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Abstract
Background Fatal opioid-involved overdose rates increased precipitously from 5.0 per 100,000 population to 33.5 in 
Massachusetts between 1999 and 2022.

Methods We used spatial rate smoothing techniques to identify persistent opioid overdose-involved fatality clusters 
at the ZIP Code Tabulation Area (ZCTA) level. Rate smoothing techniques were employed to identify locations of high 
fatal opioid overdose rates where population counts were low. In Massachusetts, this included areas with both sparse 
data and low population density. We used Local Indicators of Spatial Association (LISA) cluster analyses with the raw 
incidence rates, and the Empirical Bayes smoothed rates to identify clusters from 2011 to 2021. We also estimated 
Empirical Bayes LISA cluster estimates to identify clusters during the same period. We constructed measures of 
the socio-built environment and potentially inappropriate prescribing using principal components analysis. The 
resulting measures were used as covariates in Conditional Autoregressive Bayesian models that acknowledge spatial 
autocorrelation to predict both, if a ZCTA was part of an opioid-involved cluster for fatal overdose rates, as well as the 
number of times that it was part of a cluster of high incidence rates.

Results LISA clusters for smoothed data were able to identify whether a ZCTA was part of a opioid involved 
fatality incidence cluster earlier in the study period, when compared to LISA clusters based on raw rates. PCA 
helped in identifying unique socio-environmental factors, such as minoritized populations and poverty, potentially 
inappropriate prescribing, access to amenities, and rurality by combining socioeconomic, built environment and 
prescription variables that were highly correlated with each other. In all models except for those that used raw rates to 
estimate whether a ZCTA was part of a high fatality cluster, opioid overdose fatality clusters in Massachusetts had high 
percentages of Black and Hispanic residents, and households experiencing poverty. The models that were fitted on 
Empirical Bayes LISA identified this phenomenon earlier in the study period than the raw rate LISA. However, all the 
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Introduction
The opioid overdose crisis has persisted as one of the 
most significant public health challenges of the past two 
decades in the US. Between 1999 and 2019, the national 
age-adjusted opioid-involved overdose rate increased 
from 2.9 per 100,000 population to 15.5 per 100,000 [1]. 
Rates continued to increase steeply during the COVID-
19 pandemic [2]. The rate climbed to 21.4 per 100,000 
during 2020 and then to 24.7 per 100,000 in 2021 [3]. 
Commonly understood drivers of the overdose crisis 
include drug supply and demand-side pressures. Sup-
ply-side drivers have evolved over multiple waves, from 
prescription opioids, to heroin, to illicitly manufactured 
fentanyl [4, 5]. Demand-side drivers include deindus-
trialization and concentrated poverty, pain arising from 
work-related injuries, [5] income inequality, [6] and 
added stress, isolation, and economic disadvantage con-
nected to the COVID-19 pandemic [7, 8]. 

More studies have begun to consider the association 
between drug use, opioid-related mortality, and the built 
environment, defined by Ezell and colleagues as “the 
purposeful creation and spatial arrangement of hous-
ing, sidewalks, roadways, retail and institutional build-
ings, public transit, and green spaces.” [9–11] Research 
has already suggested that the built environment influ-
ences health and health behaviors [12], including sub-
stance use [9, 10, 13] and opioid-related mortality [11]. 
For example, analgesic opioid-involved overdose fatalities 
were found to be more likely to occur in “fragmented” 
neighborhoods than in higher-income neighborhoods in 
New York City [14]. Chichester et al. found that bus stops 
and public schools were associated with increased risk 
of opioid overdose in rural areas of an Alabama county 
and that inpatient treatment centers, transitional living 
facilities, express loan establishments, and liquor vendors 
were associated with increased opioid overdose risk in 
urban areas of the same county [15]. Inequality and racial 
and ethnic composition of neighborhoods have also been 
identified as correlates of increased opioid mortality [16, 
17]. 

The connection between substance use and built envi-
ronment variables (access to public restrooms, access 
to pharmacies, and driving distance to services, defined 
in our study as fast-food restaurants, gas stations, and 

highway exits) is also important. Prior studies found that 
people who inject drugs often use drugs in public rest-
rooms [9, 18, 19]. Pharmacies represent an important 
access variable for several reasons. During the initial 
wave of the overdose crisis, pharmaceutical prescrip-
tions, either legitimate, diverted, or potentially inap-
propriate, fed the opioid supply [4, 17, 20]. In addition, 
naloxone (a medication to reverse an opioid overdose) 
is available at pharmacies without a prescription, [21, 
22] although this provision may vary by neighborhood 
socio-demographic levels [23]. For example, prescription 
opioid poisoning increased more in postal codes with 
greater pharmacy density in California in the time period 
between 2001 and 2010 [24]. Road access to services may 
mediate several factors related to substance use, such as 
access to meeting places to buy illicit substances, as well 
as access to harm reduction services including syringe 
services programs [9]. 

