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Abstract 

Background  Influenza, an acute infectious respiratory disease, presents a significant global health challenge. Accu-
rate prediction of influenza activity is crucial for reducing its impact. Therefore, this study seeks to develop a hybrid 
Convolution Neural Network—Long Short Term Memory neural network (CNN-LSTM) model to forecast the percent-
age of influenza-like-illness (ILI) rate in Hebei Province, China. The aim is to provide more precise guidance for influ-
enza prevention and control measures.

Methods  Using ILI% data from 28 national sentinel hospitals in the Hebei Province, spanning from 2010 to 2022, we 
employed the Python deep learning framework PyTorch to develop the CNN-LSTM model. Additionally, we utilized 
R and Python to develop four other models commonly used for predicting infectious diseases. After constructing 
the models, we employed these models to make retrospective predictions, and compared each model’s prediction 
performance using mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error 
(MAPE), and other evaluation metrics.

Results  Based on historical ILI% data from 28 national sentinel hospitals in Hebei Province, the Seasonal Auto-Regres-
sive Indagate Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Convolution Neural Network (CNN), 
Long Short Term Memory neural network (LSTM) models were constructed. On the testing set, all models effectively 
predicted the ILI% trends. Subsequently, these models were used to forecast over different time spans. Across various 
forecasting periods, the CNN-LSTM model demonstrated the best predictive performance, followed by the XGBoost 
model, LSTM model, CNN model, and SARIMA model, which exhibited the least favorable performance.

Conclusion  The hybrid CNN-LSTM model had better prediction performances than the SARIMA model, CNN model, 
LSTM model, and XGBoost model. This hybrid model could provide more accurate influenza activity projections 
in the Hebei Province.
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Background
Influenza (also referred to as the flu) is an acute infec-
tious respiratory disease. It is caused by two major 
influenza virus types, flu A and flu B. It is highly con-
tagious, with a short incubation period and severe 
symptoms [1], and has a history of causing global pan-
demics, such as the Spanish flu in 1918, the Asian flu 
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in 1957, and the swine flu in 2009 [2]. According to the 
World Health Organization (WHO), there are approxi-
mately one billion cases of flu reported worldwide 
each year. Among these cases, 3 to 5 million are clas-
sified as severe, with 290,000 to 650,000 resulting in 
fatalities. Thus, flu seriously endangers individual and 
public health and is responsible for a great deal of eco-
nomic burdens [3]. Flu typically manifests as an annual 
seasonal epidemic or a sporadic pandemic [4, 5], and 
understanding its activity patterns is crucial for effec-
tively carrying out prevention and control measures. 
Currently, the primary measure against the flu epi-
demic is widespread vaccination. However, due to the 
variability of the flu virus and unexpected outbreaks, 
vaccines have effectiveness as low as 20% [6, 7]. As a 
result, analyzing historical surveillance data and mak-
ing prediction about flu is of great importance.

Flu was the first infectious to be monitored by the 
WHO. The indicators monitored include influenza-like-
illness (ILI), flu specimen positivity rates, and reported 
flu cases. The sensitivity of various indicators varies 
across regions. In southern China, the positivity rate of 
flu specimens serves as a better reflection of the flu epi-
demic situation, whereas in the north, the ILI proves to 
be more sensitive [8]. Conversely, the reported number of 
flu cases often lags significantly behind [9].

Flu surveillance data can be regarded as time series 
data. Constructing prediction models using previous 
data can allow for the creation of public health guidance 
for future epidemics. Traditional prediction models like 
logistic regression models, Extreme Gradient Boosting 
(XGBoost) models, and Seasonal Auto-Regressive Inda-
gate Moving Average (SARIMA) models, have been uti-
lized for predicting various contagious diseases such as 
hand, foot, and mouth disease [10], tuberculosis [11], 
and COVID-19 [12], and have demonstrated good pre-
diction performance. Additionally, various deep learn-
ing methods including the Recursive Neural Network 
(RNN), the Convolution Neural Network (CNN), and the 
RNN-based improved Long Short Term Memory neu-
ral network (LSTM) have been applied across numerous 
domains. For instance, CNNs are used to detect anoma-
lies in circuit signals [13], while LSTMs are utilized for 
predicting stock prices [14], weather patterns [15], and 
the number of cases [16]. In comparison to traditional 
prediction models, these methods have stronger non-
linear mapping and sequence information extraction 
capabilities [17]. In addition, different neural networks 
possess varying information processing capabilities; 
CNNs excel in information extraction, while LSTMs are 
more suitable for processing long sequence prediction 
tasks. Combining the strengths of these different models 
may enhance prediction performance.

