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Abstract
Background  Obstructive sleep apnea (OSA) and osteoporosis (OP) are prevalent diseases in the elderly. This study 
aims to reveal the clinical association between OSA and OP and explore potential crosstalk gene targets.

Methods  Participants diagnosed with OSA in the National Health and Nutrition Examination Survey (NHANES) 
database (2015–2020) were included, and OP was diagnosed based on bone mineral density (BMD). We explored 
the association between OSA and OP, and utilized multivariate logistic regression analysis and machine learning 
algorithms to explore the risk factors for OP in OSA patients. Overlapping genes of comorbidity were explored using 
differential expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Random Forest (RF) methods.

Results  In the OSA population, the weighted prevalence of OP was 7.0%. The OP group had more females, lower 
body mass index (BMI), and more low/middle-income individuals compared to the non-OP group. Female gender 
and lower BMI were identified as independent risk factors for OP in OSA patients. Gene expression profiling revealed 8 
overlapping differentially expressed genes in OP and OSA patients. KCNJ1, NPR3 and WT1-AS were identified as shared 
diagnostic biomarkers or OSA and OP, all of which are associated with immune cell infiltration.

Conclusion  This study pinpointed female gender and lower BMI as OP risk factors in OSA patients, and uncovered 
three pivotal genes linked to OSA and OP comorbidity, offering fresh perspectives and research targets.
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Introduction
Obstructive Sleep Apnea (OSA) is a common sleep-
related breathing disorder, characterized by repeated col-
lapse of the upper airway during sleep, leading to chronic 
intermittent hypoxemia and sleep fragmentation [1]. It is 
a highly prevalent disease and has rapidly evolved into a 
major global public health burden [2]. The greatest num-
ber of individuals affected by this condition is found in 
China, followed by the United States, Brazil, and India 
[3]. Furthermore, an increasing body of evidence from 
experimental, translational, and clinical research suggests 
that OSA is frequently associated with the occurrence 
and development of various systemic diseases, such as 
cardiovascular and metabolic diseases [4]. However, the 
pathogenic mechanisms of OSA across different organs 
are intricate and intertwined, and their full understand-
ing remains elusive.

Osteoporosis (OP) is an age-related systemic skeletal 
disease. In a normal physiological environment, a balance 
exists between bone formation by osteoblasts and bone 
resorption by osteoclasts, supporting bone mass and 
bone mineral density (BMD) within the normal range. 
However, in patients with OP, this balance is disrupted, 
characterized by the inhibition of osteoblasts or the over-
activation of osteoclasts, leading to bone remodeling [5]. 
This results in decreased bone density, deterioration of 
bone microstructure, increased bone fragility, and risk 
of fractures, especially at the proximal femur and distal 
radius, with vertebral compression most prevalent [6]. 
Furthermore, 70% of vertebral fractures do not attract 
medical attention, mainly due to the prevalence of symp-
toms such as back pain and height reduction, which are 
often considered inevitable parts of aging [7]. The cross-
talk between the immune microenvironment, inflam-
matory factors, and the skeletal system forms a complex 
interdisciplinary field of pathophysiology mechanisms.

Increasing evidence has suggested an interactive rela-
tionship between OSA and OP. It is widely accepted 
that OSA may be a risk factor for decreased BMD, and 
is associated with a higher incidence of OP [8, 9]. Apnea 
episodes can result in bodily hypoxia, which in turn leads 
to metabolic changes harmful to the skeleton, promot-
ing the activation of osteoclasts [10]. Alternatively, sleep 
deprivation, heightened sympathetic nerve tension, 
alterations in melatonin, or comorbidities of OSA affect-
ing the pathophysiology of skeletal biology, thereby nega-
tively affecting the skeleton system [11]. Conversely, OP 
and vertebral fractures are correlated with an increased 
incidence of OSA, which is a secondary outcome [12, 
13]. The incidence of both diseases increases with age, 
and they influence each other. The medical symptoms of 
either one can mask the non-medical symptoms of the 
other, which further increases the difficulty of diagnos-
ing and treating comorbidities. However, the potential 

bidirectional causality between OP and OSA still needs 
further investigation to more accurately elucidate the 
precise mechanism underlying the coexistence of these 
two diseases.

In this study, we ingeniously combined multiple data-
bases to analyze the relationship between OSA and OP 
from the perspectives of clinicians and genomics. We 
have established predictive models for clinical indica-
tors and overlapping feature genes, respectively. To our 
knowledge, this may be the first study to explore the 
shared features between OSA and OP, and it is expected 
to help us better implement the public advocacy of early 
detection, early diagnosis, and early treatment.