Over the past two decades, Massachusetts’ opioid-
involved mortality rate has often been higher than the 
national rate and, at times, twice as high [25]. The most 
recent data released by the Massachusetts Department 
of Public Health indicated that opioid-involved mortality 
rate peaked at 33.5 per 100,000 population in 2022 [26]. 
Studies focusing on the overdose crisis in Massachusetts 
have explored potential intersections between the built 
environment and opioid overdoses. A spatial analysis of 
potentially inappropriate opioid prescribing (PIP) iden-
tified several overdose and PIP clusters, but did not find 
a significant overlap between the two [20]. Other stud-
ies identified a rural county in Massachusetts with both 
good access to harm reduction services but persistently 
high overdose rates, [27] and that a majority of overdoses 
in the state occurred at home between 2015 and 2017 
[28]. A recent study of opioid-related deaths in Mas-
sachusetts incorporated psychosocial, economic, built 
environment, and health-related variables using multi-
level mixed-effects regression models, found that none of 
the built environment variables had a statistically signifi-
cant association with opioid-related mortality [29]. 

While these studies across the US and within Mas-
sachusetts have contributed importantly to our under-
standing of the relationships between substance use 
and the built environment, many often fail to use spatial 

models identified minoritized populations and poverty as significant factors in predicting the persistence of a ZCTA 
being part of a high opioid overdose cluster during this time period.

Conclusion Conducting spatially robust analyses may help inform policies to identify community-level risks for 
opioid-involved overdose deaths sooner than depending on raw incidence rates alone. The results can help inform 
policy makers and planners about locations of persistent risk.
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statistical methods that properly account for excess zero 
counts for overdose outcomes and spatial autocorrela-
tion, two of the most common confounding factors in 
spatial epidemiology [30]. With spatial analysis of rare 
events, such as overdose deaths, the distribution of 
death counts is often “zero-inflated” (i.e., a large number 
of locations have no deaths while a few locations have 
many). Several methods have been used to address this 
issue, including use of: small area estimation techniques; 
[31] a rate smoothing technique to examine characteris-
tics of prescription opioid poisoning; smoothing rates in 
the ZIP Code Tabulation Area (ZCTA) with small popu-
lations; and Empirical Bayes smoothing. [32–35] These 
methods include data from adjacent spatial units that 
enable refined estimates for all locations, but are of ele-
vated importance in locations that have low population 
density such as rural areas in western Massachusetts. 
Two models that acknowledge spatial autocorrelation and 
account for excess zeros include zero-inflated Poisson 
regression models, [36, 37] such as the Besag-York-Mollie 
model, [38] and a Bayesian hierarchical space–time mis-
alignment Poisson model [24, 39]. 

The problem of excess zeros masking potentially non-
zero true counts and rates exists in Massachusetts anal-
yses because the geographical distribution of opioid 
overdose deaths in Massachusetts spans urban, subur-
ban, and sparsely populated rural areas that are likely to 
have very low or zero counts. To date, we are only aware 
of a few studies of opioid-involved overdose deaths using 
Massachusetts data that have employed techniques that 
acknowledge zero-inflation and spatial autocorrelation 
at smaller spatial units (such as the ZCTA level), [40] 
but these techniques could greatly help in enhancing our 
understanding of geographic variation in overdose rates 
across Massachusetts.

The goal of our study was to identify fatal overdose 
clusters as well as socioeconomic and built environment 
factors associated with opioid-related overdose rates in 
Massachusetts from 2011 to 2021 while acknowledg-
ing spatial autocorrelation. We aimed to: (1) address the 
issue of zero-inflated opioid-involved overdose rates by 
comparing three spatial methods (raw rates, Empirical 
Bayes, and Empirical Bayes Spatial); (2) utilize the raw 
and Empirical Bayes rate as well as Empirical Bayes Local 
Indicator of Spatial Autocorrelation (LISA) to identify 
statistically significant fatal opioid overdose clusters in 
Massachusetts between 2011 and 2021; (3) derive socio-
environmental and pharmacological variables using PCA 
in those clusters; and (4) model community-level factors 
associated with overdose rates using Conditional Autore-
gressive Empirical Bayes logistic regression models to 
predict if a ZCTA was part of a cluster and Conditional 
Autoregressive Empirical Bayes zero inflated Poisson 
regression models to predict how many times it was part 

of a cluster during the time period while acknowledging 
spatial autocorrelation of the outcome (Fig. 1).