Hebei Province, which is situated in northern China, 
typically experiences concentrated influenza activity dur-
ing the winter and spring seasons [18]. In recent years, 
the number of reported flu cases during the flu season 
in Hebei Province has been increasing [19]. It is crucial 
to utilize surveillance data for predicting peak outbreaks 
in advance to effectively prevent and control flu in the 
region. However, there are few studies on flu prediction 
models, with most focusing on several sentinel hospitals 
in urban areas. Furthermore, these studies predominantly 
rely on traditional prediction models such as ARIMA and 
multiple regression models [20, 21]. However, compared 
to machine learning and deep learning models in other 
studies, their predictive results are not very good. Thus, 
there is a significant gap in the development of accurate 
and representative flu prediction models specifically 
tailored for Hebei Province. Here, we gathered ILI data 
reported by 28 sentinel hospitals across 11 cities in Hebei 
Province. We then developed a hybrid CNN-LSTM 
model (which leveraged the distinct advantages of both 
the CNN and LSTM architectures) on the PyTorch plat-
form. Finally, due to the SARIMA and XGBoost models 
are frequently employed in time series forecasting and 
characterized by high accuracy. We chose the SARIMA 
model and the XGBoost model as the baseline models, 
and compared the predictive efficacy of our hybrid model 
to the SARIMA, XGBoost, CNN, and LSTM models 
using retrospective forecasting.

Methods
Figure 1 is a diagrammatic representation of our research 
methodology, including the materials and methods used 
to develop the SARIMA, XGBoost, CNN, LSTM, and 
CNN-LSTM models Forecasting Model for ILI fluctua-
tion in the Hebei Province of China.

Data acquisition and splitting
Data were retrieved from the China Influenza Surveil-
lance Information System, which gathers weekly reported 
ILI cases and related outpatient/emergency department 
visits from 28 national sentinel hospitals in the Hebei 
Province. Our data covered the period from the first 
week of 2010 to the 52nd week of 2022. Due to variations 
in the sizes of sentinel hospitals and the population bases 
of different areas, calculating the ILI percentage helps to 
minimize these factors [22]. ILI% were calculated based 
on ILI cases and visit data using the following formula:

We then split the dataset using an 80–20 ratio, with the 
initial 80% used as a training set and the remaining 20% 
used as a testing set for predicted results.

ILI% =

numberofILIs

totalnumberofoutpatient/emergencyvisits
× 100%.
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Traditional models
SARIMA model
SARIMA models consist of four components: autore-
gression (AR), integration (I), moving average (MA), 
and seasonal effects (S) [23]. SARIMAs can be classified 
as either multiplicative or additive models, depending 
on the relationship between seasonal effects and other 
components. In a multiplicative model, the expression 
is SARIMA (p, d, q)(P,D,Q)s , where p and P represent 
the orders of ordinary AR and seasonal AR, respec-
tively; d and D represent the orders and the steps and 
orders of the difference function; q and Q represent the 
ordinary orders of MA and seasonal MA individually; 
and S represents the seasonal period. The SARIMA cal-
culation formula was as follows [24]:

In this formula, B is the lagging operator, φ and θ 
are the ordinary AR and MA coefficients, � and � are 
the seasonal AR and MA coefficients, s is the seasonal 
period, yt is a zero-mean steady random time series, 
and ut is a white noise sequence.

The SARIMA modeling process involves several key 
steps includes time series preprocessing, stationarity 
testing, parameter identification, and model fitting [25]. 
The initial data processing step includes conducting an 
augmented Dickey-Fuller (ADF) test and a white noise 
sequence test (Box-Ljung test) to determine whether 
the data represent a stationary and non-white noise 
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sequence. If the data are non-stationary, differencing is 
necessary to achieve stationarity. The values of d and D 
are defined by the number and order of the differencing 
steps.

Next is the model identification phase, which involves 
examining the autocorrelation function (ACF) and par-
tial autocorrelation function (PACF). Within these plots, 
the AR can be identified in a significant autocorrela-
tion at lag ( p ) in the PACF, and the MA can be identi-
fied in significant autocorrelation at lag ( q ) in the ACF. 
The parameters P and Q correspond to the determina-
tion of p and q . Finally, seasonal patterns are recognized 
as periodic spikes which appear at multiples of the sea-
sonal lag ( S ). These steps help systematically determine 
the appropriate parameters for constructing SARIMA 
models.

XGboost model
XGBoost is a boosting algorithm proposed by Chen 
Tianqi et  al. in 2016 [26]. Based on the gradient boost-
ing framework, it sequentially trains multiple weak clas-
sifiers, minimizes the loss function through gradient 
descent, and continuously enhances the model’s predic-
tive ability. Figure 2 illustrates the basic structure of the 
XGBoost model. Initially, input features are constructed 
using the hysteresis method, and a simple prediction 
model is initialized. Subsequently, the model calculates 
the error between its predictions and the training set, 
adjusts parameters based on this error, and constructs 
a new model. This iterative process constructs multiple 
models sequentially, gradually improving the perfor-
mance of a single model. Finally, all models are integrated 
and weighted according to their contribution to the 
overall prediction effect, resulting in the final XGBoost 
model.

Fig. 1  Study methodology



Page 4 of 19Li et al. BMC Public Health         (2024) 24:2171 

Deep learning models
Data pre‑processing
In neural network models, training process, large dif-
ferences in data scales can lead to excessively large or 
small gradient updates. Additionally, outliers in the data 
may cause certain features to dominate others. Normal-
ization ensures that all features are on a similar scale, 
reduces the impact of outliers, and enhances the mod-
el’s convergence speed and generalization ability [27]. 
Here, original data were normalized with the formula 
provided below:

where the X is the normalized value of the data, the x is 
the original data, and xmax and xmin are their maximum 
and minimum values, respectively.