Method
Study population
This study performed a retrospective analysis using the 
National Health and Nutrition Examination Survey 
(NHANSE) datasets from 2015–2016 and 2017–2020, 
of which 2020 data is available as of March of that year 
due to the impact of COVID-19. All data can be directly 
obtained from NHANES’s official website (https://www.
cdc.gov/nchs/nhanes/index.htm), it is important to note 
that the database is a study of American outpatient prob-
ability of large-scale civilian family on behalf of the sur-
vey, conducted once a year, every two years for a cycle. In 
this cohort study, 25,531 participants from 2015 to 2020 
were recruited, and ultimately 1730 participants were 
included in the study analysis based on strict inclusion 
and exclusion criteria (Fig. 1).

Diagnosis of OSA and OP
OSA is defined as when a person answers “yes” to at least 
one of the following three NHANES questions: (1) Snor-
ing is greater than or equal to three nights per week; (2) 
wheezing, sneezing, or stopping breathing three or more 
nights per week; (3) Sleep about 7  h or more per night 
on weekdays or work nights, but feel excessively sleepy 
16–30 times per month during the day [14].

The diagnosis of OP is based on the WHO consensus 
that a T score ≤ -2.5 is defined as OP [15]. BMD (g/cm2) 
obtained by dual-energy X-ray Absorptiometry (DXA) 
for all participants during 2015–2020 was collected and 
converted into T scores using the following formula: 
T score = (BMD respondents - mean BMD (reference 
value)/ Standard deviation (reference value)).

Covariates
The following covariates were used based on previous 
studies and clinical practice: (1) demographic charac-
teristics: Age, sex, race, body mass index (BMI), educa-
tion level (Lower than High school, High school, College 
or more), poverty to income ratio (PIR), smoking sta-
tus, alcohol consumption status; (2) Medical conditions: 

https://www.cdc.gov/nchs/nhanes/index.htm
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diabetes mellitus, hypertension; (3) Laboratory Data: 
WBC count, ALP, AST, TBIL, GGT, Phosphorus, Total 
Calcium; (4) Dietary Data: Vitamin D Intake, Calcium 
intake. Serum total bilirubin and gamm-glutamyl trans-
ferase (GGT) were used to reflect the state of oxidative 
stress [16]. As an indicator of socioeconomic status, par-
ticipants were divided into low income (PIR < 1.3), middle 
income (PIR = 1.30–3.50), and high income (PIR ≥ 3.50) 
groups.

Data acquisition
Transcriptome data and platform files related to OSA and 
OP were downloaded from the Gene Expression Omni-
bus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). The training dataset is represented by GSE135917, 
which includes 8 control samples and 34 OSA samples, 
and GSE7158, which comprises 14 control samples and 
12 OP samples. The validation dataset is represented by 
GSE38792, including 8 control samples and 10 OSA sam-
ples, and GSE100609, which contains 4 control samples 
and 4 OP samples. It is noteworthy that the OSA dataset 
originates from the GPL6244 platform, while GSE7158 

and GSE100609 are derived from the GPL570 and 
GPL16699 platforms, respectively.

Differentially expressed genes (DEGs) analysis
The original microarray data underwent normalization 
and analysis using R statistical software. The limma pack-
age in R facilitated the differential expression analysis of 
OSA and OP in comparison with normal control sam-
ples [17]. The screening criteria were set at P < 0.05 and 
|log2FC|> 0.5. Heat maps and Volcano maps of DEGs in 
OSA and OP cohorts were generated using the “pheat-
map” and “ggplot2” R packages, respectively. Venn dia-
grams were employed to cross-screen OSA-DEGs and 
OP-DEGs, yielding final DEGs (Com-DEGs) that bear a 
close relation to the pathophysiology of both diseases.

Functional enrichment analysis
Enrichment analysis, a widely employed bioinformat-
ics method, is utilized to shed light on the potential 
functions of identified targets. In this study, the “clus-
terProfiler” R package facilitated the Gene Ontology 
(GO) analysis, encompassing Molecular Function (MF), 

Fig. 1  Flowchart of the cross-sectional study. We selected 1730 subjects diagnosed with Obstructive Sleep Apnea (OSA) from two consecutive cycles 
(2015–2020) in the National Health and Nutrition Examination Survey (NHANES) database. These subjects had complete information and met the diag-
nostic criteria for OSA
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Biological Pathway (BP), and Cell Component (CC). 
Furthermore, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis was conducted 
with the assistance of the online analysis tool, Sangerbox 
3.0, to investigate significant signaling pathways associ-
ated with Com-DEGs.