Data
Data sources
We obtained fatal opioid-related overdose data by 
address of residence for decedents between 2011 and 
2021 from the Massachusetts Registry of Vital Records 
and Statistics (RVRS) [41]. These data included sociode-
mographic characteristics of decedents, including sex, 
race, ethnicity, and age at the time of death. We obtained 
opioid prescription data from the Massachusetts Pre-
scription Monitoring Program (MA PMP), aggregated 
at the zip code or ZCTA level [42]. We obtained address 
level data for services (gas stations, fast food restaurants, 
pharmacies), and “access to infrastructure” measures 
(highway exits, major roads) from Data Axle and from 
MassGIS (Massachusetts Bureau of Geographic Informa-
tion) [43, 44]. We obtained pharmacy addresses from the 
Massachusetts Board of Registration in Pharmacy [22]. 
Finally, we compiled population level sociodemographic 
data at the ZCTA level, from the US Census Bureau’s 
American Community Survey (ACS), relying on 2011 to 
2015 and the 2017 to 2021 5-year estimates for people 
aged ≥ 10 years for calculating rates [45]. We used ACS 
2011–2015 data for the years 2011–2016 and 2017–2021 
data for the years 2017–2021.

Outcome
The two outcomes were whether a ZCTA was part of a 
cluster or not and the number of times a ZCTA was 
within a fatal overdose cluster based on annual opioid-
related overdose rates between 2011 and 2021. We cal-
culated the LISA statistic for each year between 2011 and 
2021 for the raw rates, and for Empirical Bayes smoothed 
rates. We also calculated the Empirical Bayes LISA for 
the same time period, as this adjusts for variation in the 
underlying population. [46, 47] We did not use the spatial 
EB rates for calculating clusters. This is because spatial 
EB rates were useful to identify locations at risk, but they 
also resulted in over-smoothing of the rates.

Covariates
PIP measures were aggregated by ZCTA. We defined PIP 
measures, established through our previous research, for 
the years 2011–2017 at the ZCTA scale: high Morphine 
Milligram Equivalents or MME ( > = 90), co-prescribing 
of benzodiazepines and opioids, poly-pharmacy opioid 
prescription fills, multiple provider episodes (i.e., doctor 
shopping), >=3 cash purchases of opioid prescriptions 
and opioid prescriptions without a pain diagnosis. We 
were not able to obtain PIP data for the years 2018–2021.
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Socioeconomic measures
We selected socioeconomic measures from the ACS at 
the ZCTA-level based on the literature and our previous 
research [20, 48, 49]. Poverty as a percentage of house-
holds living below the poverty threshold was defined by 
the five-year ACS estimates. We also included median 
age, and population percentages by race and ethnicity for 
non-Hispanic White, Black, Asian, American Indian and 
Alaskan Native, and Hispanic communities.

Built environment measures
We compiled built environment measures based on the 
literature and our previous research [20, 48, 49]. Spe-
cifically, we selected gas stations and fast-food restau-
rant locations as a proxy for access to public restrooms, 
locations where overdoses often occur [18, 19, 43, 50, 
51]. We used pharmacy addresses to analyze the spatial 
distribution of access to sources of over-the-counter nal-
oxone [22]. We compiled highway exits and major roads 
from a Massachusetts GIS agency (MassGIS) as a proxy 
for access to services. For each ZCTA we calculated the 
distance to the nearest exit, major road, pharmacy, fast 
food restaurant, and gas station from the centroid of the 

ZCTA. We also calculated the average gas station density 
for each ZCTA.

Methods
Figure  1 provides an overview of the data and methods 
used in this paper.

Death rate mapping
Using ArcGIS Pro 3.1 (ESRI, Redlands, CA) we created 
maps of raw and Empirical Bayes and Empirical Bayes 
Spatial smoothed opioid overdose death rates at the 
ZCTA level across the state.

Spatial smoothing techniques
Smoothing techniques work by detrending the overdose 
rate within target polygons (ZCTAs) and by using data 
from neighboring polygons, thus allowing for the calcula-
tion of a local average overdose measure that is less sus-
ceptible to variation due to outlier values. We employed 
two spatial smoothing techniques to derive stable esti-
mates for spatial measures (fatal overdose rates). These 
included: (1) Empirical Bayes Method; and, (2) Empirical 
Bayes Spatial method [52–54]. 