Furthermore, the input data for these models 
needed to contain both inputs (X) and outputs (Y), 
and needed to be reconstructed into 3D tensors for-
mat (samples, timesteps, features). Given that the 
ILI% data were a one-dimensional dataset of length 
n, a sliding-window approach was employed (Fig.  3). 
Observations of the current k time points consisted of 
the input data X, and observations of the current time 
points consisted of the output data Y. We then used 
the Numpy library in Python to convert data into an 
(n, n-k, 1) format.

X =

x − xmin

xmax − xmin

CNN model
CNN models have superior capabilities in extracting local 
features [28]. They can be employed in computer vision 
and time series prediction and analysis [29]. CNN models 
consist of convolutional layers, pooling layers, activation 
functions, and dense layers (Fig.  4). For our time series 
data, 1D kernels were used to slide across the data (x) and 
compute dot products between the kernel and local data 
at each step, eventually generating feature maps. We then 
used max pooling on feature maps to reduce dimensions 
while retaining important features. After adding non-
linearity to pooled data using a tanh function, data were 
input into the dense layer and produced a CNN model 
using the following formula:

where (x ∗ w) denotes the convolution operation, b is a 
bias term Xi:i+k−1 is a set of consecutive elements in the 
input feature sequence, max() is a maximum extraction 
operation, W  is a weight matrix, and ∗ is a matrix multi-
plication operation.

LSTM model
LSTM models are improved neural networks based on 
RNN [30]. They have a similar structure to RNN, but 

X = (x ∗ w)+ bi
Xc = max

(

Xi:i+k−1

)

y = W ∗ Xc + bj

Fig. 2  Architecture of the extreme gradient boosting
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enhanced memory units (Figs. 5 and 6) [31]. By introducing 
gate control mechanisms, LSTM models address the long-
period dependency problems and the gradient vanishing 

and exploding issues that are present in RNN models. Our 
LSTM memory units consisted of input (I), forget (F), and 
output (O) gates, where the F gate decided the discording 

Fig. 3  Sliding window method to generate inputs (X) and outputs (Y)

Fig. 4  Architecture of the convolutional neural network
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and preserving of information, the I gate decided what 
new information to store in the cell state, and the O gate 
decided what the next hidden state should be. The calcu-
lated LSTM formula was as follows [32]:































cft = σ
�

Wf · [ht−1, xt ]+ bf
�

it = σ(Wi · [ht−1, xt ]+ bi)
�Ct = tanh(WC · [ht−1, xt ]+ bC)

Ct = ft ∗ Ct−1 + it ∗ �Ct

ot = σ(Wo · [ht−1, xt ]+ bo)
ht = ot ∗ tanh(Ct)

where WC is the weight matrix, and b is the bias term.
The F gate takes the previous hidden state ht−1 and 

current input xt as input, passes a sigmoid activation 
function, and outputs ft . In the I gate, the σ layer out-
puts it and the tanh layer creates a vector of new can-
didate values˜C t , and the cell state Ct vector is updated 
by combining ft,it , and˜C t . Finally, in the O gate, It fil-
ters the input information by passing it through the σ 
layer with the output ot,andot , along with the Ct that 
has been operated on by tanh layer, completes the 
update ofht+1.

Fig. 5  Neural units of the recursive neural network

Fig. 6  Memory cells of the long-short term memory neural network
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CNN‑LSTM model
Our novel hybrid CNN-LSTM model combined the 
local feature extraction capability of CNN models and 
the long-term dependency resolution of LSTM models 
[33, 34]. Figure 7 visualizes the architecture of our CNN-
LSTM model, which was composed of convolutional 
layers, pooling layers, LSTM layers, the tanh activation 
function, and a dense layer. The convolutional layers were 
encoders that used 1D kernels to extract features from 
the original data and convert them into feature maps. The 
pooling layer selected and reduced the dimensions of the 
feature maps, which were then decoded by the LSTM lay-
ers and fed into the dense layer to get the model output. 
This process generated the following formula:

Model construction and validation
The SARIMA model was constructed using the “fore-
cast” package based on R 4.2.3. The XGBoost model was 
constructed using the “xgboost” and “sklearn” libraries 
in Python 3.9. Additionally, the CNN, LSTM, and CNN-
LSTM models were developed using the PyTorch 2.2.1 
deep learning framework based on Python 3.9.

After the models were constructed, they need to be 
validated and their parameters determined. For the 
SARIMA model, the prediction performance varies 
based on different parameter combinations. By analyz-
ing the Autocorrelation Function (ACF) plot and the Par-
tial Autocorrelation Function (PACF) plot, appropriate 

values of p, q, P, and Q can be identified. Typically, these 
values do not exceed 2. Therefore, we can construct 
multiple alternative models using an exhaustive method 
to find the best fit. Subsequently, the residuals of the 
model undergo a Box-Ljung test to identify outliers and 
assess the distribution. Finally, the model with the lowest 
Akaike Information Criterion (AIC) value is selected as 
the optimal model.

