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Abstract
Background  Adverse birth outcomes, including preterm birth, low birth weight, and stillbirth, remain a major global 
health challenge, particularly in developing regions. Understanding the possible risk factors is crucial for designing 
effective interventions for birth outcomes. Accordingly, this study aimed to develop a predictive model for adverse 
birth outcomes among childbearing women in Sub-Saharan Africa using advanced machine learning techniques. 
Additionally, this study aimed to employ a novel data science interpretability techniques to identify the key risk factors 
and quantify the impact of each feature on the model prediction.

Methods  The study population involved women of childbearing age from 26 Sub-Saharan African countries who 
had given birth within five years before the data collection, totaling 139,659 participants. Our data source was a 
recent Demographic Health Survey (DHS). We utilized various data balancing techniques. Ten advanced machine 
learning algorithms were employed, with the dataset split into 80% training and 20% testing sets. Model evaluation 
was conducted using various performance metrics, along with hyperparameter optimization. Association rule mining 
and SHAP analysis were employed to enhance model interpretability.

Results  Based on our findings, about 28.59% (95% CI: 28.36, 28.83) of childbearing women in Sub-Saharan Africa 
experienced adverse birth outcomes. After repeated experimentation and evaluation, the random forest model 
emerged as the top-performing machine learning algorithm, with an AUC of 0.95 and an accuracy of 88.0%. The key 
risk factors identified were home deliveries, lack of prenatal iron supplementation, fewer than four antenatal care 
(ANC) visits, short and long delivery intervals, unwanted pregnancy, primiparous mothers, and geographic location in 
the West African region.

Conclusion  The region continues to face persistent adverse birth outcomes, emphasizing the urgent need for 
increased attention and action. Encouragingly, advanced machine learning methods, particularly the random 
forest algorithm, have uncovered crucial insights that can guide targeted actions. Specifically, the analysis identifies 
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Introduction
In recent years, there has been growing recognition of 
the profound impact that adverse birth outcomes can 
have on the long-term health and well-being of individu-
als, spanning from infancy to adulthood [1, 2]. Adverse 
birth outcomes, including preterm birth, stillbirth, mac-
rosomia, and low birth weight, occur during the period of 
fetal development and the early weeks of life [3].

While considerable progress has been made in reduc-
ing adverse birth outcomes globally, substantial dispari-
ties persist between developing and developed countries, 
with Sub-Saharan Africa bearing a hefty burden [4–7]. 
Approximately 30  million low-birth-weight babies are 
born worldwide each year, which accounts for around 
23.4% of all births [8, 9]. Low birth weight poses various 
adverse health risks for the baby, like fetal and neonatal 
mortality, morbidity, and impaired growth and cognitive 
development, as well as leading to chronic diseases later 
in life [10].

Sub-Saharan Africa and Southeast Asia were the 
hotspots of low birth weight, which shared three-quar-
ters of the global burden in 2020. Sub-Saharan Africa 
alone shares 27.1% of the worldwide burden of low birth 
weight [9]. Both low birth weight and macrosomia or 
high birth weight are critical indicators of infant health. 
According to the DHS report, the pooled prevalence of 
macrosomia in this region was 8.33% [11].

Prematurity is also a major cause of neonatal mortal-
ity worldwide, with approximately 15  million babies 
born preterm each year, accounting for around 11% of all 
deliveries globally [12]. It accounts for 35% of all deaths 
among newborns worldwide [7]. According to recent 
estimates, about 65% of preterm births were from South-
ern Asia and Sub-Saharan Africa [6]. In 2019, it was 
estimated that around 2.0  million babies were stillborn 
worldwide. The global stillbirth rate was approximately 
13.9 stillbirths per 1,000 total births. Sub-Saharan Africa 
was the top vulnerable region, which shares 43.6% of the 
worldwide burden of stillbirths [13].

The health sector’s main focus in the Sustainable Devel-
opment Goals (SDGs) is reducing infant and child mor-
tality, which is closely linked to adverse birth outcomes 
[14]. Alleviating adverse birth outcomes is vital for tack-
ling infant and childhood mortality and in turn, achieving 
the SDGs. Various strategies, including reducing adverse 
birth outcomes like low birth weight, stillbirth, and 

preterm births a part of the SDGs, have been undertaken 
by different stakeholders to address the magnitude of 
these issues [15]. Despite these initiatives, adverse birth 
outcomes remain a significant challenge in Sub-Saharan 
Africa, with an overall pooled prevalence of 29.7% based 
on previous DHS data [16].

Previous literature highlighted several possible fac-
tors for adverse birth outcomes, including the place of 
residence [17–21], maternal education [3, 16, 19, 20, 22, 
23], mode of delivery [22], substance use [22], distance to 
healthcare facilities [16], gender of the child [3, 16, 17, 19, 
24, 25], maternal age [3, 18, 26–29], religion [20], num-
ber of children [24], wealth index [16, 19–22, 25], parity 
[16–19, 22, 27, 29], contraceptive use history [30], marital 
status [3, 21, 22], husband’s education level [3, 24], being 
anemic [31], iron supplementation [20, 24, 31], type of 
pregnancy [3, 16, 21, 24], number of ANC visits [16, 18, 
23, 25, 26, 30, 32], birth interval [3, 21, 30, 33], unwanted 
pregnancy [22], place of delivery [3, 20, 29], and geo-
graphic region [19, 22, 34].

While previous studies have examined the factors 
influencing adverse birth outcomes using DHS data from 
various countries in Sub-Saharan Africa [16, 28, 33, 35], 
a deeper understanding requires the use of advanced 
machine learning algorithms and data science tech-
niques. This approach enables the discovery of hidden 
patterns and relationships that may not be easily identi-
fied through traditional statistical methods. Additionally, 
our study’s use of recent DHS data allows us to cap-
ture the most up-to-date trends and factors influencing 
adverse birth outcomes in the region.