Fig. 1 Flow diagram visualizing data and methods described in this paper. Note: PIP is potentially inappropriate opioid prescribing. ACS represents data 
from the US Census Bureau’s American Community Survey. Data Axle was used for built environmental variables such as gas stations and pharmacies; 
MassGIS is the Massachusetts State GIS Data provider; LISA (Local Indicators of Spatial Association) statistics generate clusters
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The Empirical Bayes smoothing for rate calculations 
relies on calculating a weighted average of the raw rate 
for each ZCTA and the state average, with weights pro-
portional to the underlying population at risk. Therefore, 
ZCTAs with a small population at risk will tend to have 
their rates adjusted considerably, while rates for ZCTAs 
with larger populations at risk will not change much. The 
second method was Empirical Bayes Spatial smoothing, 
which is like Empirical Bayes smoothing, except that 
the reference rate is computed for a group of neighbor-
ing ZCTAs that share a boundary with each individual 
ZCTA, rather than taking the same overall reference rate 
for all ZCTAs. We used the R package rgeoda to calculate 
Empirical Bayes and Empirical Bayes Spatial smoothed 
rates [53, 55]. We then used the LISA statistic to identify 
and map clusters (i.e., ZCTAs with high overdose rates 
surrounded by ZCTAs with high rates or high-high (HH) 
locations and ZCTAs with high rates surrounded by low 
rates or high-low (HL) locations for (i) the raw rates, (ii) 
the Empirical Bayes smoothed rate and (iii) using the 
Empirical Bayes LISA method [47, 53]. We did not cal-
culate LISA for Empirical Bayes Spatial rates to avoid 
over-smoothing the data. Clusters were considered sta-
tistically significant if the local pseudo-p value p < 0.05 as 
estimated by rgeoda. LISA were also calculated using the 
rgeoda package. We used the queen’s contiguity criterion 
to define all the spatial weights matrix calculations.

Principal components analysis (PCA)
To avoid multicollinearity amongst the PIP, access, and 
socioeconomic variables due to significant cross corre-
lation, we used PCA with a Varimax rotation to extract 
new variables that summarized the covariance in the PIP, 
socioeconomic, and access variables. PCA is a dimension 
reduction technique that is commonly used to reduce the 
number of variables used in analyses while preserving the 
information from them. We used a cut point of 0.25 for 
the included factor loadings as recommended in other 
studies [56]. The psych and dplyr packages in R were used 
for PCA and data management [57].

Statistical modeling
We fit three Bayesian logistic regression models where 
the dichotomous outcome characterized whether a 
ZCTA was in a HH or HL cluster or not (0/1), as identi-
fied by (i) the raw overdose rate LISA, (ii) the Empirical 
Bayes rate LISA and (iii) the Empirical Bayes-corrected 
LISA developed by Assuncao and Reis [47]. The compo-
nents derived from the PCA were the explanatory vari-
ables for all three models. Models fit with all the variables 
(without PCA) resulted in very high VIF values due to 
multicollinearity. We used Conditional Autoregressive 
(CAR) Bayes regression models to fit both the logistic 
regression model focused on whether the ZCTA was in 

a cluster for individual years between 2011 and 2021, as 
well as a zero-inflated Poisson regression model for the 
number of times the ZCTA was located within a LISA 
cluster, as identified by the smoothing methods in the 
11 years between 2011 and 2021. Zero-inflated Poisson 
regression models are fitted when the outcome is a count 
with excess zeros. CAR models, which acknowledged 
the spatial dependency of the outcome within a Bayesian 
framework, were used for both the logistic as well as the 
ZIP regression models. The package CARBayes was used 
to fit the models in R.

Results
The use of rate smoothing techniques facilitated the iden-
tification of high opioid overdose rate ZCTAs surround-
ing Pittsfield, Springfield, Fall River, and New Bedford, 
Massachusetts. Several of these locations had high over-
dose fatality rates in 2021 based on the smoothed data 
that were not easily identifiable in maps of the raw rates 
for the same year (Fig. 2). Figure 3 shows that the impact 
varied over time. For example, in 2011 the smoothed 
rates enabled identification of clusters in the Boston area, 
in addition to the area south of Worcester, Fall River, 
New Bedford, and Cape Cod (Fig. 3). Likewise, in 2014, 
using the raw rate alone resulted in fewer and more scat-
tered clusters − 25 than the Empirical Bayes methods, 
which identified 45 and 53 ZCTAs as being part of LISA 
HH or HL clusters. The Empirical Bayes LISA and LISA 
of the Empirical Bayes rate methods also depicted more 
geographic variability, facilitating identification of clus-
ters near Wareham in the southeast and Haverhill in the 
northeast. In 2017, the numbers of clusters identified 
based on the raw rates alone was comparable to those 
from the other methods − 36 versus 28 from the Empirical 
Bayes LISA method. The mapped results suggested that 
overdose deaths persisted in Worcester, Fall River, and 
Boston. By 2021, the number of ZCTAs identified within 
high overdose clusters using raw rates was much lower: 
13. However, using Empirical Bayes LISA, the number of 
ZCTAs in clusters was 38. Figure 4 highlights locations of 
persistent HH and HL overdose clusters, with the most 
notable ongoing clusters in Worcester, New Bedford, Fall 
River, and Wareham. Many of these were not identified 
by the raw rate LISA, which only showed clusters in west-
ern Massachusetts in 2021 (Fig. 3).