For models such as XGBoost, CNN, LSTM, and hybrid 
CNN-LSTM models, their performance is also influenced 
by hyperparameters. During the model training phase, 
the first step involves determining the range of hyperpa-
rameters using the training set. Next, the training set is 
randomly divided into k subsets using the K-fold cross-
validation method, where k-1 subsets are used for train-
ing and the remaining subset is used for validation. The 
grid search method iterates through various hyperparam-
eter combinations, training a model on each subset, and 
calculating the average loss across all k subsets. Finally, 
the hyperparameter set that yields the smallest average 
loss is chosen to build the best-performing model.

Comparison of model predictive effects
After the models are constructed and validated, the test-
ing set is used to make retrospective predictions. The 
mean absolute error (MAE), root mean squared error 
(RMSE), mean absolute percentage error (MAPE), coef-
ficient of determination ( R2 ), correlation coefficient (r), 

Fig. 7  Hybrid model framework
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and explained variance (Evar) were calculated to evalu-
ate the predictive performance of each model against the 
true values. The formulas used for calculation were as 
follows:

where xi represents the true value at time i , ̂xi is the 
predicted value of the model at time i , N  is the sample 
size at the time of testing, and x is the mean value of the 
sequence x.

Results
Temporal distribution of ILI%
The fluctuation in ILI and ILI% in Hebei Province 
between 2010 and 2022 are demonstrated in Figs. 8 and 9. 
The changes in both are essentially identical. From 2010 
to 2019, the seasonal distribution of ILI% showed a uni-
modal pattern, with the peak of the epidemic in the winter 
and spring of each year, starting from the 40th week of the 
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1
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∣
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i=1 ((xi−̂xi)−E(x−̂xi))

2

∑N
i=1 (xi−x)2

first year and continuing to the 15th week of the follow-
ing year. Between 2020 and 2022, in addition to the peak 
of the epidemic in winter and spring, there was a small 
ILI% peak in the spring and summer. Between 2017 and 
2019, the ILI% prevalence peak increased year over year, 
returned to fluctuating levels between 2020 and 2021, and 
reached a new peak at the end of 2022.

Data partitioning
Our 2010 to 2022 data spanned 676 weeks. We thus seg-
mented it in the 21st week of 2020 to represent an 80–20 
split. The initial 80% of the data, or 540 weeks, was used 
as the training set, and the remaining 20%, or 136 weeks, 
was used as the test set. Results are shown in Fig. 10.

SARIMA model
Previous research suggests that ILI has a noticeable sea-
sonality Fig.  7. Specifically, ILI exhibits a seasonal cycle 
of 52. ADF testing of the training dataset revealed a lack 
of sequence stationarity. However, after applying first-
order seasonal differencing, the sequence became sta-
tionary and passed both the ADF and white noise tests. 
Thus, data were successfully transformed into a station-
ary white noise sequence suitable for the development of 
the SARIMA model (Table 1).

After determining the values of d and D through the 
previously-mentioned differencing operation, we initially 
determined the values of p , P , q , and Q by examining the 

Fig. 8  ILI and ILI% activity from 2010 to 2022
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ACF and PACF plots of the differenced series (Fig.  11). 
Various alternative models were constructed by com-
bining different parameters (Table 2). The best model of 

those that passed the parameter tests, selected following 
the principle of minimizing AIC, was the SARIMA (2, 0, 
2) (1, 1, 1)52 model. Residual testing showed that residuals 

Fig. 9  Annual changes in ILI and ILI% from 2010 to 2022

Fig. 10  Data division into training and testing sets
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at different lag orders exhibited white noise sequences, 
indicating effective use of sequence information (Fig. 12).

XGBoost model
The construction process of an XGBoost model can be 
divided into three parts: feature engineering, model 
construction, and model validation. Since the ILI% data 
is one-dimensional, we use the current value as the out-
put and construct input features by lagging one seasonal 
period (52 weeks) before building the XGBoost model. 
During the model building phase, we utilize the XGBRe-
gressor class to establish a gradient boosted tree regres-
sion model with mean squared error as the loss function.

The alternative hyperparameters for the XGBoost 
model include the maximum depth of the tree (3, 5, or 
7), the learning rate (0.01, 0.1, or 0.2), the number of 
decision trees (100, 200, or 300), and the proportion of 
subsamples (0.7, 0.8, or 0.9). Through fivefold cross-val-
idation using the grid search method provided by the 
sklearn library, we determined the optimal combination 
of hyperparameters: maximum tree depth of 7, learning 
rate of 0.2, 200 trees, and subsample proportion of 0.7, 
yielding a minimum average error of 0.1173. The results 
are shown in Fig. 13. Finally, we built an XGBoost model 
based on the best hyperparameters described above.

CNN, LSTM, and CNN‑LSTM models
The ILI% period of 52 led us to select a time step of 52 
for data reconstruction using the sliding window method. 
Following reconstruction, the training set had a data 
shape of (488, 52, 1) and the test set had a data shape of 
(84, 1).