Machine learning algorithm
The machine learning algorithm Least Absolute Shrink-
age and Selection Operator (LASSO) regression and the 
Random Forest (RF) method, both of which are super-
vised learning methods, were used to screen disease 
characteristic genes. These were determined by the “glm-
net” and “randomForest” R packages, respectively.

LASSO regression, by controlling regularization 
parameters, balances model complexity and perfor-
mance. In this process, it employs a technique of 10-fold 
cross-validation, along with an optimal lambda, to deter-
mine which genes play a key role in the model. These key 
genes, whose coefficients in the model are non-zero, are 
referred to as ‘marker genes’. Simply put, these ‘marker 
genes’ are genes that have a significant impact on the 
disease under study. The inherent sparsity of LASSO 
regression gives it an advantage in feature selection, 
dimensionality reduction, and model interpretability. It 
can effectively handle multicollinearity and improve gen-
eralization performance, making it a valuable choice for 
various data analysis applications.

For the RF model, the number of decision trees was set 
to 500. The point with the minimum error was identi-
fied, and a model was built to determine the importance 
of genes. Genes with importance scores of 1.5 or higher 
were selected for subsequent analysis. The random for-
est method is a suitable ensemble learning algorithm 
and machine learning method. It is not subject to vari-
able conditions, is resistant to overfitting, and has higher 
accuracy, sensitivity, and specificity than decision trees. 
Therefore, it is a powerful and versatile choice for various 
predictive modeling tasks.

Finally, considering that various machine learning 
methods each have their advantages, and the two men-
tioned above are widely used in the field and perform 
excellently, to avoid subjective selection bias and the 
limitations of a single machine learning algorithm, and 
considering that too many methods may make the inter-
pretation of results complex and not necessarily bring 
better performance, we cross-analyze the results obtained 
from LASSO regression and the RF method. This is to 
ensure the accuracy and reliability of our research results 
to the greatest possible extent, and to determine the final 
set of central genes for subsequent analysis.

Verification of characteristic genes
To quantify diagnostic performance, the receiver operat-
ing characteristic (ROC) curve was plotted and the area 
under the curve (AUC), along with the corresponding 
95% confidence interval (CI), was calculated using the 
“pROC” R package. This package employs the DeLong 
method for AUC calculation, a method widely recog-
nized for ROC analysis in biomedical research [18]. The 
predictive accuracy of the feature genes was validated in 
both the training (GSE135917 and GSE7158) and valida-
tion cohorts (GSE38792 and GSE100609).

Correlation of immune-infiltrating cells with signature 
genes
Initially, the correlation coefficient was calculated to mea-
sure the relationship between the expression of charac-
teristic genes and immune infiltrating cells. Subsequently, 
Spearman rank correlation analysis was employed to fur-
ther investigate this relationship. To visually demonstrate 
this correlation, a lollipop plot was generated using the 
“ggplot” R package.

Statistical analysis
This study adopted a weighted approach to account for 
the complex sampling techniques and research design 
of NHANES. Dietary weights were utilized as survey 
weights in accordance with NHANES Analysis Guide-
lines. Continuous variables, expressed as median (IQR), 
were analyzed using the Mann–Whitney U test. Cate-
gorical variables, expressed as absolute values (n) or per-
centages (%), were analyzed using the chi-square test. A 
multivariate logistic regression analysis was conducted to 
identify risk factors for OP in OSA patients. The “glmnet, 
corrplot, caret” packages in R software were used to gen-
erate LASSO regression results, and the nomogram was 
constructed using the “rms” package. All statistical analy-
ses were performed using R software version 4.2.1, with a 
double-sided P-value of less than 0.05 indicating statisti-
cal significance.

Result
Baseline characteristics of participants
Among the 1730 OSA participants enrolled in the 
NHANES study from 2015 to 2020, Table 1 outlines the 
baseline characteristics of the two groups, categorized by 
the presence or absence of OP. The weighted prevalence 
of OP was 7.0%, with 124 classifieds as OP and 1606 as 
non-OP. When compared to the non-OP group, the OP 
group demonstrated a higher proportion of women, a 
lower BMI, and a greater number of individuals with low/
middle income. There were no statistically significant dif-
ferences between the two groups in terms of age, race, 
education level, smoking status, drinking status, medical 
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condition, blood test indicators, and Vitamin D or Cal-
cium intake in the diet (p > 0.05).