We compared sociodemographic and built environ-
ment access variables in the statistically significant ZCTA 
LISA clusters, which illuminated important differences 
in sociodemographic factors. In ZCTAs that were always 
identified as being part of HH or HL LISA clusters, the 
mean percentages of the population living in poverty, 
and residents who were non-Hispanic Black or Hispanic, 
were higher than in ZCTAs that never appeared in fatal 
overdose clusters (Table 1). In terms of built environment 
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variables, ZCTAs that were located within persistent 
clusters were closer to major roads and highway exits.

The results of the PCA suggested that the four compo-
nents we used in this analysis explained about 62% of the 
variance in the data (Table  2). The loadings on the first 
PCA component suggested that it was a measure of PIP 
because it had a positive loading (indicating positive cor-
relation) with all PIP measures. This component had high 
scores in the central parts of the state along Interstate 90 
and along Interstate 95 in the south (Fig. 5). The second 
component was correlated with poverty, non-Hispanic 
Black, American Indian and Alaska Native (AIAN) and 
Hispanic population percentages and we refer to it as the 
“minority and poverty” component. Locations that had 
high values for the minority and poverty component were 

found across Massachusetts in locations like Worcester, 
Springfield, New Bedford, Fall River, and in the south-
ern area of Boston, within the Dorchester neighborhood 
(Fig. 5).

The third component, which we termed “distance to 
amenities,” was related to being relatively far from fast 
food restaurants, pharmacies, and gas stations. The 
ZCTAs with high values for the distance from amenities 
component were located not only in high poverty loca-
tions, such as urban neighborhoods in Boston, Worces-
ter, New Bedford, and Springfield, but also in the more 
rural areas of Western Massachusetts, and on Cape Cod 
and the islands. Some high-income suburbs close to Bos-
ton like Carlisle, and Grafton (which is near Worcester) 

Fig. 2 Fatal opioid overdose rate quintiles in 2021 in Massachusetts by ZIP Code Tabulation Area (ZCTA): 2(a) Raw rate; 2(b) Empirical Bayes (EB) smoothed 
rates; 2(c) Spatial EB smoothed rates 2(d) Reference map. This comparison of maps displaying raw and smoothed overdose rates highlights that identifica-
tion of local high incidence clusters is easier in the EB and EB spatial maps than in the raw rate map’s patchwork of high and low values
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also had moderately high values for this component sug-
gesting that it was not correlated with income (Fig. 5).

The fourth component, which we referred to as the 
“rurality” component, loaded positively on median age, 
and distance to a highway and major roads. As can be 
seen in Fig.  5, high scores for the rurality component 
were identified in western Massachusetts and Cape Cod, 
while low scores were observed in urban areas within and 
near Boston, Springfield, New Bedford, and Worcester.

The results of the CAR Bayesian logistic regressions for 
the outcome focused on whether a ZCTA was in a HH or 
HL cluster (derived from three different LISA statistics) 
for each year from 2011 to 2021 are shown in Table  3. 
We only included coefficients with statistically significant 
credible intervals from the CAR Bayesian regressions in 
Table  3 for brevity. Notably, the Empirical Bayes LISA, 
which was the most stable indicator of high overdose 
clusters observed in the maps, was the earliest to pick up 
any trends in the models over time. The LISA on Empiri-
cal Bayes smoothed rates also had similar results. LISA 

estimates of high overdose clusters from raw rates even-
tually also showed similarly significant credible intervals, 
but only after the trends had been observed in the other 
two model estimates.

The results of the CAR Bayes logistic model, predicting 
whether ZCTAs were located within a high overdose rate 
cluster using the Empirical Bayes LISA, suggested that for 
most years between 2011 and 2021, fatal opioid-involved 
overdose cluster ZCTAs were more likely to have a high 
minority and poverty component. The credible intervals 
for the minority and poverty component were lowest 
early in the study period in 2012 [2.13–4.47] and rose in 
2021 [4.1–51.9] but they were always positive and sig-
nificant. The PIP component was not significant in any 
of the models that were fitted. The distance to amenities 
and rural components, when significant, had a protective 
effect in that ZCTAs with high scores on these variables 
meaning that locations that were far from amenities were 
less likely to be in high overdose clusters. The odds ratio 
on the distance to amenities component varied from a 

Fig. 3 Fatal opioid overdose LISA clusters and outliers (p < 0.05) for 2011, 2014, 2017 and 2021: 3(a) Raw, 3(b) Empirical Bayes (EB) LISA, 3(c) EB smoothed 
death rates LISA by ZIP Code Tabulation Area (ZCTA), Massachusetts. LISA (Local Indicators of Spatial Association) analyses generate clusters of HH (high 
ZCTAs surrounded by ZCTAs with high rates), HL (high surrounded by low rates), LL (low surrounded by low rates), LH (low surrounded by high rates) or 
not significant
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higher range [0.29–0.89] in 2018 to a smaller range in in 
2021 of [0.001–0.06]. The 95% credible intervals for the 
rurality component odds ratio varied from a lower range 
more recently in 2019 [0.05–0.67] to a wider range [0.07–
0.99] in 2014.