The development process of neural network models 
involved into three parts: model definition, validation, 
and training. During the models definition phase, we 

Table 1  Sequence stationary and white noise test results

Sequences ADF Box-Ljung

t P χ2 P

Raw sequence -1.92 0.0547 1569.0  < 0.01

Differenced sequence -215.3  < 0.01 1723.6  < 0.01

Fig. 11  Sequence’ autocorrelation function and partial autocorrelation function

Table 2  Alternative model parameters and test results

Models Model Parameters AIC Box-Ljung

AR1 AR2 MA1 MA2 SAR1 SMA1 x2 P

(1,0,0)(1,1,0)52 0.7764 — — — -0.5864 — 23.19 9.0507 0.0598

(1,0,1)(1,1,0)52 0.8765 — -0.1871 — -0.5727 — 20.46 2.7802 0.5952

(1,0,0)(1,1,1)52 0.8342 — — — -0.2246 -0.6990 -10.41 14.7026 0.0536

(2,0,2)(1,1,0)52 0.0879 0.7016 0.6089 -0.1872 -0.5728 — -5.75 1.8434 0.7645

(2,0,2)(1,1,1)52 -0.0431 0.9702 0.7337 -0.2663 -0.1743 -0.8272 -17.02 2.3738 0.6674
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Fig. 12  SARIMA model residual test results

Fig. 13  XGBoost’s losses for different combinations of hyperparameters



Page 12 of 19Li et al. BMC Public Health         (2024) 24:2171 

defined the model structures and forward propagation 
modules based on the PyTorch platform. Specifically, 
the CNN model includes convolutional layer and pool-
ing layer, dropout layer, and fully connected layer with 
the ReLU activation function. The LSTM model consists 
of LSTM layer, dropout layer, and fully connected layer. 
The CNN-LSTM model combined aspects from both the 
CNN and LSTM models by incorporating convolutional 
layer, LSTM layer, dropout layer, and fully connected 
layer. In the forward propagation modules: For the CNN 
model, the tensor input passes through the convolutional 
and pooling layers, followed by activation functions and 
dropout layers, culminating in the fully connected layer 
to produce the output. The LSTM model generates out-
put through its LSTM layer, dropout layer, and fully 
connected layer. The CNN-LSTM model processes the 
feature map through a convolutional layer, LSTM layer, 
dropout layer, and fully connected layer to obtain the 
final output.

In the model validation phase, alternative hyperparam-
eters for the CNN model include the number of convo-
lutional layers (1 or 2), convolution kernel size (3 or 5), 
number of pooling layers (1 or 2), learning rate (0.01 
or 0.001), and batch size (16, 32, or 64). For the LSTM 
model and CNN-LSTM model, hyperparameters include 
the number of LSTM layers (1, 2, or 3), number of hid-
den units (16, 32, or 64), learning rate (0.01 or 0.001), and 
batch size (32, 64, or 128). After fivefold cross-validation 
using the grid search method, optimal hyperparameter 
combinations were determined: The CNN model con-
sisted of 2 convolutional layers with a kernel size of 5 and 
1 pooling layer, using a learning rate of 0.001 and a batch 
size of 16, achieving a minimum average loss of 0.0038. 
The LSTM model included 2 LSTM layers with 64 hid-
den units, a learning rate of 0.01, and a batch size of 128, 
achieving a minimum average loss of 0.0031. Addition-
ally, the CNN-LSTM model featured 1 LSTM layer with 
16 hidden units, a learning rate of 0.001, and a batch 

size of 32, achieving a minimum average loss of 0.0021. 
These results are illustrated in Fig.  14. Finally, three 
models were constructed using the best combination of 
hyperparameters.

In the model training phase, which includes backward 
propagation and iterative training. MSE served as the loss 
assessment metric and Adam as the optimizer. After 200 
training epochs, the losses converged: CNN model loss 
was 0.0005, LSTM model loss was 0.0010, and CNN-
LSTM model loss was 0.0014. The training loss of three 
models are shown in Fig. 15.

Comparison and analysis of models
After constructing the models, we utilized the aforemen-
tioned five models to make retrospective predictions 
(Fig. 16) and compared them with the test set to calcu-
late MAE, RMSE, MAPE, R2, r, and Evar. The SARIMA 
model was used to forecast ILI% over a span of 136 weeks 
starting from week 21 in 2020. The XGBoost model pre-
dicts 84 weeks based on the constructed input features 
(starting from week 21 in 2021). And the neural network 
models were used to generate forecasts for the subse-
quent 84 weeks (starting from week 21 in 2021) via test 
inputs created by the sliding-window method. All the 
models demonstrated improved prediction accuracy 
with regard to ILI% tendencies. We evaluated the mod-
els’ predictive performance using MAE, RMSE, MAPE, 
R2, r, and Evar, with specific results detailed in Tables 3, 
4, 5  and  6. On the testing set, the SARIMA model had 
the highest MAE, RMSE, and MAPE, indicating rela-
tively poor prediction performance in terms of R2, r, 
and Evar. Conversely, the CNN, LSTM, XGBoost, and 
CNN-LSTM models showed smaller prediction errors 
and higher R2, r, and Evar. Among these models, pre-
diction errors ranked from largest to smallest as CNN, 
LSTM, XGBoost, and CNN-LSTM, while R2, r, and Evar 
followed as CNN, XGBoost, LSTM, and CNN-LSTM, 
respectively. Overall, CNNs demonstrated the weakest 

Fig. 14  Losses of distinct hyperparameter combinations in three models
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Fig. 15  Change in training loss over 200 epochs of the three models