Risk factors for OP in OSA and nomogram construction
Upon employing a multivariate logistic regression model 
and adjusting for all covariates, it was discerned that 
being female, possessing a lower BMI, and having a lower 

PIR emerged as independent risk factors for the develop-
ment of OP in OSA patients (Table 2). Specifically, within 
the OSA patients, the risk of females developing OP was 
12.3 times higher than that of males (95% CI: 4.83–31.1, 
p < 0.001). Furthermore, for every unit increase in BMI, 
the risk of developing OP decreased by 15%. LASSO 
regression was utilized to select the most predictive vari-
ables, setting a 10-fold cross-validation. Upon utilizing 
the optimal lambda value, two primary variables were 
identified: gender and BMI (Fig. 2A, B). These two inde-
pendent factors were then used to construct a nomogram 
to predict the risk of OP in OSA patients. As depicted in 

Table 1  Characteristics of osteoporosis and non-osteoporosis 
cases among OSA participants
Characteristic Non-OP

N = 1606 
(92.8%)1

OP
N = 124 
(7.2%)1

p-
value2

Age (years) 59.0 (55.0, 67.0) 59.0 (54.0, 69.5) 0.771
Gender < 0.001
Male 941(57.2%) 17 (13.3%)
Female 665(42.8%) 107(86.7%)
BMI (kg/m2) 29.8 (26.5, 34.3) 25.9 (23.6, 29.6) < 0.001
Ethnicity, n (%) 0.300
Mexican American 205.0 (5.5%) 14.0 (3.8%)
Other Hispanic 222.0 (7.1%) 15.0 (6.5%)
Non-Hispanic White 622.0 (72.0%) 64.0 (70.8%)
Non-Hispanic Black 365.0 (8.3%) 15.0 (5.3%)
Non-Hispanic Asian 132.0 (3.4%) 10.0 (4.6%)
Other multiracial 60.0 (3.6%) 6.0 (9.0%)
Education level, n (%) 0.713
Lower than high school 305.0 (9.9%) 21.0 (13.5%)
High school 396.0 (31.4%) 42.0 (34.7%)
College or more 905.0 (58.7%) 61.0 (51.8%)
PIR, n (%) 0.016
Low-income 386.0 (16.3%) 36.0 (18.1%)
Middle-income 617.0 (30.2%) 52.0 (48.5%)
High-income 603.0 (53.5%) 36.0 (33.4%)
Smoking status, n (%) 0.387
Smokers 839.0 (52.3%) 64.0 (58.7%)
Nonsmokers 767.0 (47.7%) 60.0 (41.3%)
Drinking status, n (%) 0.536
Drinkers 861.0 (60.2%) 63.0 (65.2%)
Nondrinkers 745.0 (39.8%) 61.0 (34.8%)
Diabetes mellitus, n (%) 403.0 (21.5%) 21.0 (11.0%) 0.066
Hypertension, n (%) 902.0 (53.5%) 65.0 (48.3%) 0.601
WBC count (1000 cells/
µL)

7.10 (5.70, 8.60) 7.10 (6.00, 8.60) 0.679

ALP (IU/L) 74 (62, 89) 79 (66, 95) 0.205
TBIL (µmol/L) 8.6 (5.1, 12.0) 6.8 (5.1, 10.3) 0.429
GGT (IU/L) 23 (16, 37) 19 (16, 31) 0.229
AST(U/L) 21 (17, 26) 21 (19, 25) 0.978
Phosphorus (mmol/L) 1.16 (1.06, 1.26) 1.23 (1.10, 1.36) 0.027
Total Calcium (mmol/L) 2.33 (2.28, 2.40) 2.35 (2.29, 2.38) 0.151
Vitamin D Intake (mg) 3.9 (2.2, 6.0) 3.3 (1.9, 6.0) 0.412
Calcium intake (mg) 889 (618, 1,205) 808 (635, 1,061) 0.286
1Median (IQR); n (unweighted) (%)
2Wilcoxon rank-sum test for complex survey samples; chi-squared test with Rao 
& Scott’s second-order correction

Abbreviations: OSA, obstructive sleep apnea; OP, Osteoporosis; BMI, Body Mass 
Index; PIR, family poverty income ratio; ALP, Alkaline Phosphatase; TBIL, Total 
Bilirubin; GGT, Gamma Glutamyl Transferase; AST, Aspartate Aminotransferase

