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Abstract
Background and aims Waist circumference (WC) is a significant indicator of body adiposity and is associated with 
increased mortality and morbidity of cardiovascular diseases. Although, single nutrient intake and candidate genes 
were previously associated with WC. Little is known about WC association with overall diet quality, genetic risk 
score and gene-nutrient interaction. This study aims to investigate the influence of overall diet quality and multiple 
WC-associated single nucleotide polymorphisms on WC. In addition to investigating gene-nutrient interaction 
association with WC.

Methods This study explored cross-sectional data from two large sample-size studies, to provide reproducible results. 
As a representation of the UK population, the Airwave Health Monitoring Study (n = 6,502) and the UK-Biobank Cohort 
Study (n = 171,129) were explored for factors associated with WC. Diet quality was evaluated based on the Mellen 
Index for Dietary Approaches to Stop Hypertension (Mellen-DASH). The genetic risk score for WC (GRS-Waist) was 
calculated by screening the population genotype for WC-associated single nucleotide polymorphisms. Multivariate 
linear regression models were built to explore WC association with diet quality and genetic risk score. Gene-nutrient 
interaction was explored by introducing the interaction term (GRS-Waist X Mellen-DASH score) to multivariate linear 
regression analysis.

Results The prevalence of high WC (Female > 80 cm, Male > 94 cm) was 46.5% and 51.7% in both populations. Diet 
quality and genetic risk score of WC were significantly associated with WC. There was no evidence of interaction 
between GRS-Waist, DASH diet scores and nutrient intake on WC.

Conclusion This study’s findings provided reproducible results on waist circumference association with diet 
and genetics and tested the possibility of gene-nutrient interaction. These reproducible results are successful in 
building the foundation for using diet and genetics for early identification of those at risk of having high WC and 
WC-associated diseases. In addition, evidence on gene-diet interactions on WC is limited and lacks replication, 
therefore our findings may guide future research in investigating this interaction and investigating its application in 
precision nutrition.
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Introduction
Globally there is a noticeable increase in the prevalence 
of obesity and obesity-related diseases [1]. This increase 
in obesity is in parallel with the increase in the preva-
lence of diabetes [2] and cardiovascular diseases [3]. The 
UK National Health Service estimated over £5  billion 
per year is spent on obesity-related health treatment [4]. 
Waist circumference (WC) is recognised as a surrogate 
measure for obesity and an indicator of cardiometabolic 
risk [5–7]. Although WC is significantly associated with 
diabetes and dyslipidaemia, little research has addressed 
the multiple risk factors associated with WC, including 
genetics, diet, and the interaction between the two [3, 8].

Recent genetic studies examined the effect of WC-
associated genes on WC. To date, 92 loci are associated 
with WC [9]. The biological mechanism of all 92 loci is 
still under investigation. However, studies explained the 
biological role of a few loci on WC. For example, poly-
morphisms within the MC4R gene were positively associ-
ated with WC among the European population [10]. This 
WC-MC4R relationship was found to be regulated by the 
MC4R gene association with total energy and dietary fat 
intake [11]. Polymorphisms within ZNRF3 and VEGFA 
genes were associated with adipocyte lipolysis affect-
ing waistline measurement [12]. In general, studies 
explored the association between a single genetic variant 
with WC, overlooking the aggregated effects of multiple 
genetic markers.

According to the World Health Organisation, over-
all diet quality is key in managing and preventing obe-
sity [13]. The Dietary Approach to Stop Hypertension 
(DASH) is a diet quality index characterised by high 
consumption of vegetables, fruits, and dietary fibre, and 
low intake of red meat and saturated fatty acids [14, 
15]. Several studies have demonstrated the significant 
associations between DASH diet components and WC. 
For example, fruit and vegetable intake was negatively 
associated with WC [16]. On the other hand, energy 
intake from fat was positively associated with WC [17]. 
Although single components of the DASH diet were 
associated with WC, a few studies have addressed WC 
association with the overall DASH diet score, within the 
UK population.

The literature provides strong evidence for genetic 
and diet associations with WC. To date, little is known 
about the aggregated effect of multiple genetic markers 
and overall diet quality association with WC, in addi-
tion to the interaction between the two. Therefore, our 
primary aim is to investigate the associations of genetic 
WC predisposition and overall diet quality exposure with 
WC. Our secondary aim is to investigate genetic and diet 
interaction association with WC. Motivated to explore 
the role of diet and nutrients in modifying the associa-
tion between genetic variants and WC. Finally, the lack of 

robust and reproducible results is the main challenge fac-
ing gene-diet interaction studies. Therefore, we will repli-
cate our analysis across two UK-based studies.