Fig. 16  Comparison of forecasting results from all four five models

Table 3  Mean Absolute Errors across different models

Models MAE MAE Changes Compared to MAE Improvements Compared to

SARIMA XGBoost CNN LSTM SARIMA XGBoost CNN LSTM

SARIMA 0.8917 — 0.4088 0.3243 0.3758 — -84.66% -57.16% -72.84%

XGBoost 0.4829 -0.4088 — -0.0845 -0.0330 45.85% — 14.89% 6.40%

CNN 0.5674 -0.3243 0.0845 — 0.0515 36.37% -17.50% — -9.98%

LSTM 0.5159 -0.3758 0.0330 -0.0515 — 42.14% -6.83% 9.08% —

CNN-LSTM 0.4529 -0.4388 -0.0300 -0.1145 -0.0630 49.21% 6.21% 20.18% 12.21%
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forecasting performance, whereas CNN-LSTM showed 
the most accurate predictions. Across the entire testing 
set, compared to the SARIMA model, the CNN-LSTM 
model exhibited reductions in MAE, RMSE, and MAPE 
by  0.4388, 0.3548, and 27.2063%, respectively, result-
ing in corresponding accuracy improvements of 49.21%, 
25.47%, and 65%. When compared with the XGBoost 
model, these reductions were 0.0300, 0.0319, and 
0.5149%, respectively, with corresponding improvements 

Table 4  Root Mean Squared Errors across different models

Models MAE MAE Changes Compared to MAE Improvements Compared to

SARIMA XGBoost CNN LSTM SARIMA XGBoost CNN LSTM

SARIMA 1.3933 0.0000 0.3229 0.1698 0.2463 0.00% -30.17% -13.88% -21.47%

XGBoost 1.0704 -0.3229 0.0000 -0.1531 -0.0767 23.18% 0.00% 12.52% 6.68%

CNN 1.2235 -0.1698 0.1531 0.0000 0.0765 12.19% -14.31% 0.00% -6.67%

LSTM 1.1470 -0.2463 0.0767 -0.0765 0.0000 17.67% -7.16% 6.25% 0.00%

CNN-LSTM 1.0385 -0.3548 -0.0319 -0.1851 -0.1086 25.47% 2.98% 15.13% 9.47%

Table 5  Mean Squared Percentage Errors across different models

Models MAPE MAE Changes Compared to MAE Improvements Compared to

SARIMA XGBoost CNN LSTM SARIMA XGBoost CNN LSTM

SARIMA 41.79% — 26.6914 24.1035 25.2066 — -177% -136% -152%

XGBoost 15.10% -26.6914 — -2.5879 -1.4849 64% — 15% 9%

CNN 17.69% -24.1035 2.5879 — 1.1030 58% -17% — -7%

LSTM 16.58% -25.2066 1.4849 -1.1030 — 60% -10% 6% —

CNN-LSTM 14.58% -27.2063 -0.5149 -3.1028 -1.9998 65% 3% 18% 12%

Table 6  Other metrics across different models

Metrics Models

SARIMA XGBoost CNN LSTM CNN-LSTM

R2 0.1778 0.3811 0.1913 0.4078 0.4174

Evar 0.1177 0.4177 0.2227 0.4260 0.4359

r 0.4621 0.6213 0.5734 0.6649 0.6720

Table 7  Evaluation metrics of five models in different prediction scales

Models Scale
(weeks)

MAE RMSE MAPE(%) R2 r Evar

SARIMA 4 0.6233 0.6739 21.8783 -0.6032 0.0845 -0.9007

26 0.7755 0.8569 30.0461 -0.3985 0.4624 -0.4158

52 1.0275 1.3660 45.8447 0.2555 0.3180 0.2549

XGBoost 4 0.2006 0.2278 7.0144 0.5043 0.8149 0.6621

26 0.3248 0.3810 12.8012 0.0116 0.6175 0.3583

52 0.3446 0.4485 13.2950 0.6060 0.8265 0.6830

CNN 4 0.2209 0.3236 7.5140 -1.0358 0.0953 -1.3523

26 0.3937 0.4973 14.8261 0.1684 0.4979 0.1673

52 0.4042 0.5233 15.1939 0.4636 0.8115 0.6387

LSTM 4 0.3732 0.3966 13.1441 -0.5581 -0.4902 -0.3480

26 0.3104 0.3551 12.3784 0.1416 0.5389 0.2230

52 0.3848 0.4884 14.8699 0.5329 0.7944 0.5968

CNN-LSTM 4 0.4481 0.4595 15.9829 -0.5119 -0.4741 -0.5111

26 0.3115 0.3688 12.2882 0.0740 0.5535 0.1306

52 0.3600 0.4470 14.4859 0.6086 0.7891 0.6177
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of 6.21%, 2.98%, and 3%, respectively. The specific results 
are shown in Table 3.