Table 2  Multivariate logistic regression analysis assessing the 
risk of osteoporosis in participants with OSA.
Characteristic OR 95% CI p-value
Age 1.00 0.95, 1.06 0.920
Gender < 0.001
Male Reference Reference
Female 12.3 4.83, 31.1
BMI 0.85 0.79, 0.91 < 0.001
Ethnicity 0.385
Non-Hispanic White Reference Reference
Non-Hispanic Black 0.65 0.26, 1.62
Non-Hispanic Asian 1.00 0.29, 3.50
Other Hispanic 0.75 0.27, 2.08
Mexican American 0.61 0.12, 2.95
Other multiracial 2.53 0.90, 7.12
Education level 0.367
lower than high school Reference Reference
High school graduate 0.59 0.09, 3.85 0.477
higher than High school 0.41 0.06, 2.89 0.306
PIR 0.044
low-income Reference Reference
middle-income 1.77 0.84, 3.71
high-income 0.75 0.23, 2.41
Drinking status 0.056
Nondrinkers Reference Reference
Drinkers 1.81 0.95, 3.46 0.127
Smoking status 0.680
Nonsmokers Reference Reference
Smokers 1.15 0.57, 2.34
Diabetes mellitus 0.399
No Reference Reference
Yes 0.71 0.31, 1.65
Hypertension 0.715
No Reference Reference
Yes 0.88 0.44, 1.79
Calcium intake 1.00 1.00, 1.00 0.690
Vitamin D Intake 0.95 0.84, 1.07 0.366
Phosphorus 2.69 0.44, 16.6 0.256
Total Calcium 1.28 0.05, 32.0 0.871
The multivariate logistic regression was adjusted for all covariates

Abbreviations: OSA, obstructive sleep apnea; OR, odds ratio; CI, confidence 
interval; BMI, body mass index; PIR, family poverty income ratio;
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Fig. 2C, the total score of the two variables, gender and 
BMI, was converted into individual disease risk. The 
higher the total score, the higher the disease risk, indicat-
ing that females with lower BMI are often more suscep-
tible to the disease.

Identification and functional enrichment analysis of 
common DEGs
In the OSA dataset GSE135917, a total of 668 DEGs 
were identified, including 431 upregulated genes and 
237 downregulated genes. Similarly, in the OP dataset 
GSE7158, a total of 479 DEGs were identified, compris-
ing 232 upregulated genes and 247 downregulated genes. 
The expression patterns of these DEGs in both diseases 
are visually represented in the volcano plots (Fig.  3A, 

C). The heatmaps (Fig.  3B, D) further illustrate the top 
30 DEGs in both diseases. Further analysis revealed 
that there are 8 overlapping DEGs (WT1-AS, KCNJ1, 
ZNF542P, CDKN1A, ACOT4, OSR2, NPR3 and IL1RN) 
between OSA and OP (Fig. 3E).

GO and KEGG enrichment analyses were performed 
on the aforementioned eight genes to explore common 
regulatory pathways. The BP subset revealed that these 
genes primarily regulate the proliferation regulation of 
muscle cells and osteocytes, as well as cytokine-mediated 
signaling pathways. The CC subset showed that they were 
primarily located on the cell membrane, particularly 
related to potassium channels and protein kinase com-
plexes. The MF subset indicated that at the molecular 
level, they mainly participated in regulating the activity 

Fig. 2  Selection of optimal variables and construction of a nomogram. (A) According to the logarithmic (lambda) sequence, a coefficient profile was 
generated, and non-zero coefficients were produced by the optimal lambda, key genes corresponding to non-zero coefficients are characteristic genes 
that have a significant impact on the disease studied; (B) The optimal parameter (lambda) in the LASSO model was selected via 10-fold cross-validation 
using minimum criterion plus one standard error (right vertical line); (C)The nomogram estimates the risk of OP occurrence in patients with OSA. The 
nomogram includes two predictive variables: gender and BMI. Each variable is assigned a specific point value based on its position on their respective 
scales. These points are then summed up in the ‘Total Points’ scale, which correlates directly with the ‘Risk of Disease’ scale at the bottom of the figure
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Fig. 3  Identification of key differentially expressed genes (DEGs) in patients with OSA or OP. (A) Volcano plot of DEGs in the OSA dataset (GSE135917); 
(B) Heatmap of the top 30 upregulated and 30 downregulated DEGs in the OSA dataset; (C) Volcano plot showing DEGs in the OP dataset (GSE7158); (D) 
Heatmap showing the top 30 upregulated and 30 downregulated DEGs in the OP dataset; (E) Intersection of OSA-DEGs and OP-DEGs through a Venn 
diagram; Bar graphs showing the GO (F) and KEGG (G) enrichment analysis of the eight overlapping DEGs.
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of enzymes involved in biochemical reactions (Fig.  3F). 
KEGG analysis further suggested that these genes might 
be mainly associated with the p53 signaling pathway, 
cancer, biosynthesis of fatty acids, and Aldosterone-reg-
ulated sodium reabsorption (Fig. 3G).