Methods
Study population
Our cross-sectional study was nested within the Air-
wave Health Monitoring Study (AHMS). The AHMS is 
a longitudinal cohort study to investigate the health of 
42,112 police force participants in the United Kingdom 
[18]. Data were collected from 2007 to 2012 and details 
for recruitment and screening are described elsewhere 
[18]. Our nested study included 6,502 AHMS healthy 
participants. Participants answered a general question-
naire on lifestyle and medical history, in addition to 
completing a 7-day dietary record. Participants also pro-
vided blood samples for genotyping. Trained nurses col-
lected Anthropometric data such as weight, height, and 
WC. We included participants with available genetic and 
dietary data. Our exclusion criteria were based on the 
following, first, we excluded pregnant participants due 
to the effect of pregnancy on overall body weight and 
WC. Second, we excluded participants of non-white Brit-
ish ethnicity. This is because the selected WC-associated 
genes were significant among British-white descent and 
were not explored across other ethnicities. A flow chart 
illustrating the study’s final sample size is shown in sup-
plementary FIGURE S1.

We replicated our analysis across the UK-Biobank 
Cohort Study. The UK-Biobank Cohort Study (UK-Bio-
bank) is a large cohort study that determined the distri-
bution of diseases and disease risk factors within the UK 
population. It collected data from 500,000 adults in the 
UK [19]. Data included: anthropometrical measurement, 
blood biochemistry, genetics, and diet. Anthropometrical 
measurements were collected by trained personnel in the 
UK-Biobank centres. Dietary data were collected through 
a repeated 24-hour dietary recall. Our UK-Biobank 
cross-sectional sample included 171,129 participants. We 
followed a similar inclusion and exclusion criteria as the 
AHMS. A flow chart illustrating the study’s final sample 
size is shown in supplementary FIGURE S2. We chose 
the UK-Biobank cohort to replicate our analysis because 
we believed that a larger sample size may improve the 
precision and generalisation of our results [20].

Dietary data collection and diet quality assessment
We collected dietary data from a validated self-admin-
istered 7-day food diary [21]. Participants were given 
instructions on recording food intake, including cooking 
methods and weight estimation [22]. We used Dietplan 
version 6 software for dietary data entry and nutrient 
analysis. Quality control checks and data cleaning pro-
cesses were followed to ensure the quality of dietary data 
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entry [22]. The dietary data output sheet included nutri-
ent intake per quantity of food items over the recorded 
days. Nutrients were divided over the number of 
recorded days to estimate the average daily intake.

We assessed diet quality using the Mellen Dietary 
Approaches to Stop Hypertension index (Mellen-DASH) 
score [15]. The Mellen-DASH score evaluates the intake 
of 9 nutrients (total fat, saturated fat, protein, fibre, cho-
lesterol, calcium, magnesium, potassium, and sodium). It 
combines these into one score reflecting the overall diet 
quality [15, 23]. Each nutrient is scored: 0 points for not 
reaching the targeted amount, 0.5 for intermediate and 1 
for meeting recommended consumption. Thus, the sum-
mary score varies between 0 and 9. The Mellen-DASH 
score components were calculated using the average 
7-day intake per participant. A higher score indicates 
high adherence to the Mellen-DASH diet recommenda-
tion and better diet quality.

Sodium and total cholesterol intake were missing from 
UK Biobank dietary data. The following steps addressed 
the missing nutrients; first, dietary sodium intake was 
calculated by using the UK-Biobank 24-hour urinary 
sodium output variable. This was achieved using a Brown 
et al. validated equation to estimate dietary sodium 
intake in micrograms from urinary sodium output [24]. 
Second, the score was rescaled to assess the intake of 8 
nutrients instead of 9 to account for missing total choles-
terol intake.

Single nucleotide polymorphisms selection and genetic 
risk score
The Genetic Investigation of Anthropometric Traits 
(GIANT) consortium identified 219 single nucleotide 
polymorphisms (SNP) related to WC in European-
descent populations [25]. Since Genome-Wide Asso-
ciation Studies (GWAS) scans the whole genome for 
potential WC-associated SNPs, we selected SNPs that 
reached a significant genome level (P-value < 5 × 10 − 8) 
[26]. This has led to the exclusion of 27 non-significant 
SNPs. SNPs with a minor allele frequency (MAF) above 
0.1 and SNPs were selected [26].