We used five models for predictions over the next 4 
weeks, 26 weeks, and 52 weeks, and calculated prediction 
errors, R2, r, and Evar. These specific results of these are 
shown in Table 7. As prediction length increased, so did 
prediction errors for all models (Fig. 17). At each predic-
tion interval, the SARIMA model consistently showed 
the largest prediction error, accompanied by lower 
R2, r, and Evar. In predictions for the next 4 weeks, the 
XGBoost model exhibited the smallest prediction error, 
followed by CNN and LSTM, with CNN-LSTM show-
ing the largest error. Over 26 weeks, CNN-LSTM had the 
smallest error, followed by XGBoost and LSTM, while 
CNN had the largest error. Looking ahead to 52 weeks, 
CNN-LSTM maintained the smallest error, followed by 
XGBoost and LSTM, with CNN demonstrating the larg-
est error. It’s important to note that R2, r, and Evar are 
influenced by sample size, with these metrics gener-
ally showing an initial increase followed by a decrease 
across different prediction periods for the five models. 
For instance, in predictions over the next 4 weeks, the 
XGBoost model showed the highest r and Evar values, 
followed by LSTM, CNN-LSTM, and CNN, while LSTM 
exhibited the highest R-squared, followed by XGBoost 
and CNN-LSTM, and CNN showed the lowest values. 
Over 26 weeks, CNN-LSTM had the highest scores 
across all three metrics, followed by XGBoost, with CNN 
and LSTM close behind. Over 52 weeks, LSTM had the 

highest r, with CNN-LSTM and XGBoost close, while 
CNN-LSTM showed the highest R2 and Evar values, fol-
lowed by XGBoost and LSTM, with CNN recording the 
lowest scores.

Discussion
ILI surveillance is crucial for flu prevention and control 
efforts. By tracking ILI cases and using historical data 
to construct predictive models, deeper understand-
ings of ILI fluctuation patterns can be obtained. These 
understandings allow for the implementation of proac-
tive measures to reduce the impact of flu. In this study, 
we utilized historical ILI% data spanning from 2010 to 
2023 to develop a CNN-LSTM hybrid model for retro-
spective forecasting. We examined and compared its pre-
dictive with the SARIMA model, XGBoost model, and 
standalone neural network models. The study revealed 
that all five models effectively captured the trend in ILI% 
changes and demonstrated strong predictive capabilities. 
Upon further analysis across varying forecast horizons, 
the CNN-LSTM model exhibited the highest forecasting 
accuracy, followed by the XGBoost model, LSTM model, 
and CNN model, with the SARIMA model performing 
the least accurately.

The SARIMA model is a widely used time series fore-
casting model that extrapolated future outcomes by 
integrating autocorrelation and moving average error 
results. Unlike the XGBoost and neural network mod-
els, SARIMA models do not rely on input features and 

Fig. 17  Comparison of the evaluation metrics of the five models at different prediction scales
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may offer superior forecasting ability for stationary time 
series. However, SARIMA models’ predictive capabili-
ties diminish when forecasting over long-term horizons. 
In Qiang Mao’s study, SARIMA effectively predicted 
tuberculosis incidence in China for short-term forecasts 
but showed declining accuracy with longer prediction 
horizons [11]. Which have demonstrated SARIMA’s 
superior accuracy in short-term prediction tasks. In our 
comparative study, SARIMA demonstrated poorer pre-
dictive capability too. In contrast, neural network mod-
els have no specific data requirements and have robust 
nonlinear mapping capabilities, enabling them to lever-
age more information for prediction [17]. This dispar-
ity underscores why the neural network models in our 
study had superior prediction accuracy compared to 
our SARIMA model. Research by S. Siami-Namini et al. 
indicates that SARIMA’s structure, built on data auto-
correlation and dependence, suits linear data prediction 
better than the other models examined [35]. SARIMA’s 
performance on nonlinear data is inferior to that of 
machine learning and deep learning models, which 
aligns with our findings.

The XGBoost model is a highly popular machine 
learning technique renowned for its exceptional accu-
racy and robust generalization in sequence prediction. 
Utilizing an ensemble learning algorithm, XGBoost 
integrates multiple decision tree models through gra-
dient boosting, continuously optimizing split points 
and leaf node divisions to minimize the loss function 
and enhance model performance. In our study, we 
employed the XGBoost model to forecast the test set 
across various time intervals, demonstrating strong 
predictive capabilities. Among the five models evalu-
ated, XGBoost outperformed the LSTM, CNN, and 
SARIMA models, though it slightly lagged behind the 
CNN-LSTM hybrid model in accuracy. In research by 
Zheng-gang Fang et al., the XGBoost model effectively 
predicted Covid-19 case numbers in the United States 
and surpassed the ARIMA model in predictive accu-
racy, corroborating our findings [36]. Conversely, Jun-
ling Luo et  al. found that the LSTM model exhibited 
superior accuracy over XGBoost in predicting Covid-
19 cases in Canada [37]. In our study, while the LSTM 
model’s prediction accuracy was slightly lower than 
XGBoost’s, this difference may stem from our use of 
historical ILI% data exclusively for prediction. Notably, 
the CNN-LSTM model’s predictive efficacy surpassed 
that of XGBoost in our study, suggesting that com-
bining CNN and LSTM techniques holds promise for 
improving prediction performance.