Feature genes are selected by machine learning
Two machine learning algorithms were used to select fea-
ture genes from the eight overlapping genes in OSA and 

OP. Specifically, in the OSA dataset, five out of the eight 
overlapping genes were selected using LASSO regression 
(Fig. 4A, B), and four were selected based on an impor-
tance score of ≥ 1.5 in the RF analysis (Fig.  4E, F), with 
three common genes present in both OSA-LASSO and 
OSA-RF (Fig.  4I). In the OP dataset, LASSO regression 
selected six genes (Fig. 4C, D), and RF analysis based on 
the same importance score criteria selected four (Fig. 4G, 
H). Ultimately, three standout genes (KCNJ1, NPR3, and 

Fig. 4  Identification of potential diagnostic biomarkers for OSA and OP through machine learning methods. LASSO Coefficient Profile in OSA (A) and 
OP (C), these plots show the trajectory of each coefficient against the log lambda sequence. Each line, represented by a unique color, corresponds to a 
different gene. The lines start at zero and either increase or decrease in value as the L1 Norm increases. Cross-Validation for Tuning Parameter Selection in 
OSA (B) and OP (D), the red dotted line shows the binomial deviance for different values of log(lambda). The grey area represents the standard error, with 
vertical dotted lines indicating the minimum criteria and one standard error criteria for selecting the optimal lambda. RF coefficient profiles of candidate 
genes in OSA (E) and OP (G), each line represents the change in error rate as more trees are added to the model. The scatter plot illustrates the key genes 
identified in OSA (F) and OP (H) using the RF algorithm: each point on the plot represents a gene. The position of each point on the x-axis, indicates the 
importance of that gene according to the Mean Decrease Gini metric. Higher scores suggest greater importance. (I) Venn diagram showing the intersec-
tion of DEGs obtained from various machine learning algorithms for OSA and OP.
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WT1-AS) were identified as the promising shared diag-
nostic biomarkers for both OSA and OP (Fig. 4I).

Diagnostic value of biomarkers
To better demonstrate the diagnostic value of KCNJ1, 
NPR3, and WT1-AS, we evaluated the sensitivity and 
specificity of these three candidate biomarkers. In the 
GSE135917 dataset, KCNJ1 showed a higher diagnos-
tic value for OSA (AUC = 0.939) compared to NPR3 
(AUC = 0.846) and WT1-AS (AUC = 0.904) (Fig.  5A). In 
the GSE7158 dataset, WT1-AS demonstrated a higher 
diagnostic value for OP (AUC = 0.881) (Fig.  5B). Subse-
quently, we performed external validation of the three 
genes in the validation datasets for OSA (GSE38792) and 
OP (GSE100609), which also showed similar good pre-
dictive performance (Fig. 5C, D). We noted that the diag-
nostic value of KCNJ1, NPR3, and WT1-AS varied across 
different datasets. This could be due to the fact that these 
datasets come from different research centers with vary-
ing experimental methods and techniques. Additionally, 
different populations in the datasets, with varying ages, 
genders, disease stages, etc., could also influence the size 
of the AUC values. However, despite these differences, 
KCNJ1, NPR3, and WT1-AS all demonstrated high 
diagnostic value across all datasets (training and testing 
cohorts), further emphasizing their importance as poten-
tial common diagnostic markers for OSA and OP.

Characteristic genes and immune infiltration
The gene expression of the three diagnostic genes and 
their correlation with immune cell infiltration were ana-
lyzed separately in the GSE135917 and GSE7158 data-
bases. The results showed that in the OSA data, KCNJ1 
was positively correlated with activated Dendritic cells 
and Plasma cells, but negatively correlated with mem-
ory B cells, resting NK cells, and M0 Macrophages 
(Fig.  6A). WT1-AS was positively correlated with acti-
vated Dendritic cells and Plasma cells, but negatively 
correlated with NK cells resting and M0 Macrophages 
(Fig.  6C). NPR3 seemed to have little correlation with 
various immune cell infiltrations (Fig.  6B). In the OP 
dataset, KCNJ1 was only positively correlated with rest-
ing Mast cells (Fig. 6D). NPR3 was positively correlated 
with activated Dendritic cells but negatively correlated 
with CD8+ T cells (Fig. 6E). WT1-AS was positively cor-
related with M1 Macrophages but negatively correlated 
with regulatory T cells (Tregs) (Fig.  6F). In summary, 
these key diagnostic genes may play a significant role in 
the immune regulation of the shared disease mechanism 
between OSA and OP.