The LDlink version 4.0.1 was used to identify Linkage 
disequilibrium (LD) between selected SNPs [27]. The 
LDlink was set to the following criteria: distance 500 kb, 
population panel European ancestry, and LD thresh-
old r2 = < 0.01 [28]. The minimum length distance was 
defined as 500  kb, to ensure the non-random associa-
tion between alleles within the same loci. This has led to 
the exclusion of 100 SNPs, with linkage equilibrium and 
MAF < 0.1. After excluding SNPs with non-significant 
genome levels and LD pruning, the final analysis included 
92 SNPs. SNPs’ genetic information is shown in Supple-
mentary Table S1.

For this study, we obtained previously genotyped data. 
Participants’ samples were genotyped using the Illumina 
HumanCore Exome-12v1-1 BeadChip array. Genotyped 
data is available upon request.

A genetic risk score estimates the cumulative num-
ber of the risk alleles of a specific trait presented within 
an individual’s genotype. Our genetic risk score for WC 
(GRS-Waist) was calculated from 92 WC-associated 
SNPs. At each SNP, the participant’s genotypes were 
coded based on the number of risk alleles into 0, 1 and 2, 
then weighted by multiplying the number of risk alleles 
by each estimated coefficient [29]. Our calculated GRS-
Waist is an indication of the cumulative number of the 
risk alleles associated with WC presented in each par-
ticipant. A high GRS-Waist indicated a higher number of 
WC risk alleles leading to a higher genetic predisposition 
of having a high WC.

Covariates
Our primary outcome was WC, collected by trained 
nurses according to the WHO protocol [30]. We 
also collected height and weight to measure partici-
pants’ body mass index (BMI). BMI and WC were 
categorised according to the WHO anthropometric clas-
sification [30]. BMI was classified into three categories 
(Normal = 18–25  kg/m2, Overweight = 25–30  kg/m2, 
Obese = > 30  kg/m2). Waist circumference was classified 
into two categories across gender, high WC (Female: = > 
80 cm, Male = > 94 cm), and very high (Female = > 88 cm, 
Male = > 102 cm).

We considered the effect of other confounding vari-
ables, such as Physical Activity Level (PAL) and smok-
ing. PAL was assessed using the short version of the 
International Physical Activity Questionnaire (IPAQ) 
[31]. Physical activity was calculated and categorised by 
the metabolic equivalent of the task in minutes per week 
(MET minutes a week); high (> 60 min/d of at least mod-
erate-intensity activity), medium (> 30  min/d of at least 
moderate‐intensity activity) and low (no activity or less 
than medium category) [31]. The Smoking variable was 
categorised into smokers and non-smokers, where previ-
ous and current smokers were combined.

Statistical analysis
We used R statistical software version 3.6.1 for all anal-
yses; the statistical significance threshold was set at 
P < 0.05. Continuous variables were tested for normality 
by Shapiro–Wilk test and were normally distributed.

We compared both cohorts (AHMS and UK-Biobank) 
first by two proportion Z-test to determine the difference 
in sociodemographic and the prevalence of WC and BMI 
classifications. Second, an unpaired t-test was to investi-
gate the difference in dietary intake and GRS-waist.
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WC association with nutrient intake, diet quality and GRS-
waist
We used multivariable linear regression models to 
explore WC association diet quality score and nutrient 
intake. The Mellen-DASH score and nutrient intake were 
primary predictors. Nutrients (percentage energy from 
Fat, Protein, and carbohydrates) and fibre were selected 
based on significant associations observed in previous 
studies [16, 32]. Association with fruit and vegetable 
intake was also investigated due to significant observa-
tion in previous studies [17]. The adjusted quality model 
included age, sex, BMI, PAL and total energy intake (kcal/
day). Models were adjusted for BMI and energy intake 
because it was previously shown that this adjustment 
may implicate an association independent of whole-body 
adiposity and a dietary association with other dietary 
attributes than energy intake [33, 34].

We used multivariable logistic regression models to 
explore WC association GRS-waist. Our primary out-
come was high WC classified according to the WHO 
(high WC; Female > 80–88 cm, Male > 94 to 102 cm, very 
high WC; Female > 88  cm, Male > 102  cm). The GRS-
waist group were the primary predictor, we stratified 
the study sample by GRS-waist median into a low GRS-
Waist group below the median, and a high GRS-Waist 
group above the median. The adjusted GRS-Waist model 
included age, sex, BMI and PAL.

GRS-waist - Diet score interactions
We examined evidence of gene-diet interaction (GRS-
waist X Nutrients or DASH score tertiles). Dietary vari-
ables were categorised into tertiles because previous 
interaction studies observed that adopting a high-quality 
dietary pattern offset GRS-BMI association with BMI 
[35]. Individual interaction models were built for each 
nutrient and DASH score. Adjusted interaction models 
included age and sex, BMI, PAL, and energy intake (kcal/
day). The likelihood ratio test was used to test for evi-
dence of interaction between the full interaction model 
and the reduced model.