CNN and LSTM are both deep learning models 
with distinct applications. CNN is commonly used in 
image and speech recognition, whereas LSTM excels 

in analyzing long time series data. Each model has 
unique advantages: CNN effectively learns sequence 
dynamics by extracting local patterns, while LSTM 
addresses long-term dependency issues using gate 
mechanisms within its memory units. The CNN-
LSTM hybrid model combines these strengths and 
finds extensive use in fields such as finance and yield 
forecasting. In our study, CNN-LSTM was applied to 
forecast flu activity, outperforming individual models 
and ranking highest among the four models compared. 
In Muhammad, L. J et al.’s research, CNN-LSTM suc-
cessfully predicted Covid-19 case numbers in South 
Africa and Botswana, achieving commendable accu-
racy [33]. Similarly, studies by Zhang, J et  al. and Rui 
Yan et  al. utilized CNN-LSTM to forecast air quality 
in Beijing, China, comparing it with CNN and LSTM 
models. Their findings consistently demonstrated 
CNN-LSTM’s superior predictive performance [38, 
39]. Notably, Rui Yan et al. also employed CNN-LSTM 
for multi-period prediction, aligning closely with our 
study’s results.

limitations
Flu activity is influenced by various factors, including 
population immunity, conditions of transmission, and 
viral variability. In the retrospective projections of this 
study, the prediction accuracy of the five models declined 
to varying degrees during 2021 and 2022. This decline 
possibly due to the stringent preventative measures 
enacted during the COVID-19 pandemic. In Hu CY’s 
study, many provinces and cities in China adopted pre-
ventive measures such as mask-wearing, closure of large 
public venues, and prohibition of large gatherings to con-
trol COVID-19. As COVID-19 spreads similarly to flu, 
activities related to flu and other respiratory infections 
were disrupted [40], and COVID-19 has similar clinical 
symptoms to influenza, and many COVID-19 patients go 
to the hospital to see an increase in the number of ILIs 
[41]. These will lead to significant bias in predictions. 
For future studies, data processing methods like singular 
spectrum analysis or one-hot encoding should be con-
sidered to mitigate the impact of COVID-19 prevention 
measures [42, 43].

In additional, since meteorological data such as mete-
orological data in the study area are not publicly avail-
able. Our study solely utilized ILI% data from 28 flu 
sentinel hospitals in Hebei Province. Although optimal 
hyperparameters were employed in model construction, 
the dimensions of the input features could potentially 
impact prediction results. In Athanasiou et  al.’s study, 
multi-source data including monitoring, meteorological 
data, and Twitter search data were integrated, yielding 
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excellent prediction outcomes [44]. This suggests that 
incorporating more diverse and relevant data into models 
can enhance prediction accuracy. Future studies should 
consider leveraging multi-source data to improve overall 
model performance.

In infectious disease modeling, both linear and non-
linear relationships often coexist. Prediction methods 
for infectious diseases include linear models, machine 
learning models, and deep learning models, the latter of 
which possess strong nonlinear extraction capabilities. 
Although our study only utilized the combined advan-
tages of CNN and LSTM to construct the CNN-LSTM 
model, there may be limitations in its ability to extract 
linear relationships. In Yiran Wan’s prediction study on 
hand, foot, and mouth disease in Chongqing, China, 
the SARIMA-EEMD-LSTM model was employed, 
demonstrating higher prediction performance com-
pared to single models [45]. This suggests that integrat-
ing different types of models could be beneficial for our 
future work.

Finally, it is crucial to provide a reasonable estimate of 
uncertainty in forecasting. As mentioned earlier, influ-
enza incidence is influenced by many factors, and the 
predictive accuracy of the model can vary with changes 
in these uncertainties during actual predictions. It is 
essential to assess a reasonable confidence interval to 
model’s predictive results. In a study by Morris, Michael 
et al., they utilized various neural network models to pre-
dict influenza activity and employed Gaussian distribu-
tion to estimate prediction result intervals, enhancing 
the realism and effectiveness of their predictions [46]. 
In our study, we did not adequately estimate the predic-
tion uncertainty interval. Future research should address 
this by employing appropriate methods to estimate 
uncertainty factors, thereby incorporating confidence 
intervals into the model’s prediction results to enhance 
effectiveness.

Conclusions
Seasonal flu epidemics impose a significant disease bur-
den, emphasizing the need for scientifically accurate 
predictive models to facilitate early intervention. Our 
study developed a hybrid CNN-LSTM model to forecast 
the activation of flu in Hebei Province. We compared 
the predictive performance of the hybrid model against 
the SARIMA model, XGBoost model, CNN model, and 
LSTM model. Our analysis revealed that while all models 
effectively predicted ILI activity trends, the hybrid CNN-
LSTM model demonstrated superior prediction accuracy 
compared to the others. These findings not only enhance 
the precision of flu prediction in Hebei Province but also 

demonstrate the efficacy of hybrid models in specific 
forecasting tasks. By providing timely scientific guidance 
before the flu season, proactive measures can be planned 
and implemented for prevention and control in Hebei 
Province. These findings not only enhance the precision 
of flu prediction in Hebei Province but also highlight the 
efficacy o f hybrid model in specific predictive tasks. By 
providing timely scientific guidance before the flu season, 
proactive measures can be planned and implemented for 
prevention and control in Hebei Province.
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