Discussion
This study, based on a combination of clinical variables 
and transcriptome data, revealed the susceptibility of 
female patients with lower BMI to OP in OSA patients. A 
nomogram model was constructed based on this finding. 
Furthermore, KCNJ1, NPR3, and WT1-AS were identified 
as overlapping key genes for OSA and OP.

OSA and OP are two prevalent diseases affecting 
a significant portion of the population over 50 years 
old. A meta-analysis of 15 studies, including 113,082 
patients, has shown a close association between OSA 
and increased risk of OP, as well as a decrease in lumbar 
spine BMD [19]. Age, gender, and BMI are hot topics as 
independent risk factors for OSA. In our study, gender 
and BMI emerged as predictors of OP in OSA patients. 
Previous studies have shown that both psychological 
and physiological symptoms of OSA patients have gen-
der specificity [20]. Overall, compared to males, females 
seem to have more severe symptoms, and vary with age 
and physiological states (such as menopause and preg-
nancy). Gender specificity also exists in the OP popula-
tion, with a significantly higher prevalence in females 
than in males, related to hormonal metabolic imbalance 
and a significant decrease in estrogen levels after meno-
pause [21]. Estrogen levels are positively correlated with 
BMD, can inhibit osteoclast activity, and play a protective 
role in preventing osteoporotic fractures, but estrogen 
deprivation in postmenopausal women will eliminate this 
inhibition and lead to bone loss. However, some studies 
have shown that menarche age over 17 years and meno-
pause age less than 48 years are risk factors for female OP 
[22]. The incidence in postmenopausal females is three 
to four times that of premenopausal females, and estro-
gen plays an irreplaceable role in this change [23]. There-
fore, the cyclical changes of estrogen in females may be a 
bridge linking OSA and OP.

It has been shown that the severity of OSA increases 
with weight gain and decreases with weight loss, an 
increase in BMI can affect respiration in many ways. 
Infiltration of fat in the upper respiratory tract or its 
muscles can reduce the size of the pharynx and the 
strength of the upper respiratory muscles, altering the 
structure of the upper respiratory tract [24]. However, 
the relationship between BMI and BMD is complex. It 
has been fully demonstrated that there is a significant 
positive correlation between BMI and BMD. Conven-
tionally, gravitational load and muscles can affect the 
function and metabolism of bone cells (mainly including 
osteoblasts and osteoclasts), stimulate bone formation, 
people with low weight have less muscle mass, lighter 
load on the bones, and are more likely to develop OP 
[25]. But this does not mean that the risk of fracture is 
lower for those with a higher BMI, which is also called 
the “obesity paradox” phenomenon [26]. In children and 
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Fig. 5  Verification of the diagnostic values of characteristic genes. The ROC curves show the diagnostic performance of characteristic genes in the train-
ing dataset, including OSA (A) and OP (B); The ROC curves show the diagnostic performance of characteristic genes in the validation dataset, including 
OSA (C) and OP (D). Each ROC curve is depicted as a red line. The Area Under the Curve (AUC) value, accompanied by its 95% confidence interval, serves 
as a reflection of the predictive performance. A higher AUC value signifies superior diagnostic performance
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adolescents, being overweight can have a positive effect 
on BMD, but the incidence of fractures is higher than in 
non-obese individuals. This may be due to the excessive 
mechanical load produced by extra adipose tissue, and it 
also shows that there is a saturation value for the appro-
priate BMD corresponding to BMI. Therefore, we should 
be cautious about the conclusion that BMI is a risk factor 
for OP in OSA patients, and future research may need to 
carefully consider the existence of BMI saturation value 
or as a critical value of risk factors.