Results
Sample characteristics
Descriptive statistics of the 6,502 AHMS participants are 
shown in Table 1. The sample included 60.6% male par-
ticipants, with mean population age of 40.8 years. The 
prevalence of high WC and very high WC were 27.2% 
and 19.3%, respectively. The prevalence of overweight 
and obese BMI was 47.5% and 19.3%, respectively. The 
AHMS descriptive dietary analysis is shown in Table  2. 
The average Mellen-DASH score was 2.5 ± 1.4, and the 
average portions of fruits + vegetable intake were 2.8 ± 1.5.

Descriptive statistics on 171,129 UK-Biobank par-
ticipants are shown in Table  1. The sample included 
44.9% male participants, with mean population age of 
56.2 years. The prevalence of high WC and very high 

Table 1 Characteristics of participants in the Airwave Health Monitoring Study and the UK-Biobank Study
AHMS (n = 6,502) UK-Biobank (n = 171,129)

Characteristic Percent N Percent N
Sex
Male 60.6% 3,942 44.9%* 94,315
Female 39.4% 2,560 55.1%* 76,814
WHO anthropometric classification a

BMI
Normal (≥ 18–25 kg/m2) 33.2% 2,156 38.3%* 65,588
Overweight (≥ 25–30 kg/m2 47.5% 3,090 42.0%* 33,747
Obese (≥ 30 kg/m2) 19.3% 1,256 19.7%* 71,794
Waist circumference a

High WC
(female ≥ 80 cm – male ≥ 94 cm)

27.2% 1,770 25.8%* 44,126

Very high
(female ≥ 88 cm – male ≥ 102 cm)

19.3% 1,255 25.9%* 44,326

Physical activity level b

Low 15.4% 1,004 26.1%* 44,601
Moderate 32.5% 2,113 48.2%* 82,468
High 52.1% 3,385 25.7%* 44,060
Smoking status
Non-smoker 90.9% 5,910 57.1%* 97,648
Smoker 9.1% 590 42.7%* 73,143
a World Health Organisation anthropometric classification
b International Physical activity questionnaire

* Statistically significant p-value < 0.05, two proportion Z-test
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WC were 25.8% and 25.9%, respectively. The prevalence 
of overweight and obese BMI were 42.0% and 19.2%, 
respectively. The UK-Biobank descriptive dietary analysis 
is shown in Table 2. The average Mellen-DASH score was 
3.4 ± 1.3, and the average portions of fruits + vegetable 
intake were 7.8 ± 4.3.

We observed a significant difference between both 
cohorts. First, UK-Biobank included a significantly high 
proportion of Females than AHMS. Second, AHMS 
included a higher proportion of high WC than UK-Bio-
bank, whereas UK-Biobank included a higher proportion 
of normal BMI. Third, AHMS included a higher propor-
tion of participants engaging in high PAL, and a lower 
proportion of participants engaging in moderate PAL, in 
comparison with UK-Biobank. Also, we observed a sig-
nificant difference across the mean of all nutrients and 
the Mellen-DASH score. In addition to a significant dif-
ference in the mean GRS-Waist.

WC status association with a genetic predisposition to WC 
and diet quality
Our findings showed that the Mellen-DASH score is neg-
atively associated with WC (Table 3). The estimated coef-
ficient in WC; AHMS: was − 0.22 (95% CI -0.31 to -0.13) 

per 1 increase in the Mellen-DASH score (P < 0.0001), 
and UK-Biobank − 0.23 ( 95% CI -0.22 to -0.18).

After adjustment for age, sex, BMI and PAL, the per-
centage of energy intake from protein and carbohydrates, 
fibre intake (g/1000  kcal) as well as fruit and vegetable 
intake (portions/day), were negatively associated with 
WC. These associations were also explored across UK-
Biobank data as shown in Table  3. Replicated analyses 
showed that percentage energy intake from protein and 
carbohydrates, fibre intake as well as fruit and vegetable 
intake, were negatively associated with WC.

Our AHMS findings showed that the high GRS-waist 
group (GRS-Waist > 94.03) had1.30 (95% CI,1.13 to 1.47) 
times greater risk of high WC, and 1.57 (95% CI, 1.28 to 
1.91) times greater risk of very high WC, than the low 
GRS-waist group (Fig. 1). Also, our UK-Biobank findings 
showed that high GRS-waist group (GRS-Waist > 93.93) 
had 1.26 (95% CI, 1.2 to 1.29) times greater risk of high 
WC, and 1.58 (95% CI, 1.52 to1.63) times greater risk of 
very high WC, than the low GRS-waist group (Fig. 1).