Accordingly, we proposed a study aimed at devel-
oping a predictive model for adverse birth outcomes 
among childbearing women in Sub-Saharan Africa using 
advanced machine learning techniques. Additionally, this 
study aimed to employ novel data science interpretabil-
ity techniques to identify the key risk factors and quantify 
the impact of each feature on the model prediction.

Method
Data source
Secondary data from the most recent DHS, which was 
carried out in 26 countries in Sub-Saharan Africa, were 
used in this analysis. The following are the nations and 
corresponding survey years: Angola (2015–2016), Benin 
(2017–2018), Burkina Faso (2021), Burundi (2016–17), 

risky groups, including first-time mothers, women with short or long birth intervals, and those with unwanted 
pregnancies. To address the needs of these high-risk women, the researchers recommend immediately providing iron 
supplements, scheduling comprehensive prenatal care, and strongly encouraging facility-based deliveries or skilled 
birth attendance.
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Cameroon (2018), Ivory Coast (2021), Ethiopia (2016), 
Gabon (2019–21), Gambia (2019–20), Ghana (2022), 
Guinea (2018), Kenya (2022), Liberia (2019–20), Mada-
gascar (2021), Malawi (2015–16), Mali (2018), Mau-
ritania (2019-21), Nigeria (2018), Rwanda (2019–20), 
Senegal (2019), Sierra Leone (2019), South Africa (2016), 
Tanzania (2022), Uganda (2016), Zambia (2018), and 
Zimbabwe (2015). The data for this study was obtained 
from the official database of the DHS program, which can 
be accessed at the following URL: https://dhsprogram.
com/data/available-datasets.cfm.

Standardized cross-sectional surveys were conducted 
by the DHS Program in more than 90 countries to col-
lect thorough and representative data on nutrition, HIV, 
health, and population. A multi-stage stratified sampling 
approach was used in these surveys to choose respon-
dents from households within specific clusters. To select 
the enumeration areas, sampling strata based on the 
urban and rural sectors were created, and probability 
proportionate to size was used in the process. House-
holds were picked using an equal probability systematic 
sampling procedure within the designated enumeration 
areas. Detailed information regarding the sampling pro-
cedure and methodology employed in the survey can be 
accessed on the DHS website and their provided guide-
lines [36].

The study focused on women of childbearing age [15–
49] in Sub-Saharan African countries who had given birth 
within the five years prior to data collection. The analysis 
encompassed a significant sample size of 139,659 women 
who met the specified criteria across the 26 countries 
included in the study. The dataset used in this study con-
tained 28 different features that were considered during 
the analysis.

Study variables and measurements
Adverse birth outcomes, which were defined as the inci-
dence of one or more particular conditions during recent 
pregnancies, such as low birth weight, macrosomia, pre-
term birth, or stillbirth, were the main measures utilized 
in this study. This definition was based on the availability 
of possible items on DHS. Low birth weight, macrosomia, 
stillbirth, and gestational age of fewer than 37 weeks were 
all integrated by the researchers to form a single vari-
able. If there were any reported adverse birth outcomes, 
this variable was coded as 1, indicating that there were 
adverse birth outcomes, and 0 if none were recorded. The 
previous study provided detailed information on how 
this variable was recoded from the DHS dataset [33].

Following a review of the literature, the study looked 
at several independent variables. The variables that were 
included in this study were: the place of residence [17–
21], maternal education [3, 16, 19, 20, 22, 23], gender of 
the household head [16, 22], ownership of a mobile phone 

[17–21], mode of delivery (cesarean section or vaginal) 
[22], smoking [22], distance to healthcare facilities [16], 
maternal employment status [16, 22], gender of the child 
[3, 16, 17, 19, 24, 25], maternal age [3, 18, 26–29], religion 
[20], number of children in the family [24], wealth index 
[16, 19–22, 25], parity (number of previous pregnancies) 
[16–19, 22, 27, 29], contraceptive use history [30], marital 
status [3, 20, 29, 30], husband’s education level [3, 20, 24, 
29], iron supplementation [20, 24, 31], type of pregnancy 
(single or twin) [3, 16, 21, 24], number of ANC visits [16, 
18, 23, 25, 26, 30, 32], birth interval [3, 21, 30, 33], desired 
pregnancy status (wanted or unwanted pregnancy) [22], 
first ANC check-up (early or late) [16, 22], place of deliv-
ery [3, 20, 29], and media exposure [20, 24, 30, 31].

The birth interval variable was recoded into short (less 
than 24 months), normal (24 to 59 months), and long 
(greater than 59 months) categories based on the World 
Health Organization (WHO)’s guidelines for inter-preg-
nancy interval [37]. Regarding the timing of first ANC 
check-up, mothers who started their first ANC visit 
during the first trimester were considered as early ANC 
check-ups, and those who started in the second and third 
trimesters were considered late ANC check-ups [38].

In addition, community-level variables such as country 
and region (including sub-regions of Sub-Saharan Africa 
such as West, East, North, Central, and South Africa) 
were included after repeated experimentation to assess 
the potential significance of those features in the study. 
The inclusion of community-level variables, such as 
country and region, was informed by a review of previous 
literature [19, 22, 34].

To further assess the importance of these variables, 
the researchers conducted a series of experiments. Spe-
cifically, we included the community-level variables one 
by one and evaluated the performance of the different 
machine learning algorithms to determine the impact 
of these factors on the prediction of adverse birth out-
comes. By systematically testing the contribution of the 
community-level variables, the researchers were able to 
build a more comprehensive and robust predictive model 
that accounted for both individual-level and contextual 
factors.