The CAR Bayesian models predicting the num-
ber of times a ZCTA was in a high overdose rate clus-
ter (Table  4) always had a positive and significant value 
within the credible interval for the minority and pov-
erty component for the three models. This suggests that 
ZCTAs with high scores on this component in Worces-
ter, Springfield, New Bedford, Brockton, Boston, and Fall 
River were more likely to have been a persistent overdose 
cluster over the 11-year period. The negative coefficients 
for the distance to amenities and rurality suggested that 
ZCTAs scoring high on distance to amenities and rural-
ity were less likely to be located within persistent high 
overdose rate clusters (Table 4). The PIP component and 
the rurality component were not significant in any of the 
models.

Discussion
In this study, we identified overdose clusters using rate 
smoothing techniques and found persistent and sig-
nificant high incidence clusters in Massachusetts. We 
estimated PCA components to account for multicol-
linearity while incorporating opioid prescription, socio-
environmental and built environment variables; and 
we acknowledged spatial autocorrelation in our models 
in the presence of spatial dependency in both the loca-
tion of high overdose clusters and their persistence over 
the study period. Using PCA, we identified four unique 
components in Massachusetts that described ZCTA 
characteristics: PIP, Minority and Poverty, Distance to 
amenities, and Rurality. In the logistic regression models 
predicting if a ZCTA was part of a cluster at high risk of 
opioid-related overdose, we found that the minority and 
poverty factor was a significant predictor of a high over-
dose cluster in most years. In predicting the count of the 
number of times a ZCTA was part of a cluster, we found 
that the minority and poverty factor was again a signifi-
cant predictor. Some recent studies have also noted the 

Fig. 4 Number of times (i.e., years) the ZCTA was a HH or HL cluster between 2011–2021 using Empirical Bayes LISA (Local Indicators of Spatial Association)
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Table 1 Mean (SD) of demographic and built environment variables by number of years in which a ZIP code tabulation area (ZCTA) 
was an empirical Bayes (EB) LISA HH (high surrounded by high) or HL (high surrounded by low)
Number of years ZCTA was 
in HH/HL cluster

ZCTA 
count

Percent 
Poverty

White 
Percent

Black Percent Hispanic 
Percent

Asian Percent American 
Indian/ Alas-
kan Native 
Percent

Male Percent

0 352 8.4 (8.8) 89.8 (12.3) 3.1 (7.6) 3.7 (4.5) 3.9 (6.3) 0.2 (0.6) 48.9 (7.5)
1 89 9.1 (7) 87.5 (12.3) 3.3 (4.3) 7 (11.2) 4.2 (7.2) 0.2 (0.3) 48.5 (5.9)
2 43 13.1 (10.8) 77.9 (21.4) 8.7 (14.5) 11.9 (15) 5.7 (7.9) 0.3 (0.3) 48.1 (2.4)
3 17 13.8 (8.7) 74.9 (18.1) 7.5 (10.2) 18.4 (22.2) 5.6 (5.3) 0.2 (0.1) 48.7 (2.7)
4 17 18.5 (14.6) 71.7 (19.4) 8.5 (9.4) 23.4 (24.4) 4.5 (4.9) 0.3 (0.3) 48.6 (1.9)
5+ 17 25.6 (12.4) 67.5 (19.6) 11 (8.4) 22.1 (19.7) 3.9 (4.2) 0.3 (0.4) 48.2 (2.7)
Number of years ZCTA was 
in HH/HL cluster

ZCTA 
count

Median 
Age

Distance 
Gas 
station*

Distance 
fast food 
restaurant

Distance 
Pharmacy

Distance High-
way exit

Distance major 
road

Gas station 
density**

0 352 44.2 (9.3) 573.2 
(1515)

1951.3 
(4292.3)

1755.1 
(2935.9)

10082.5 
(14839.4)

1263.7 (3730.2) 3505.4 (6574.6)

1 89 42 (7.3) 195.5 
(954.6)

1009.1 
(4995.6)

756 (1654.0) 7131.3 (12508.3) 1270.5 (5108.7) 4954.4 (7372.7)

2 43 39.6 (8.6) 48.7 (319.5) 153.6 (682.3) 418.5 
(1518.7)

5434.0 (11840.9) 480.3 (1209) 7156.8 (6765.3)

