ-
ment and microscale streetscapes offers better explana-
tory power (R2) than either group alone, which is in line 
with the findings from some prior studies [8, 14, 57]. In 
particular, a London study using the crowdsourced run-
ning data from the Strava reported that the R2 of mac-
roscale built environment and microscale streetscape in 
explaining running behavior was higher than that of each 
group alone [57]. The finding suggests the importance of 
the two-level factors in interpreting running behavior. 
Macroscale built environment or microscale streetscapes 
alone, is not sufficient to understand physical activity. 
However, the improvements in explanatory power are 
quite limited, with the improved R2 ranging from 0.069 to 
0.073 in SEM regression in the present study. 0.619.

This is partly due to the potential interactions between 
built environment factors at the same level and across 
different levels [10, 12, 29]. In the present study, there are 
significant interactions of land use mix with each of sky 
view index, visual crowdedness and green view index. We 

Table 2 OLS regression for the main effects on running intensity
OLS Model 1 OLS Model 2 OLS Model 3

Variables Coef. S.E. Coef. S.E. Coef. S.E.
Macroscale built environment
Population density -0.336** 0.095 0.027 0.113
Average building height 0.153* 0.079 0.202** 0.078
Land use HHI -0.150* 0.078 -0.203** 0.076
Road connectivity 0.101 0.076 0.117 0.074
Density of road intersections 0.476*** 0.075 0.458*** 0.072
Distance to nearest metro station 0.127 0.082 0.060 0.079
Density of bus stops -0.222* 0.090 -0.224* 0.088
Distance to nearest park -0.301** 0.079 -0.258** 0.076
Distance to nearest river 0.027 0.074 0.023 0.071
Microscale streetscapes
Green view index 0.741*** 0.113 0.684*** 0.117
Crowd concentration index 0.016 0.088 0.048 0.089
Sky view factor 0.318** 0.117 0.465** 0.127
Building-to-street ratio 0.041 0.106 -0.060 0.105
Public-facility convenience index 0.049 0.074 0.081 0.072
Non-motorized vehicles interference 0.099 0.078 0.100 0.077
Street complexity 0.133* 0.076 0.152* 0.074
Visual crowdedness -0.221** 0.077 -0.255** 0.077
Transparency -0.005 0.073 -0.020* 0.071
Constant 0.156* 0.072 0.156* 0.072 0.156* 0.069
R2 0.096 0.113 0.186
F-statistic 10.251*** 12.348*** 0.169***
Moran’s I on residuals 0.161*** 0.188*** 0.162***
Robust LM (lag) 4.067 8.906 3.155
Robust LM (error) 24.652*** 43.289*** 36.772***
* for P < 0.1, ** for P < 0.05 and *** for P < 0.01
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also found higher explanatory power when spatial auto-
correlation was controlled, which has also been reported 
in some prior studies [8, 57, 59]. In particular, the R2 con-
trolling for spatial interaction was 0.314, higher than that 
of 0.186 without the control in the present study. The 
spatial interaction partly relies on that people may be 
motivated by runners nearby to conduct running activity 
[8, 51].

Implication for urban design and open space governance
Findings from the present work offer valuable insights 
for urban design and governance. Firstly, this work indi-
cates the significant and great impacts of microscale 
streetscapes on running intensity. In particular, apart 
from high road accessibility and facility accessibility, 
more open and greener urban streetscapes could increase 
running intensity, whereas more crowded street environ-
ment might hinder running. This highlights that to better 
promote running behavior, urban design and open space 
governance should not only focus on the intervention in 
macroscale built environment [17, 48, 60], but also pay 
attention to the optimization for microscale streetscapes, 
particularly the improvement of greenery and open 
space in urban streets. Moreover, compared to those of 
macroscale environment, interventions in microscale 
streetscapes are usually more feasible and cost-effective 
[8, 28].

Secondly, the findings of macroscale built environment 
impacts are generally consistent with those from prior 
studies [9, 23, 24], which demonstrates the potential and 
applicability of using crowdsourced physical activity data 
in built environment-physical activity studies in large 
urban areas. Similar to the widely used Strava in Western 
cities, Keep is one of the most popular sports-tracking 
platforms in China. Also, the present study also dem-
onstrated a combination of street view images and deep 
learning approach to measure microscale streetscapes. 
Such methodology can be scalable to many cities in the 
world, thus to better understand the impacts of multi-
level and multi-dimension environments on physical 
activity such as jogging and cycling.