Data preprocessing
Data pre-processing, the first step in machine learning, 
is preparing the data to make sure it is suitable for com-
puter analysis [39]. For our models, we used a continu-
ous improvement methodology in our machine learning 
workflow. We carried out a number of activities, such as 
feature selection, data balancing, model selection, train-
ing, evaluation, parameter optimization via cross-valida-
tion, final model selection, and deployment to forecast 
adverse birth outcomes [40].

https://dhsprogram.com/data/available-datasets.cfm
https://dhsprogram.com/data/available-datasets.cfm
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Throughout this iterative approach, we continuously 
improved our models to achieve better outcomes. While 
Fig.  1 shows the high-level workflow phases visually, it 
may not capture all the repetitive tasks we completed as 
part of this process. Beyond the activities depicted in the 
figure, we engaged in numerous additional iterative steps 
to systematically refine our models.

The iterative tasks included trying different feature 
engineering methods to enhance the model inputs, 
experimenting with various data balancing techniques to 
address class imbalances, evaluating the performance of 
different kernel functions for the support vector machine 
(SVM) model, exploring various model tuning and 
hyperparameter optimization approaches, and assessing 
the impact of different n-fold cross-validation schemes. 

Fig. 1  Study work flow diagram
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By continuously iterating and improving our models 
through this cyclical process, we were able to enhance 
the accuracy of our adverse birth outcome forecasts.

Moreover, model evaluation is where the trained model 
is evaluated on the held-out test set data to get an unbi-
ased estimate of its performance, and this was done 
before model optimization. However, the researcher of 
this study also conducted model evaluation after opti-
mization and to select the final best model by compar-
ing the optimized models. By continuously iterating and 
improving our models through this cyclical process, we 
were able to enhance the accuracy of our adverse birth 
outcome forecasts.

Data cleaning
Throughout the data analysis process, we ensured the 
quality and dependability of the dataset by using a rig-
orous approach. We began with a comprehensive man-
ual audit to identify and eliminate any extraneous data 
entries. The DHS guideline [36] was used to identify 
extraneous data entries and outliers. In this study, we 
identified a few outliers and removed them after assess-
ing the impact through sensitivity analysis [41, 42].

Upon conducting our analysis, we discovered that 
for each variable utilized in this study, the missing rate 
was under 10%. To deal with these missing values, we 
employed the imputation technique known as K-Nearest 
Neighbors (KNN). A popular method for filling in the 
missing values is KNN imputation, which uses infor-
mation from neighboring data points. Because KNN 
imputation can handle a wide range of data formats, 
incorporate contextual information, preserve the data-
set’s structure, and consistently resolve missing values, it 
is the method of choice for us [43, 44].

Additionally, the correlation matrix was used to assess 
multicollinearity; a correlation between two variables 
was considered high if it was greater than 0.8 [45, 46]. 
Nevertheless, there was no indication of multicollinearity 
between the variables in our research.

Feature engineering
In order to create precise and useful machine learn-
ing models, the process of feature engineering involves 
carefully locating, extracting, and modifying pertinent 
features from the given data [47]. We conducted a study 
using different encoding algorithms for different types 
of category variables. Specifically, we employed one-
hot encoding for nominal categorical variables and label 
encoding for ordinal categorical variables [48].

The rationale for choosing these encoding methods 
was based on the nature of the categorical variables in 
the dataset and the common best practices in the field 
of machine learning. One-hot encoding and label encod-
ing are well-established techniques that are often the 

starting point for handling categorical variables, as they 
are straightforward to implement and can provide mean-
ingful representations for the machine learning models 
[49, 50].

Dimensionality reduction
We used multiple dimensionality reduction techniques 
to improve the performance of the model. Boruta-based 
feature selection, principal component analysis (PCA), 
lasso regression, random forest feature selection, recur-
sive feature elimination (RFE), and univariate selection 
were a few of these techniques. After doing rigorous test-
ing and comparing the outcomes across multiple feature 
selection techniques, we discovered that RFE and ran-
dom forest-based feature selection were the most effec-
tive strategies in terms of accuracy and robustness.

In our experimentation, we systematically evalu-
ated the performance of various machine learning algo-
rithms before and after applying each feature selection 
technique. We also compared the performance of the 
machine learning algorithms across each feature selec-
tion technique. This allowed us to determine the optimal 
dimensionality reduction strategy based on the resulting 
model improvements.

RFE is an iterative technique that methodically elimi-
nates features from the dataset based on their signifi-
cance or ability to enhance the model’s performance. The 
less important elements are gradually removed from the 
model once it has been trained with all of the character-
istics up to a predetermined threshold or level of per-
formance [51]. On the other hand, random forest-based 
feature selection determines which features are most rel-
evant by evaluating each one’s relevance using a random 
forest method.

We were able to remove two characteristics with these 
methods: smoking and the number of children in the 
family. Both recursive feature elimination and random 
forest-based feature selection showed that these traits 
were the least significant factors.

After removing the two variables, the performance 
of each machine learning algorithm showed a slight 
improvement compared to applying other feature selec-
tion techniques or no dimensionality reduction at all. For 
instance, the performance of random forest improved 
from an accuracy of 83.0% and AUC of 92.0% before fea-
ture selection, to an accuracy of 87.0% and AUC of 95.0% 
after removing the two variables using RFE and random 
forest-based selection. Additional Material 1 provides 
a detailed performance comparison of each algorithm 
before and after feature selection.

Data balancing
In our study, we used a novel data balancing technique to 
address class imbalance in our dataset. Six data balancing 
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strategies were used in this approach: the NearMiss algo-
rithm, SMOTE-ENN (SMOTE edited nearest neighbor), 
Adaptive Synthetic (ADASYN), under and over-sam-
pling, and synthetic minority over-sampling methodol-
ogy (SMOTE).