3 17 38.6 (5.6) 0 (0) 0 (0) 55.5 (228.8) 2412 (3350.8) 714.6 (1614.1) 7551.9 (5384.3)
4 17 37.1 (7.1) 0 (0) 6.7 (27.8) 11 (45.4) 1388.8 (2133.1) 654.7 (1723.9) 8313.6 (6644.7)
5+ 17 36.6 (6.9) 1.4 (5.7) 133.3 (527.6) 26.6 (83.1) 1521.1 (2399.4) 668.2 (1690.6) 8287.5 (5056.4)
*All distances in meters. Note that since distances are from the centroid of a ZCTA the presence of an amenity in a ZCTA will result in 0 m

**Density per square mile at the ZCTA level

Abbreviations SD = Standard Deviation, ZCTA = ZIP Code Tabulation Area

Table 2 Principal Components Analysis using a Varimax rotation: loadings of the opioid prescription, socioeconomic, and 
infrastructure variables for the first four components

RC1: Potentially inappro-
priate prescribing (PIP)

RC2: Minority and 
Poverty

RC3: Distance to 
Amenities

RC4: 
Ru-
ral-
ity

Percent living in Poverty 0.75
White Percentage -0.80
Black Percentage 0.74
AIAN Percentage 0.82
Hispanic Percentage 0.40
Asian Percentage -0.58
Male Percentage 0.25
Median Age -0.38 -0.48
Mean Distance to Gas Station 0.86
Mean Distance to Fast food restaurant 0.61 0.67
Mean Distance to Pharmacy 0.87
Mean Distance to Highway Exit 0.52
Mean Distance to Major Road 0.79
Mean Gas Station Density 0.49
Opioid prescriptions without a pain diagnosis (Rate) 0.83
>=3 cash purchases of opioid prescriptions (Rate) 0.95
Poly-pharmacy opioid prescription fills (Rate) 0.98
Multiple prescriber (Rate) 0.91
Co-prescribing of benzodiazepines and opioids (Rate) 0.95
Proportion of Variance in the data explained by component 24 16 11 10
Cumulative variance of data explained by component 24 40 52 62
Abbreviations RC = Rotated Component; AI/AN = American Indian/Alaskan Native
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Table 3 Significant coefficients within the 95% credible interval (for CAR bayesian logistic model) associated with a ZCTA was a LISA 
(Local Indicators of Spatial Association) HH (high surrounded by high) or HL (high surrounded by low), Massachusetts, 2011–2021

Raw Rate LISA EB LISA EB Smoothed Rate LISA
RC1 RC2 RC3 RC4 RC1 RC2 RC3 RC4 RC1 RC2 RC3 RC4

2011 -2.27 -1.50
2012 0.35 -1.06 0.61 -1.66
2013 -0.64 0.60 -2.70 -1.67 0.72 -2.54
2014 0.38 1.50 -3.11 -3.04 0.66 -1.35
2015 0.37 0.78 -1.41 0.94 -1.70
2016 0.39 -1.01 -0.80 0.44 -1.03
2017 0.51 1.02 -3.00 -1.77 0.95 -1.36
2018 0.51 -1.68 -1.52 0.98 -3.86 -1.86 1.25 -3.75 -1.72
2019 1.06 -3.29 -1.38 1.23 -2.69 -1.60 1.62 -1.71 -0.76
2020 0.37 0.82 1.34 -1.46
2021 0.43 0.71 -1.60 1.19 -2.04
N 535
RC1: Potentially inappropriate prescribing; RC2: Minority and Poverty; RC3: Distance to Amenities; RC4: Rurality

Abbreviations CAR = Conditional Autoregressive

Fig. 5 Principal Components Analysis scores mapped in deciles for Massachusetts by ZIP Code Tabulation Area (ZCTA): (a) RC1: potentially inappropriate 
prescribing (PIP); (b) RC2: Minority and poverty; (c) RC3: Distance to amenities (d) RC4: Rurality
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value of constructing variables that measure social disad-
vantage through the use of PCA [58, 59]. 

Zero inflation of disease rates is common in spatial 
epidemiological studies, which has resulted in several 
techniques to address this issue [31–39, 60]. We chose 
Empirical Bayes, and Empirical Bayes spatial smoothing 
methods, which reduced variance in the opioid fatality 
rates and thus resulting in better identification of high 
incidence clusters in ZCTAs that had relatively low pop-
ulation density. These rate smoothing techniques offer 
considerable promise in identifying regional clusters of 
persistent risk for fatal overdoses in Massachusetts ear-
lier in the overdose epidemic than raw rates. Our applica-
tion of the Empirical Bayes methods supported the use of 
this technique as a method to detect patterns at smaller 
spatial scales in which there was a mix of rural and urban 
areas [34]. Another recent study in Illinois noted the 
usefulness of EB clusters in a temporal study that could 
“serve as a proxy for pervasive risk” and “emerging risk” 
[61]. 