GRS waist X Diet score/Nutrients interaction
Genetic and nutrient interaction effect on waist circum-
ference, across diet score and macronutrient tertiles, is 
shown in Table 4 for AHMS and Table 5 for UK-Biobank 

Table 2 Descriptive dietary statistics across the Airwave Health Monitoring Study and UK-Biobank
AHMS (n = 6,502) UK-Biobank (n = 171,129)

Nutrient Mean SD Mean SD
Mellen-DASH score a 2.5 1.4 3.4 * 1.3
GRS-Waist 94.1 6.0 93.9 * 6.0
Fat % b 26.2 8.2 39.2 * 8.0
Protein % b 17.1 3.3 18.9 * 4.2
Carbohydrates % b 47.2 6.9 57.7 * 9.9
Fibre g/1000Kcal 9.3 2.7 9.5 * 3.4
Fruits and vegetable c 2.8 1.5 7.8 * 4.3
a Mellen index for Dietary approach to stop hypertension [15]
b Macronutrient intake is presented as the average percentage of energy from macronutrients
c food groups as exposure variables expressed as the number of portions categorised based on the DASH diet 100 g/ one portion

* Statistically significant p-value < 0.05, t. test comparing two independent variables

Table 3 waist circumference associations with dietary exposure in the Airwave Health Monitoring study and the UK-Biobank studya

AHMS UK Biobank
β 95% CI β 95% CI

Mellen-DASH score b -0.22 * -0.31, -0.13 -0.23 * -0.22, -0.18
Fat % c 0.01 * -0.007, 0.03 0.017 * 0.01, 0.017
Protein % c -0.06 * -0.09, -0.02 -0.02 * -0.03, -0.02
Carbohydrates % c -0.03 * -0.05, -0.02 -0.02 * -0.026, -0.021
Fibre g/1000 Kcal -0.10 * -0.15, -0.06 − 0.06 * -0.07, -0.06
Fruits and vegetable d -0.25 * -0.33, -0.17 -0.04 * -0.05, -0.04
* P < 0.001
a Adjusted model: sex, age, BMI, PAL, and total energy intake per day
b Mellen index for Dietary approach to stop hypertension [15]
c Macronutrient intake is presented as the average percentage of energy from macronutrients
d food groups as exposure variables expressed as the number of portions categorised based on the DASH diet 100 g/ one portion
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populations. At first, we observed a significant interac-
tion between GRS-waist and carbohydrate intake within 
the AHMS data, and between GRS-waist and fibre intake 
within the UK-Biobank data. However, a likelihood ratio 
test showed no evidence of interaction between GRS-
waist, and those nutrients on waist circumference.

Discussion
In two samples of nearly 177,631 UK adults, we found 
that genetic predisposition to WC and dietary exposure 
were independently associated with WC. We observed 
that those with a high GRS-waist are more likely to have 

a high WC in comparison with a low GRS-waist group. 
We found no interaction between dietary intake and 
genetic predisposition to WC.

Worldwide changes in dietary patterns over the past 
decades are associated with the rapid rise in the preva-
lence of obesity [36]. Several pieces of evidence pro-
posed improving adherence to healthy dietary patterns 
to reduce the prevalence of obesity and obesity-asso-
ciated outcomes [37, 38]. It was previously suggested 
that diet quality scores are indicators for overall dietary 
intake, including nutrients and foods, which represent a 
wider input on dietary intake [39]. Additionally, studies 

Table 4 The GRS-waist a and diet interaction effect on waist circumference across diet score or nutrient b, Airwave Health Monitoring 
Study (n = 6,502) c

Mellen DASH score Q1 Q2 Q3 LST P-value d e

REF 0.006 (0.04,0.05) 0.01(-0.03,0.06) 0.51
Percentage energy from fat Q1 Q2 Q3

REF -0.01(-0.06,0.03) -0.02 0.73
Percentage energy from protein Q1 Q2 Q3

REF 0.015 (-0.03,0.06) -0.005(-0.05,0.04) 0.65
Portions of fruits and vegetable Q1 Q2 Q3

REF -0.01(-0.06,0.03) -0.003(-0.05,0.04) 0.86
Percentage energy from carbohydrates Q1 Q2 Q3

REF -0.04*(-0.09, − 0.001) -0.02(-0.07,0.02) 0.13
Dietary fibre 100 g/100 kcal Q1 Q2 Q3