We carried out a comprehensive analysis of model per-
formance and took into account several performance 
parameters to identify the best data balancing method. 
Using several balancing approaches, we trained machine 
learning algorithms on the balanced data and compared 
their performance. We determined the best strategy 
for resolving the class imbalance in our dataset by this 
meticulous method [52, 53].

Model selection and development
We select ten advanced machine learning models that 
could accurately predict adverse birth outcomes. The 
Jupyter Notebook and the Python packages from sci-kit-
learn version 1.3.2 were used in this study. These machine 
learning algorithms were selected because they could be 
used for classification tasks and they aligned well with 
the features of our dataset [54–56].

We used the following algorithms: AdaBoost, eXtreme 
Gradient Boosting (XGBoost), CatBoost Classifier, 
Gaussian Naive Bayes (GNB), logistic regression, decision 
tree, random forest, SVM, KNN method, and feedfor-
ward neural network (FFNN). For the detailed descrip-
tions of each employed machine learning algorithm see 
Additional Material 2.

Model training and evaluation
We used a simple strategy in our study to split the data 
into two sets: a training set consisting of 80% (111,727 
cases) and a testing set consisting of 20% (27,932 cases). 
The rationale behind choosing a 20% test and 80% train 
split was based on a careful consideration of the char-
acteristics of our dataset, the complexity of the models 
employed, and the specific requirements of our project. 
To further validate the appropriateness of this split, we 
also compared the performance of each employed algo-
rithm when using a 30% test and 70% train split. The 
results showed that the 20% test and 80% train split gave 
a comparable good performance, and we considered this 
split to be the most suitable for our study [57, 58].

We employed a variety of metrics, including accuracy, 
precision, recall/sensitivity, F1-score, specificity, and 
AUC to evaluate each predictive model’s performance.

1.	 Accuracy: The accuracy of a model measures the 
overall predictions which is determined by dividing 
the total number of predictions by the number of 
accurate predictions [59].

2.	 Precision: Precision assesses how well the model 
predicts good outcomes. It measures the percentage 

of actual positive predictions that match the 
total number of projected positives. Precision 
can be calculated using the following formula: 
Precision = TP / (TP + FP), where TP stands for true 
positive and FP for false positive [59].

3.	 Recall: Recall evaluates the model’s capacity to 
detect every positive instance. It is also referred to 
as sensitivity or true positive rate. It calculates the 
percentage of actual positives that are true positive 
forecasts [59]. Recall = TP / (TP + FN) is the recall 
formula, in which TP stands for true positive and FN 
for false negative.

4.	 F1-score: By taking precision and recall into account, 
the F1-score offers a fair assessment of a model’s 
performance. This is the harmonic mean of recall 
and precision [59].

�F1-score = 2 * (Recall * Precision) / 
(Recall + Precision) is the formula to compute 
F1-score.

5.	 Specificity: This refers to the percentage of accurate 
negative predictions among all real negatives, 
which indicates how well the model can detect 
negative occurrences. Specificity is calculated as 
TN / (TN + FP), where TN stands for true negatives 
(negatives that are accurately predicted) and FP 
stands for false positives (positives that are wrongly 
predicted).

6.	 AUC: The area under the receiver operating 
characteristic (ROC) curve is used to generate the 
AUC metric. Plotting the true positive rate against 
the false positive rate at different categorization 
thresholds results in the ROC curve. An algorithm’s 
capacity to discriminate across classes is shown by 
its AUC value; a higher AUC value corresponds to 
stronger discrimination [59, 60].

Model optimization, cross-validation, calibration, and 
kernel techniques
Model optimization
To maximize the performance of the model, we con-
ducted a comprehensive analysis of the hyperparam-
eters using three common tuning approaches: grid 
search, random search, and Bayesian optimization [61, 
62]. For the grid search, we defined a parameter grid 
that included key hyperparameters such as learning 
rate, number of estimators, max depth, and min samples 
split. We systematically tested a range of values for each 
hyperparameter and performed an exhaustive evalua-
tion of all possible combinations to identify the optimal 
configuration.
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The random search approach involved randomly sam-
pling hyperparameter values from predefined distri-
butions, allowing us to explore a larger portion of the 
hyperparameter space in a more efficient manner.

In addition, we leveraged Bayesian optimization, which 
models the objective function (model performance) as a 
Gaussian process and intelligently selects the next hyper-
parameter values to test based on the observed perfor-
mance so far.

After comparing the results from these three optimiza-
tion techniques, we found that the grid search approach 
yielded the best overall performance for our specific data-
set and problem. Therefore, we selected the grid search as 
the primary method for hyperparameter tuning.

Cross-validation
To ensure a thorough and reliable evaluation of the 
model’s performance, we employed three common 
cross-validation techniques: 3-fold, 5-fold, and 10-fold 
cross-validation [63].

In the 3-fold cross-validation, we divided the training 
data into three equal-sized partitions, trained the model 
on two partitions, and evaluated it on the held-out third 
partition. We repeated this process three times, using a 
different partition for the test set each time.

The 5-fold and 10-fold cross-validation followed a simi-
lar logic but with five and ten partitions, respectively. By 
using these varying cross-validation approaches, we were 
able to obtain more stable and reliable performance esti-
mates, as the smaller the number of folds, the higher the 
variance in the performance metrics.

After analyzing the results from the different cross-val-
idation methods, we determined that the 10-fold cross-
validation provided the most accurate and consistent 
evaluation of the model’s performance for our specific 
dataset.