Our results may also indicate that minority and pov-
erty presence in a ZCTA is significant in predicting high 
incidence clusters in Massachusetts. Several recent stud-
ies have also noted the role of poverty and race in pre-
dicting opioid overdose incidence in other states [16, 
62–66]. The protective effect suggested by distance to 
amenities and rurality in the models suggests that mea-
sures of built environment and access to opioid supply 
may need to be incorporated into future analyses [16, 65]. 
It should also be noted that the negative association with 
rurality was no longer significant after 2019 which may 
be worth investigating in future work. A recent Massa-
chusetts Department of Public Health report also noted 
this resurgence of opioid overdose prevalence in the most 
rural areas of the state in recent years [26]. 

The mapped LISA cluster estimates demonstrate that 
high overdose rate clusters that persisted over the years 
were comprised of higher percentages of non-Hispanic 
Black and AIAN populations, as well as Hispanic popu-
lations, and higher percentages of people living in pov-
erty [66]. In 2011–2015, the overdose epidemic in 

Massachusetts and elsewhere was characterized in the 
media as affecting people who were middle income and 
non-Hispanic White as part of the “deaths of despair” 
narrative [67–71]. The role of poverty in opioid-involved 
overdoses in minoritized people who use drugs should be 
surveilled carefully as opioid overdoses continue to rise 
in these groups [72, 73, 74, 75].

Our findings have several limitations. For privacy rea-
sons, the prescribing data (PIP) in this study were only 
available at the ZCTA scale and, therefore, our results are 
subject to ecological fallacy. Models that are at the indi-
vidual level may show different relationships than our 
findings, which were aggregated to the ZCTA. Further-
more, we could not obtain PIP data for 2018–2021 and 
the PCA is based only on 2011–2017 data. However, the 
data for the earlier time periods were spatially clustered 
so it is likely that the later time periods will also show 
similar spatial and statistical correlations. The statisti-
cal associations that we identified may only be applica-
ble to Massachusetts. Several laws and regulations were 
enacted in the state during the opioid overdose epidemic 
that may not be generalizable to other states. In 2019, for 
instance, the Governor of Massachusetts enacted a law 
that allowed no more than a seven-day supply of pre-
scribed opioids (with certain exceptions), which, along 
with other policies, resulted in a notable decline in the 
number of opioid prescriptions dispensed [76].

Conclusion
We employed a range of spatial analytical and statistical 
modeling approaches to better understand the opioid 
overdose crisis in Massachusetts and improve target-
ing of public health interventions. Smoothing methods 
allowed us to derive more stable estimates for opioid 
overdose rates and enhanced our understanding of the 
spatial clustering patterns related to fatal opioid-involved 
overdoses. We recommend using Empirical Bayes LISA 
when estimating clusters and Empirical Bayes smooth-
ing for deriving rates especially for identifying locations 
at risk, particularly when tracking places that have a vari-
ety of population densities over space and time. These 

Table 4 CAR bayesian zero inflated Poisson regression coefficients predicting the number of times the ZCTA was a LISA (Local 
Indicators of Spatial Association) HH (high surrounded by high) or HL (high surrounded by low), Massachusetts, 2011–2021

LISA count EB LISA count EB Smoothed Rate LISA count
Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50%

Intercept -0.42 -0.83 0.02 -0.98 -1.34 0.51 -1.20 -1.43 -0.99
RC1 2.53 1.08 3.72 0.40 0.16 0.61 -0.11 -0.50 0.13
RC2 0.26 0.11 0.41 0.53 0.39 0.67 0.44 0.30 0.58
RC3 -0.08 -0.33 -0.16 -1.11 -1.49 -0.75 -0.65 -1.03 -0.31
RC4 0.08 -0.39 0.45 -0.17 -0.46 0.08 -0.24 -0.57 0.08
* Coefficients with significant 95% credible intervals are boldfaced

RC1: Potentially inappropriate prescribing; RC2: Minority and Poverty; RC3: Distance to Amenities; RC4: Rurality

Abbreviations CAR = Conditional Autoregressive
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methods were able to identify clusters earlier in the 
epidemic than raw rates were able to in low population 
density locations. PCA facilitated a better understanding 
of unique community-level spatial and socioeconomic 
variables that may explain opioid-involved incidence. 
By using components that combined several socioeco-
nomic, built environment, and prescription variables in 
the regression models, which also acknowledged spatial 
autocorrelation, we were able to characterize the signifi-
cant contributing factors to opioid-related deaths in Mas-
sachusetts. Future research should investigate minority 
and poverty variables and their potential proxies. Many 
factors impact the cascade of opioid use, opioid use dis-
order, and opioid-involved overdose mortality, and by 
identifying factors at the beginning of the cascade, as we 
have done here, we can inform policies to intervene early 
in the cascade and prevent opioid-involved deaths.
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