REF 0.005 (-0.04 to 0.053) -0.009 (-0.05 to 0.03) 0.59
*P < 0.05
a genetic risk score indicator for the number of risk alleles associated with waist circumference
b Mellen-DASH score and nutrient intake stratified into tertiles
c β coefficient (95% confidence intervals) for interaction results (GRS-waist X dietary tertiles), adjusted for age, sex BMI and physical activity
d Likelihood ratio test comparing two models with and without the interaction. Reduced model without interaction variable, adjusted for GRS, diet score or nutrient, 
age, sex, BMI and physical activity
e Likelihood ratio test P-value

Fig. 1 Multiple logistic regression analysis for factor associated with waist circumference genetic risk score groups [high and low GRS-waist]a
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showed that WC is a significant indicator of overall obe-
sity, abdominal obesity and cardiometabolic risk [3, 5, 8]. 
The DASH diet favours the intake of food and nutrients 
that are protective against overall obesity and high WC, 
such as vegetables, fruits, legumes, and whole grains [17, 
40]. Previous UK-based research showed a significant 
association between WC and components of the DASH 
diet index [16, 17]. However, limited data on the overall 
DASH diet score association with WC is available. There-
fore, our findings proposed that DASH dietary patterns 
may be protective against high WC. Consistent with our 
findings, Romaguera et al. [16] one-year follow-up study 
showed that fruit and vegetable intake is significantly 
associated with lower WC. Koh-Banerjee et al. [17] also 
provided evidence supporting the negative association 
between dietary fibre intake and WC. Our findings and 
previous data may lead to a valuable interpretation that 
adopting DASH dietary recommendations may prevent 
WC gain and reduce its effect on developing cardiometa-
bolic diseases.

The literature did not propose a precise mechanism 
explaining the association between DASH diet compo-
nents and obesity. However, several factors could con-
tribute to this association. First, The DASH diet is rich 
in fibre-containing food items, such as fruits, vegetables, 
and whole grains. It has been demonstrated that fibre is 
associated with increasing satiety, which might reduce fat 
and total caloric intake, leading to a lower risk of weight 
gain [41]. Second, the DASH diet favours a lower fat and 
saturated fat intake. Digested fatty acids are stored within 
adipose tissues for reserved energy. Excessive dietary fat 
intake leads to excessive fatty acids and triacylglycerols 
storage within adipocytes, leading to enlarged adipocytes 
and obesity [42].

To our knowledge, this study is the first study to inves-
tigate the distribution of WC genetic risk alleles and their 
association with WC in the UK population. Our study 
findings proposed that individuals with high GRS-Waist 
are 1.26 to 1.30 times more likely to be characterised with 
high WC (Females > 80 cm and Males > 94 cm). Also, our 
analysis proposed that individuals with high GRS-Waist 
are 1.57 to 1.58 times more likely to be characterised with 
a very-high WC (Females > 88  cm and Males > 102  cm). 
This evidence suggests the likelihood of having high 
WC is positively associated with the number of WC risk 
alleles presented within the individual genotype. Studies 
using genetic risk scores similar to the one used in our 
research have found a significant association between 
GRS-BMI and obesity. A previous UK-Biobank study 
showed a 1.41 kg/m2 increase in BMI for an increase in 
the number of BMI-associated risk alleles [43]. Another 
study showed that the GRS of BMI accounts for 2.2% of 
the variance in BMI [44]. Whereas the literature is lim-
ited in exploring the association between GRS-waist and 
WC. Our findings are consistent with GRS-BMI’s previ-
ous reports that a greater GRS of anthropometrical mea-
surements is associated with a greater risk of having high 
WC or BMI. Therefore, our findings and prior data sug-
gest that genetic variation might be responsible for regu-
lating the difference in obesity measurements.

The mechanisms by which WC-associated SNPs are 
associated with a greater risk of having high WC are not 
fully explained yet. However, three SNPs included in our 
genetic risk score for WC (GRS-waist) have been linked 
to factors associated with obesity. First polymorphisms 
in the MC4R gene were associated with regulating energy 
and satiety [45]. Also, the number of risk alleles within 
the MC4R genotype was associated with high total fat 

Table 5 The GRS-Waist a and diet interaction effect on waist circumference across diet score or nutrient b, UK-Biobank (n = 171,129) c

Mellen DASH score Q1 Q2 Q3 LRS P-value d e

REF -0.006 (-0.02,0.01) -0.008(-0.03,0.01) 0.69
Percentage energy from fat Q1 Q2 Q3

REF 0.01(-0.01,0.03) 0.005(-0.01,0.02) 0.59
Percentage energy from protein Q1 Q2 Q3

REF -0.008 (-0.03,0.01) 0.006 (-0.01,0.02) 0.39
portions from Fruits and vegetable Q1 Q2 Q3