Model calibration
To improve the model’s accuracy and reliability, we con-
ducted model calibration using isotonic regression [64]. 
Isotonic regression is a non-parametric technique that 
adjusts the model’s output probabilities to better align 
with the true likelihood of the predicted outcomes.

The calibration process involved fitting an isotonic 
regression model to the model’s output probabilities and 
the true class labels. This allowed us to transform the 
original probabilities in a way that minimized the dis-
crepancy between the predicted probabilities and the 
actual probabilities of the target classes.

By calibrating the model’s output probabilities, we were 
able to enhance the reliability of the model’s predictions 
and ensure that the reported probabilities accurately rep-
resented the likelihood of the outcomes.

Kernel approaches for SVM
In addition to the other models explored, we also inves-
tigated the impact of different kernel functions on the 
performance of the Support Vector Machine (SVM) 
algorithm. We evaluated five common kernel types: lin-
ear, polynomial, radial basis function (RBF), sigmoid, and 
Gaussian [65].

By comparing the performance of SVM models with 
these various kernel types, we were able to identify the 
optimal choice for our specific problem and dataset. The 
polynomial kernel emerged as the top performer, allow-
ing for non-linear decision boundaries by mapping the 
input features to a higher-dimensional space using a 
polynomial function [66].

To quantify the performance of the different kernel 
functions, we analyzed the accuracy and ROC values, as 
well as other relevant metrics. The linear kernel achieved 
an accuracy of 71.0% and an ROC value of 0.76. In con-
trast, the polynomial kernel provided the highest accu-
racy at 76.0% and an ROC value of 0.83, outperforming 
the other kernel functions. The RBF kernel had an accu-
racy of 75.0% and an ROC value of 0.81, while the sig-
moid kernel exhibited the lowest performance with an 
accuracy of 63.0% and an ROC value of 0.61. The Gauss-
ian kernel achieved an accuracy of 69.0% and an ROC 
value of 0.75.

Based on these comprehensive results, we can conclude 
that the polynomial kernel was the optimal choice for 
our problem and dataset, as it demonstrated the highest 
metrics performance value compared to the other kernel 
functions evaluated.

Model interpretability
To reveal hidden patterns and correlations in the dataset, 
we employed association rule mining techniques, which 
enhanced the interpretability of our model. The well-
known Apriori method, which was developed specifically 
for association rule mining, had to be used for this. By 
applying this method, we were able to identify frequently 
occurring item sets and construct important connection 
rules using metrics like lift, confidence, and support.

By measuring the strength of correlations between vari-
ables, the lift measure was able to demonstrate the effect 
of one variable on the occurrence of another. Confidence 
proved that association rules were true by showing the 
frequency with which the consequent variable arose 
when the antecedent variable was present. The support 
measure additionally determined the frequency of occur-
rence of specific item sets in order to corroborate the 
association findings. By including support, we were able 
to gain a comprehensive understanding of the relation-
ships and patterns seen in the dataset, which enhanced 
the interpretability of our model [67–69].
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We also employed SHAP (Shapley Additive Explana-
tions) analysis to show how each feature affects the pre-
dictive model. SHAP analysis is a useful technique for 
figuring out the importance and input of specific charac-
teristics in a machine learning model.

Results
Descriptive results of the socio-demographic and 
economic characteristics
The study conducted a thorough analysis of the descrip-
tive and sociodemographic parameters of 139,659 women 
who were childbearing. The results showed that the 
majority of participants—70,275 individuals, or 50.32% 
of the sample were in the 20–29 age group. Furthermore, 
86,386 people, or 61.85% of the poll participants, were 
rural residents. For more detailed information, please 
refer to Table 1.

Maternal obstetrics characteristics of the study 
participants in Sub-saharan Africa
The data showed that the majority of study participants, 
91.38% (127,618 individuals), delivered their babies 
through vaginal delivery. Additionally, 93.04% (129,933 
participants) received their delivery services at health 
institutions. The data also showed that a substantial 
number, 59.74% (83,426 of women), had never used con-
traception. This suggests a relatively high rate of non-use 
of contraceptive methods among the study participants. 
For more detailed information, please refer to Table 2.

Adverse birth outcome in Sub-Saharan Africa
According to our research of the most current DHS 
dataset, about 28.59% (95% CI: 28.36, 28.83) of child-
bearing women in Sub-Saharan Africa had adverse birth 
outcomes. Our finding also revealed significant varia-
tion between each country. Sierra Leone had the lowest 
prevalence of adverse birth outcomes at 14.08% (95% CI: 
13.22 − 14.94%), while Mali had the highest at 45.78% 
(95% CI: 44.10 − 47.45%). Figure  2 provides a detailed 
breakdown of the adverse birth outcome rates for each 
country in Sub-Saharan Africa, sequenced from the high-
est to the lowest prevalence.

Machine learning analysis of adverse birth outcome
Data balancing
Our analysis of machine learning algorithms using vari-
ous data balancing techniques is shown in Table  3. The 
outcome showed that, in comparison to other data bal-
ancing strategies utilized in this investigation, SMOTE-
ENN consistently outperformed all models evaluated in 
terms of accuracy. The random forest approach achieved 
the highest accuracy (87.0%) and AUC (95.0%) nota-
bly after data were balanced using SMOTE-ENN. For 
additional research and optimization, we decide to use 

Table 1  The socio-demographic and economic characteristics 
of study participants in Sub-saharan Africa based on recent DHS 
(2015–2024)
Variable Category Fre-

quency 
(n)

Per-
cent 
(%)

Residence Urban 53,273 38.15
Rural 86,386 61.85

Age 15–19 8,686 6.22
20–29 70,275 50.32
30–39 49,959 35.77
40–49 10,739 7.69

Educational 
level of 
mother

no education 37,756 27.03
Primary 49,797 35.66
Secondary 44,121 31.59
Higher 7,985 5.72