We further intersected the DEGs of OSA and OP rel-
ative to the control group, and the eight overlapping 
genes are mainly enriched in the proliferation regula-
tion of muscle cells and bone cells, cytokine-mediated 
signaling pathways, and metabolic-related regulation, 
which lays the foundation for our understanding of the 
commonality of OSA and OP. This also shows that OSA 
is likely to affect bone metabolism through multiple 
mechanisms, possibly partially but not strongly depen-
dent on the related inflammation or oxidative stress we 
are familiar with. At the same time, the disease predic-
tion factors (KCNJ1, NPR3, and WT1-AS) screened out 
through machine learning, whether in the training set or 
validation set of OSA and OP, all show super diagnostic 

ability. In the immune infiltration analysis, we found that 
these three markers are mainly positively or negatively 
correlated with T cells, B cells, and macrophages. As is 
well known, in addition to the aforementioned effects on 
bone metabolism, estrogen also interacts with various 
immune cells, leading to a chronic low-grade pro-inflam-
matory phenotype under estrogen deficiency, and various 
immune cells interact with osteoblasts and osteoclasts 
through direct cell contact or more likely through para-
crine mechanisms [27]. Chronic intermittent hypoxia is 
a marker of OSA and promotes or induces a pro-inflam-
matory environment. OSA patients also show immune 
dysfunction to a certain extent, especially in specific 
cell types such as T cells, monocytes, T cells, dendritic 
cells, B cells, and neutrophils [28]. Our results seem to 
suggest that the balance of the immune microenviron-
ment may mediate the occurrence and development of 
comorbidities.

Natriuretic peptide receptor 3 (NPR3), as a clear-
ance receptor that regulates the activity of C-type natri-
uretic peptide (CNP), is expressed in chondrocytes and 
osteoblasts. Overproduction of CNP can lead to exces-
sive bone growth and abnormal child skeleton, espe-
cially affecting stature, vertebrae, and finger length [29], 

Fig. 6  Analysis of the correlation between immune infiltration and the expression of characteristic genes. (A-C) Lollipops represent the correlation 
between the expression of genes KCNJ1 (A), NPR3 (B), and WT1-AS (C) and immune infiltrating cells in the OSA dataset (GSE135917); (D-F) Lollipops 
represent the correlation between the expression of genes KCNJ1 (D), NPR3 (E), and WT1-AS (F) and immune infiltrating cells in the OP dataset (GSE7158). 
Each lollipop in the chart represents a distinct type of immune cell. The color of the lollipop approaches green as the statistical significance of the correla-
tion increases. Notably, correlations with a p-value less than 0.05 are highlighted in red. The position of the lollipop on the x-axis indicates the correlation 
coefficient
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which indicates that NPR3 directly participates in bone 
metabolism regulation. NPR3 plays an important role in 
regulating blood volume and vascular tension, and may 
be a feasible therapeutic target to reduce the risk of can-
cer and cardiovascular diseases in OSA patients, and 
participate in OSA diagnosis prediction as a gene related 
to mitochondrial dysfunction [30]. Potassium inwardly 
rectifying channel subfamily J member 1 (KCNJ1), as an 
ATP-dependent potassium channel, plays an important 
role in potassium balance. KCNJ1 is related to various 
diseases, such as prenatal Bartter syndrome, newly diag-
nosed diabetes, hypotension, and can even inhibit tumor 
cell proliferation and metastasis and serve as a prognos-
tic factor for renal clear cell carcinoma [31]. At present, 
there is no report on the direct association of KCNJ1 with 
OSA or OP, but potassium channels can adjust neuronal 
activity by affecting resting membrane potential or repo-
larization, and the development of OSA drugs targeting 
potassium channel blockers has also achieved remark-
able results [32]. Wilms tumor 1 (WT1) is a transcription 
factor that plays an important role in the development 
of the urinary and reproductive system [33]. WT1 anti-
sense RNA (WT1-AS) originates from the intron region 
of WT1, has been reported to interact with p53 to regu-
late the apoptosis of osteoblasts [34]. It is worth noting 
that current literature lacks reports on the association of 
these genes with OSA/OP. However, we speculate that 
these genes may be involved in the onset and progression 
of OSA and its complications, and then form a regulatory 
network to collectively influences the pathophysiological 
changes associated with OP.

Although previous studies have separately reported the 
risk factors and respective pivotal genes of OSA and OP, 
few studies have explored the clinical characteristics and 
overlapping genes of comorbidity. Our exploration fur-
ther clarifies the comorbidity mechanism of OSA and OP, 
the shared biomarkers between OSA and OP could assist 
clinicians in detecting diseases earlier based on patient 
specificity, potentially enabling precision treatment or 
the development of gene-targeted therapies. These find-
ings could also guide us in improving disease prevention 
strategies. However, there are certain limitations, such 
as the sample data are all ≥ 50 years old, which is deter-
mined by the sample information of the BMD detec-
tion in the NHANES database, not a deliberate selection 
bias; due to the difficulty of actual sample collection, it is 
impossible to carry out external validation, but the large 
sample size included in NHANES may compensate for 
this limitation; in addition, the feature genes screened 
out may need further experimental verification in the 
future, which will be the focus of our future work.
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