REF 0.01(-0.009,0.03) 0.004 (-0.017,0.02) 0.53
Percentage energy from carbohydrates Q1 Q2 Q3

REF 0.01(-0.005, 0.03) -0.0001(-0.02, 0.02) 0.23
Dietary fibre (grams/1000 kcal) Q1 Q2 Q3

REF 0.02*(0.0008, 0.04) 0.008(-0.01,0.03) 0.12
*P < 0.05
a genetic risk score indicator for the number of risk alleles associated with waist circumference
b Mellen-DASH score and nutrient intake stratified into tertiles.
c β coefficient (95% confidence intervals) for interaction results (GRS-waist X dietary tertiles), adjusted for age, sex BMI and physical activity
d Likelihood ratio test comparing two models with and without the interaction. Reduced model without interaction variable, adjusted for GRS, diet score or nutrient, 
age, sex, BMI and physical activity
e Likelihood ratio test P-value
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and calorie intake [11]. Ollmann et al. suggested that 
the effects of MC4R polymorphisms on neuronal signal-
ling in the hypothalamus are associated with increased 
hunger and higher caloric intake, which might lead to 
obesity [46]. Second, ZNRF3 and VEGFA genes were rec-
ognised for their role in stimulating adipocyte lipolysis 
[12]. Polymorphisms within those genes were found to 
affect adipocyte signalling which reduces lipolysis, lead-
ing to increase fat storage and obesity [12]. Therefore, the 
aggregation of these markers by the GRS could explain 
the positive association between GRS-waist and WC 
observed in our study.

Comparisons between AHMS and UK-Biobank popu-
lations showed a significant difference in proportions of 
sexes, the prevalence of high WC and overweight/obese 
BMI, and physical activity levels. Serval factors could 
explain this difference. First, AHMS included more males 
than females; on the other hand, the UK-biobank study 
included more female than male participants. Due to 
differences in hormonal expressions, previous studies 
showed a significant difference in adiposity levels across 
sexes. Females are more likely to store fat with higher hip 
measurements than males and tendency to have a higher 
waistline [47, 48]. Therefore, the significant difference 
in the proportions of sexes might lead to differences in 
the prevalence of anthropometric classification. Second, 
both cohorts observed a significant difference in physical 
activity levels. Occupational requirements could explain 
this difference; the AHMS recruited participants from 
police forces that might have affected physical activity. 
Finally, a significant difference was observed in dietary 
intake and diet quality. The difference in dietary assess-
ment could explain this; AHMS assessed dietary intake 
through a weight-estimated 7-day food diary, and UK-
biobank used multiple 24-hours recalls, which might lead 
to differences in estimating dietary intake [49]. Addition-
ally, variation in nutrient intake might be observed across 
ages and sexes [50].

To our knowledge, this is the first investigation of the 
interaction between dietary intake and genetic predispo-
sition of WC. We were motivated to explore this interac-
tion on the basis that genetic obesity risk would be offset 
or modified by diet quality and nutrient intake [51]. We 
expected that the negative association between the Mel-
len-DASH score and WC would influence the relation-
ship between genetic risk and WC. We found no evidence 
of this interaction. Although at first, the multivariable 
regression model showed evidence for this interaction, 
however, likelihood ratio test showed a non-significate 
effect. This could be explained by sample size power. Our 
findings are consistent with previous studies in which 
diet and genetic interaction did not affect anthropometri-
cal measurements. Burgoine et al. explored the effect of 
GRS-BMI and fast-food outlet interaction on BMI [52]. 

After stratifying by BMI-category they concluded that 
exposure to fast-food outlets and high GRS-BMI was not 
associated with higher BMI [51]. After stratifying by sex 
another cross-sectional analysis observed no interaction 
between GRS-BMI and sugary beverage intake among 
male participants [53]. Their findings suggested that high 
exposure to sugary beverages and high GRS-BMI is not 
associated with having a high BMI. This evidence and 
our findings are consistence in reporting that gene-diet 
interaction is not associated with anthropometrical mea-
surements. No evidence of interaction could be explained 
by proposing that genetic risk is not equally exposed to 
diet quality. i.e., individuals with low genetic risk might 
be exposed to a low diet affecting overall obesity or WC.