Sex of 
household 
head

Female 32,396 23.20
Male 107,263 76.80

Religion Catholic 46,920 33.60
Methodist 46,092 33.00
Assembly of God 12,232 8.76
Universal 8,286 5.93
Jehovah 11,642 8.34
Protestant 7,473 5.35
Islamic 3,581 2.56
Animist 1,779 1.27
Others 1,654 1.18

Marital status Single 11,335 8.12
Married 118,481 84.84
Divorced/separated/not living 
together

9,843 7.05

Wealth index Poor 53,324 38.18
Middle 28,561 20.45
Rich 57,774 41.37

Owned mo-
bile phone

No 59,785 42.81
Yes 79,874 57.19

Working 
status

No 49,207 35.23
Yes 90,452 64.77

Distance to 
health facility

Big problem/ far from health facility 49,672 35.57
Not a big problem/ near or optimal 89,987 64.43

Media 
Exposure

No 53,624 38.40
Yes 86,035 61.60

Smoke No 138,483 99.16
Yes 1,176 0.84

Number of 
children in 
the family

Four and below 134,578 96.36
Above four 5,081 3.64

Region West Africa 49,641 35.54
East Africa 71,728 51.36
Central Africa 15,304 10.96
South Africa 2,986 2.14
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Table 2  Maternal obstetrics characteristics of the study 
participants in Sub-Saharan Africa based on recent DHS 
(2015–2024)
Variable Category Frequency 

(n)
Per-
cent 
(%)

Delivery type Vaginal 127,618 91.38
Caesarian 12,041 8.62

Sex of child Male 71,193 50.98
Female 68,466 49.02

Parity Primiparous /1st_time_
mothers |

26,805 19.19

Multiparous 75,755 54.24
Grand multiparous 37,099 26.56

Ever use 
contraceptive

No 83,426 59.74
Yes 56,233 40.26

Iron 
Supplementation

Supplemented 94,377 67.58
Not Supplemented 45,282 32.42

Type of pregnancy Single 134,341 96.19
Twin 5,318 3.81

ANC visit No visit 3,392 3.18
Less than three visit (1–3) 64,111 45.91
Four and above visit 72,156 51.67

Birth interval Short birth interval 15,908 11.39
Normal birth interval 103,668 74.23
Long birth interval 20,083 14.38

Wanted pregnancy Not wanted 10,175 7.29
Wanted 129,484 92.71

First ANC check Early 47,651 34.12
Late 92,008 65.88

Place of delivery Home 9,726 6.96
Health institution 129,933 93.04

Table 3  Comparison of imbalanced data handling techniques across each machine learning algorithms
Algorithms Performance metrics Unbalanced

Data
Under-sampling Over-sampling ADASYN SMOTE SMOTE-ENN Near miss

SVM Accuracy 73.0% 59.0% 60.0% 60.0% 64.0% 76.0% 71.0%
AUC 0.58 0.63 0.64 0.64 0.70 0.83 0.77

Logistic regression Accuracy 73.0% 57.0% 57.0% 58.0% 61.0% 70.0% 67.0%
AUC 0.61 0.60 0.60 0.61 0.65 0.75 0.72

GNB Accuracy 70.0% 56.0% 56.0% 56.0% 59.0% 62.0% 65.0%
AUC 0.59 0.60 0.60 0.60 0.64 0.73 0.72

Decision tree Accuracy 63.0% 54.0% 66.0% 61.0% 66.0% 82.0% 61.0%
AUC 0.54 0.54 0.67 0.62 0.66 0.80 0.61

Random forest Accuracy 71.0% 57.0% 70.0% 66.0% 72.0% 87.0% 66.0%
AUC 0.58 0.60 0.76 0.71 0.79 0.95 0.72

XGBoost Accuracy 73.0% 59.0% 61.0% 61.0% 67.0% 78.0% 72.0%
AUC 0.60 0.63 0.66 0.65 0.74 0.86 0.78

KNN Accuracy 72.0% 56.0% 58.0% 58.0% 62.0% 75.0% 66.0%
AUC 0.57 0.58 0.62 0.62 0.67 0.82 0.70

AdaBoost Accuracy 73.0% 59.0% 58.0% 58.0% 64.0% 72.0% 69.0%
AUC 0.61 0.62 0.62 0.62 0.70 0.78 0.75

FFNN Accuracy 73.0% 59.0% 60.0% 60.0% 64.0% 76.0% 71.0%
AUC 0.59 0.63 0.64 0.64 0.70 0.83 0.77

CatBoost Accuracy 73.0% 60.0% 62.0% 61.0% 67.0% 78.0% 72.0%
AUC 0.61 0.64 0.66 0.66 0.74 0.86 0.78

Fig. 2  The prevalence of adverse birth outcome among childbearing 
women in Sub-Saharan Africa countries using forest tree plot
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SMOTE-ENN. Please see Additional Material 3 for 
detailed information on the performance metrics of sev-
eral machine learning algorithms experimenting with dif-
ferent data balancing techniques.

Development and performance comparisons of machine 
learning models
We carried out various optimization techniques to 
improve the performance of these machine learning 
models. We applied random search tuning, Bayesian 
optimization, and grid search hyperparameter tuning to 
explore the performance of each algorithm across the dif-
ferent optimization techniques.

Our results showed that grid search optimization pro-
duced performance metrics that were consistently higher 
and more consistent for every algorithm implemented in 
our study. While Bayesian optimization demonstrated 
higher performance metrics for a few of the algorithms, 
specifically KNN and CatBoost, it lacked the overall con-
sistency observed with grid search tuning.