Limitations and future work
Several limitations and future research should be well 
clarified. Firstly, as in many studies [14, 17], our findings 
may not be applicable to cities with different develop-
ment patterns, climate conditions and cultural norms, 
since the present study was conducted in Shanghai, char-
acterized by a high-rise and high-density urban form, as 
well as a mild and humid climate. If data on multi-city 
with diverse built environments are available, it would 
be much more preferable. Secondly, similar to some 
prior research [9–11], the use of road segment as analysis 
unit to allocate running data in large urban areas, leads 

Table 3 SEM regression for the main effects on running intensity
SEM Model 1 SEM Model 2 SEM Model 3

Variables Coef. S.E. Coef. S.E. Coef. S.E.
Macroscale built environment
Population density -0.524*** 0.127 -0.218 0.133
Average building height 0.241* 0.106 0.255* 0.102
Land use HH -0.058 0.081 -0.115 0.078
Road connectivity 0.066 0.077 0.076 0.075
Density of road intersections 0.555*** 0.069 0.524*** 0.067
Distance to nearest metro 0.123 0.088 0.031 0.085
Density of bus stops -0.177* 0.106 -0.184* 0.102
Distance to nearest park -0.194* 0.085 -0.166* 0.081
Distance to nearest river -0.107 0.098 -0.090 0.094
Microscale streetscapes
Green view index 0.796*** 0.118 0.672*** 0.119
Crowd concentration index -0.062 0.084 -0.008 0.083
Sky view factor 0.392** 0.126 0.425** 0.129
Building-to-street ratio -0.030 0.104 -0.079 0.100
Public-facility convenience index 0.061 0.070 0.100 0.067
Non-motorized vehicles interference 0.082 0.077 0.070 0.074
Complexity 0.147* 0.070 0.164* 0.068
Visual crowdedness -0.191* 0.074 -0.166* 0.072
Transparency -0.008 0.065 -0.032 0.063
Constant 0.140 0.176 0.137 0.160 0.145 0.164
R2 0.240 0.245 0.314
Moran’s I on residuals -0.001*** -0.007*** -0.005***
* for P < 0.1, ** for P < 0.05 and *** for P < 0.01
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to a lack of control of individual characteristics, such as 
socioeconomic and healthy behavior factors, which is 
likely to bias our findings. Thirdly, Keep users tend to 
be young, with aged under 30 years old accounting for 
around 70%, limiting the generalizability of our findings 
to other population groups.

Fourthly, the mechanisms linking microscale 
streetscapes to physical activity can be further explored. 
The aim of the present study is to indicate the signifi-
cance of including microscale streetscapes in explain-
ing running activity, instead of examining their causal 
relationships, due to the complexity of factors that may 
cofound such associations [14, 28, 59]. Thus, how built 
environment, particularly those at microscale such as 
streetscapes, affects physical activity can be further 
understood, including environmental perceptions such as 
safety and aesthetics [24, 60, 61], which can provide theo-
retical foundations for environmental health studies.

Conclusions
Microscale streetscapes significantly influence run-
ning intensity, with greener and more open streetscapes 
promoting running behavior, whereas streets with high 
visual crowdedness may inhibit it. The contribution of 
microscale streetscapes in explaining running inten-
sity, was higher than that of macroscale built environ-
ment. In addition, more open, greener, and less crowded 
streetscapes, can enhance the benefits of land use mix 
in promoting running activity. To our knowledge, this is 
one of the few studies using crowdsourced running big 
data in large urban areas, to simultaneously explore the 
effects of macroscale built environment and microscale 
streetscapes in Chinese cities. The findings underscores 
the significance of streetscapes in encouraging healthy 
lifestyles, instead of a supplement to macroscale built 
environment.

Fig. 6 Moran’s I on residuals of OLS and SEM for macroscale built environment, microscale streetscapes and the both
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