Alternatively, Qi et al. observed a significant interaction 
between sugar-sweetened beverages with the GRS-BMI 
among female participants [53]. Their results suggested 
that sugar-sweetened beverage intake is associated with 
the genetic predisposition to elevated BMI. Wang et al. 
explored the interaction between GRS-BMI and three 
dietary indices [51]. Their analysis showed that after 20 
years of follow-up, adopting a high-quality dietary pat-
tern offset GRS-BMI association with BMI [51]. The 
same follow-up analysis showed that for those with high 
GRS-BMI, one standard deviation increase in DASH 
scores has led to a significant reduction in BMI [51]. Qi 
et al. was the first paper to propose a possible mechanism 
behind the significant effect of gene-diet interaction on 
BMI [54]. They suggested that the possible underlying 
nutrigenomic mechanism is the effect of FTO and MC4R 
genetic markers on regulating appetite [54]. Both genetic 
markers affect appetite, which affects food consumption, 
leading to high energy intake and possible risk of obesity.

Diet and genetic interaction studies aimed to test simi-
lar hypotheses, however, they led to two different con-
clusions. Some studies reported significant evidence 
of genetics and diet interaction, and other reports were 
compatible with our study in findings of no evidence of 
this interaction [35, 52, 53]. Several factors could have led 
to this variation, such as differences in the statistical anal-
ysis used to determine this interaction and differences 
in dietary assessment methods. First, Qi et al. observed 
a significant interaction among females and stratify-
ing by sex could account for variation in gene expres-
sion across sexes [53]. It was not possible to explore the 
interaction across sexes within the AHMS population, 
because that has led to reducing the sample size. Luan et 
al. suggested that observing a gene-environment interac-
tion is highly affected by sample size [55]. Second, Qi et 
al. investigated the genetic interaction with single food 
items such as sugary beverages [53]. This dietary assess-
ment is different from the method used to assess dietary 
intake in the AHMS and UK-Biobank. Finally, Wang et al. 
observed a significant GRS and DASH interaction across 
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longitudinal data [35]. Therefore, the difference in study 
design might have led to variations in study outcomes. 
Also, this might propose that dietary effect on genetic 
markers might occur over time.

Furthermore, several studies observed significant gene-
environment interactions among those with homozygous 
obesity risk alleles [56, 57]. Since GRS is an indicator for 
the number of risk alleles presented with a genotype, it is 
possible to indicate that a significant interaction might be 
observed across those with high GRS. Therefore, Wang et 
al. reported significant gene-diet interaction among those 
with the highest BMI-GRS quartile in comparison with 
lower BMI-GRS [51]. These reports may suggest that a 
significant interaction might be observed if genetic data 
are stratified by GRS. Therefore, inconsistency in dietary 
assessment and statistical models could explain the dif-
ferent outcomes observed in our study and other reports.

Research implication
Our findings could be implemented in several research 
areas. First is the requirement for further research test-
ing the feasibility of using GRS-waist to identify those at 
risk of high WC and WC-associated diseases early. Sec-
ond, although we found no evidence of interaction, our 
results and prior studies highlight the necessity for fur-
ther research to test interaction models.

Strength and limitations
The main strength of our study is using standardised 
methods to assess dietary intake and diet quality in a 
large sample size. Multiple 24 h dietary intake and 7-day 
weighted dietary records were correlated with low ran-
dom errors and bias and high precision [58]. We com-
puted the GRS-wait out of 92 WC-associated SNPs, 
which considered the polygenic nature of WC. Trained 
nurses and researchers collected anthropometrical data 
(weight, height and WC) according to the WHO protocol 
[59].

Although our study had several strengths it was prone 
to limitations. Its cross-sectional design was limited in 
providing evidence of causality. It is possible that genetic 
factors may drive food behavioural selection. Anthro-
pometrical-associated genetic markers were shown to 
interact with environmental factors such as (Physical 
activity, sleep duration, and time spent watching tv) [60], 
which suggests the importance of including these vari-
ables. Our statistical models were adjusted for physical 
activity; however, data on sleep duration and TV watch-
ing were not analysed. Diet has a prolonged effect on 
adiposity, whereas a snapshot of dietary intake may be 
limited to assessing dietary modification’s effect on WC 
risk alleles. Therefore, exploring follow-up dietary analy-
sis may be more informative in assessing this interaction. 
Finally, our study BMI categories were not aligned with 

the WHO norms, which might affect direct comparabil-
ity with other studies.

Conclusion
Our study confirmed previous findings that diet quality 
is associated with obesity, and it is the first to determine 
WC association with the DASH diet across the UK popu-
lation. Also, it is the first to determine the genetic pre-
disposition of WC and gene-diet interaction association 
with WC. These findings are important drivers for fur-
ther investigation of risk factors associated with the obe-
sity epidemic and precision nutrition. In addition, these 
factors should be considered in public health promotions 
and health policy decisions. Although we found no evi-
dence of interaction, we recommend further testing on 
interaction models and exploring this interaction across 
follow-up dietary data.
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