Additionally, the random search tuning technique 
showed higher performance for the CatBoost algorithm. 
However, we ultimately chose grid search tuning as the 
final model optimization technique for the ten machine 
learning algorithms in our study. This decision was based 
on grid search’s ability to consistently improve the perfor-
mance metrics across all the algorithms. Random forest 
was the top-performing algorithm in all three of the tun-
ing techniques.

For a detailed comparison of the machine learning 
algorithm performance under the random search, Bayes-
ian optimizations, and grid search tuning approaches, 
please refer to Table  4. The table presents the accuracy 
and AUC metrics for each algorithm, after applying ten-
fold cross-validation and calibration during hyperparam-
eter optimization steps.

After extensive experimentation and evaluation, we 
identified the random forest model as the top per-
former machine learning model for our dataset, achiev-
ing outstanding performance with an AUC score of 0.95, 

accuracy = 0.88, recall = 0.94, specificity = 0.87, preci-
sion = 0.88, and F1-score = 0.91. For a detailed analysis 
of the performance metrics, please refer to Fig. 3 (ROC 
curve) and Fig.  4 (overall metric performance) in our 
study.

Model interpretability
Association rule mining
The principal predictor variables associated with adverse 
birth outcomes were determined using association rule 
mining. The main factors linked to a high risk of adverse 
birth outcomes according to our exploration with associ-
ation rule mining were found to be home deliveries, lack 
of prenatal iron supplementation, fewer than four ANC 
visits, short and long delivery intervals, unwanted preg-
nancy, primiparous (first-time) moms, and geographic 
location in the West African region.

The top 5 association rules and their corresponding 
statistics were:

Rule 1  If mothers do not have iron supplementation, 
the pregnancy type is unwanted, and the delivery occurs 
at home, the probability of an adverse birth outcome is 
94.9% (confidence = 0.949 and lift = 2.96).

Rule 2  If mothers have fewer than four prenatal visits, the 
pregnancy is unwanted, and the delivery occurs at home, 
the probability of an adverse birth outcome is 92.5% (con-
fidence = 0.925 and lift = 2.88).

Rule 3  If mothers have a short birth interval, the preg-
nancy is unwanted, and the delivery occurs at home, the 
probability of adverse birth outcomes is 91.7% (confi-
dence = 0.917 and lift = 2.86).

Rule 4  If mothers are primiparous, the pregnancy is 
unwanted, and their geographic location is the West 
Africa region, the probability of adverse birth outcome is 
90.8% (confidence = 0.908 and lift = 2.83).

Table 4  Accuracy and AUC metrics for selected machine learning algorithms after data balancing and hyperparameter optimization
Algorithms Grid search Random search Baysian optimization

Accuracy AUC Accuracy AUC Accuracy AUC
SVM 84.0% 0.89 81.0% 0.86 83.0% 0.87
Logistic regression 72.0% 0.77 72.0% 0.76 72.0% 0.76
GNB 67.0% 0.72 64.0% 0.72 66.0% 0.72
Decision tree 82.0% 0.80 79.0% 0.80 75.0% 0.79
Random forest 88.0% 0.95 87.0% 0.94 84.0% 0.92
XGBoost 82.0% 0.88 82.0% 0.88 78.0% 0.86
KNN 86.0% 0.90 81.0% 0.84 86.0% 0.91
AdaBoost 72.0% 0.77 70.0% 0.76 72.0% 0.77
FFNN 81.0% 0.84 79.0% 0.83 80.0% 0.84
CatBoost 80.0% 0.86 86.0% 0.92 82.0% 0.88
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Rule 5  If mothers have a long birth interval, the preg-
nancy is unwanted, and the delivery occurs at home, the 
probability of adverse birth outcomes is 90.1% (confi-
dence = 0.901 and lift = 2.81).

SHAP feature impact on model prediction
As depicted in Fig.  5, the top influential factors for the 
model predictions were region, ANC visit, and parity, 

place of delivery, mother education, wanted pregnancy, 
and iron supplementation.

Discussion
To predict adverse birth outcomes in Sub-Saharan 
Africa, our research study focused on applying advanced 
machine learning techniques. The results of our inves-
tigation showed significant variables linked to adverse 

Fig. 4  Comprehensive metrics performance of employed machine learning algorithms using balanced data and optimized model using grid search 
tuning

 

Fig. 3  ROC curve trained with balanced data and optimized model using grid search tuning
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birth outcomes and demonstrated the effectiveness of ten 
advanced machine learning algorithms in this regard.

According to our findings based on the analysis of the 
most recent DHS dataset, approximately 28.59% (95% 
CI: 28.36, 28.83) of childbearing women in sub-Saharan 
Africa experienced adverse birth outcomes. This preva-
lence is slightly lower than the previously reported rate 
for the region [16]. The difference in adverse birth out-
come rates might be attributable to the varying periods 
in which the individual country surveys were conducted.

Regarding the employed algorithm, the findings indi-
cated that the random forest approach was the best-
performing algorithm. This finding is consistent with 
other studies [70–74], suggesting that the random forest 
method is a valuable tool for predicting adverse birth out-
comes. The random forest performs well due to its abil-
ity to handle complex and nonlinear relationships within 
the data [75]. This finding implies that advanced machine 
learning techniques, specifically the random forest algo-
rithm, hold immense potential as powerful tools to tackle 
this critical public health challenge of adverse birth out-
comes in Sub-Saharan Africa.

Our association rule mining approach discovered mul-
tiple factors associated with poor birth outcomes in Sub-
Saharan Africa. Inadequate iron supplementation was 
found to be a major risk factor, indicating the need for 
iron to encourage healthy fetal development and pre-
vent issues. This conclusion underscores the need for 
therapies and strategies to ensure adequate iron supple-
mentation for pregnant mothers in the area, in line with 
previous research findings [20, 24, 31].

Unwanted pregnancy was another important factor 
that increased the likelihood of poor outcomes at birth. 
The justification for this could be due to unexpected 
pregnancies presenting women with a variety of chal-
lenges, such as psychological stress, inadequate prena-
tal care, and a delayed antenatal service start date, all of 
which can have an adverse effect. The finding is consis-
tent with previous research findings [22].

Access to skilled delivery care is essential for a safe 
delivery experience, as evidenced by the strong asso-
ciation between home delivery and adverse birth out-
comes in our data. As other researchers have already 
discovered [3, 20, 29], this could be because prompt 
interventions and emergency obstetric care delivered at 

Fig. 5  SHAP feature impact on model prediction
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healthcare facilities can reduce the risk of complications 
and improve outcomes for the mother and newborn.

Our finding implied that inadequate ANC visits, par-
ticularly less than the recommended four visits, were 
associated with an increased risk of adverse birth out-
comes. This result is in line with previous research done 
in other parts of the world [16, 18, 23, 25, 26, 30, 32]. The 
justification for this could be that inadequate ANC vis-
its increase the likelihood of adverse birth outcomes and 
missed opportunities for early intervention. The finding 
implies that ANC visits should be improved if pregnant 
women are to be encouraged to attend the prescribed 
number of visits.

Our association rule mining results showed that both 
short and long birth intervals increase the likelihood of 
adverse birth outcomes. This finding is supported by pre-
vious research elsewhere in the world [3, 21, 30, 33, 76]. 
This could be because long birth intervals are linked to 
more challenging pregnancies and older mothers, which 
could account for the observed findings. The mother’s 
body and the growth of the fetus may also be adversely 
affected by lengthy waits between pregnancies. A short 
birth interval, however, might not provide the mother 
adequate time to heal and restore her nutrition stores. 
The finding implies pregnant women’s and their chil-
dren’s health may be improved by encouraging optimal 
birth intervals.

According to our findings, one possible factor that 
raised the risk of adverse birth outcomes was being a pri-
mipara mother. This finding is consistent with previous 
research findings [16–19, 22, 27, 29]. The possible jus-
tification for this is that first-time mothers can encoun-
ter particular difficulties since they lack experience and 
understanding about pregnancy and childbirth. The find-
ing implies that educating and providing targeted inter-
ventions to first-time mothers can help reduce the risk of 
adverse birth outcomes.

Within Sub-Saharan Africa, our data showed consid-
erable regional differences in adverse birth outcomes. 
In particular, we discovered that, in comparison to 
other regions in Sub-Saharan Africa, living in the West 
Africa region increased the likelihood of adverse birth 
outcomes. For this study, the West Africa region was 
defined to include countries such as Burkina Faso, Ivory 
Coast, Gambia, Ghana, Guinea, Liberia, Senegal, Sierra 
Leone, Nigeria, Zambia, Zimbabwe, Benin, Mali, and 
Mauritania.

This finding implies that regional variations in health-
care quality, access, socioeconomic status, and cultural 
practices throughout Sub-Saharan Africa have a sig-
nificant impact on the health outcomes of mothers and 
children. Strengthening this finding, our further analy-
sis implied that Western Africa had the highest rates of 
unintended pregnancy and late ANC checkups compared 

to other sub-regions of Sub-Saharan Africa, which may 
be one possible justification for it being a high-risk region 
for adverse birth outcomes. The finding is consistent with 
previous research elsewhere in the world [19, 22, 34].

Conclusion
The region continues to face persistent adverse birth out-
comes, emphasizing the urgent need for increased atten-
tion and action. Fortunately, the findings of this study 
make it abundantly clear that advanced machine learn-
ing techniques, specifically the random forest algorithm, 
hold immense potential as powerful tools for govern-
ments and healthcare providers in Sub-Saharan Africa to 
tackle this critical issue head-on.

Building upon the invaluable insights obtained from 
these employed innovative techniques, we strongly rec-
ommend that certain key groups of women receive more 
intensive interventions as soon as their pregnancy is con-
firmed. Specifically, this includes women who are preg-
nant for the first time, women with a short (less than 24 
months) or long (over 59 months) gap between pregnan-
cies, women with unintended pregnancies, and women 
living in the high-risk western Africa region identified by 
the study.

These vulnerable women should be immediately pro-
vided with iron supplements and scheduled for compre-
hensive prenatal care. We should also strongly encourage 
them to deliver their babies in a medical facility or with 
the assistance of a qualified health professional, even if 
they had originally planned a home birth.

Strengths and limitations of the study
This study had several key strengths. First and foremost, 
the researchers conducted a very thorough analysis, test-
ing out ten different advanced machine learning algo-
rithms and carefully tuning the parameters to get the 
best performance from each one. This rigorous approach 
allowed identifying the most suitable algorithms for pre-
dicting adverse birth outcomes. Additionally, the study 
provided valuable insights, highlighting the significant 
factors that contribute to these adverse birth outcomes. 
The researchers also used innovative machine learning 
techniques to uncover the key driving indicators.

However, there were limitations to take into account, 
though. First, the study was dependent on secondary data 
such as DHS surveys, which might have certain draw-
backs and might not have included all relevant variables. 
As a result, the authors were limited in their ability to 
fully explore potential internal correlations among the 
identified risk factors.

The secondary nature of the data also constrained the 
authors’ capacity to investigate the complex causal path-
ways underlying the observed associations. Future stud-
ies utilizing primary data collection would be valuable to 
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further elucidate these intricate relationships and provide 
a more comprehensive understanding of the determi-
nants of adverse birth outcomes in sub-Saharan Africa.
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