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Introduction
According to the World Health Organization (WHO), 
road traffic crashes cause about 1.3  million deaths 
and 50  million injuries annually [1]. Over the past two 
decades, the level and rate of road traffic crashes have 
remained relatively steady globally and even increased in 
some low- and middle-income countries. More than half 
of all road traffic deaths are among vulnerable road users: 
pedestrians, cyclists, and motorcyclists [1]. 

Motorcyclists constitute a significant proportion of 
road traffic injuries and deaths, ranging from 12% in 
high-income countries to 26% in middle-income coun-
tries [2]. Head injuries are the predominant cause of 
severe injuries and deaths among this type of road user. 
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Abstract
Introduction Wearing a helmet reduces the risk of head injuries substantially in the event of a motorcycle crash. 
Countries around the world are committed to promoting helmet use, but the progress has been slow and uneven. 
There is an urgent need for large-scale data collection for situation assessment and intervention evaluation.

Methods This study proposes a scalable, low-cost algorithm to estimate helmet-wearing rates. Applying the state-of-
the-art deep learning technique for object detection to images acquired from Google Street View, the algorithm has 
the potential to provide accurate estimates at the global level.

Results Trained on a sample of 3995 images, the algorithm achieved high accuracy. The out-of-sample prediction 
results for all three object classes (helmets, drivers, and passengers) reveal a precision of 0.927, a recall value of 0.922, 
and a mean average precision at 50 (mAP50) of 0.956.

Discussion The remarkable model performance suggests the algorithm’s capacity to generate accurate estimates 
of helmet-wearing rates from an image source with global coverage. The significant enhancement in the availability 
of helmet usage data resulting from this approach could bolster progress tracking and facilitate evidence-based 
policymaking for helmet wearing globally.
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Compared to other motor vehicles, with which motorcy-
clists often share the traffic space, the lack of protection 
from steel shells makes them more susceptible to trau-
matic brain injuries. Wearing a helmet reduces the risk 
of death by 42% and the risk of severe injury by 69%.1 
That proven effectiveness has motivated 167 countries 
to enforce mandatory helmet laws for motorcyclists [1]. 
However, the enforcement of helmet-wearing laws is gen-
erally suboptimal for various reasons.

A significant gap is the dearth of comprehensive 
data on helmet-wearing. Large-scale, up-to-date data, 
whether at the city or national levels, are scarce, posing 
considerable challenges in assessing the current situation 
and evaluating the efficacy of helmet-wearing promotion 
efforts. That has been an important barrier to evidence-
based policymaking and monitoring.

Traditionally, observational methods have been 
employed to gather information on helmet-wearing. 
However, those methods are costly and difficult to scale, 
especially considering large and diverse populations. 
Large-scale data collection can be technically challeng-
ing and resource-intensive. Furthermore, observational 
methods often involve subjective assessment, which can 
be prone to errors and bias. Consequently, there is a 
crucial need for low-cost, scalable approaches to collect 
standardized data on helmet-wearing.

This study aims to address this need through a deep 
learning-based algorithm for estimating helmet-wearing 
among motorcyclists. Deep learning has emerged as a 
powerful technique to deliver impressive performance 
across diverse tasks in various fields in recent years. 
Compared to traditional approaches that rely on human 
labor, deep learning-based methods are renowned for 
their efficiency and cost-effectiveness. Deep learning 
has demonstrated significant superiority over traditional 
methods in object detection due to its capability to learn 
complex patterns, particularly in computer vision tasks 
[3]. Previous applications of deep learning algorithms 
achieved high performance in detecting helmets in 
images and videos [4–6]. 

Our proposed methodology leverages the benefits of 
low-cost data acquisition, made possible by utilizing 
Google Street View APIs. Compared to previous stud-
ies that utilize deep learning for helmet wearing estima-
tion, the proposed algorithm’s major advancement lies in 
its integration of Google Street View as the data source. 
The dependence on primary data collection in prior stud-
ies severely restricts the applicability of their algorithms 
[7]. The ubiquity and easy accessibility of Google Street 
View facilitates our approach to be a cost-effective solu-
tion with the potential to enhance the availability and 
quality of helmet-wearing data worldwide substantially. 
By leveraging these methodologies, our proposed algo-
rithm offers a reliable, low-cost solution for estimating 

helmet-wearing that can be easily implemented in a mul-
titude of settings.

Methods
The proposed solution is comprised of two primary mod-
ules that work sequentially to obtain and process images.

- Image Acquisition.

The first module acquires images from Street View for 
specified locations or regions (Fig.  1). Street View is a 
feature of Google Maps that provides a 360-degree pan-
oramic view of the surrounding environment, inclusive 
of vehicles and road users present on roads. Since intro-
ducing this feature in 2007, Google has been steadily aug-
menting its coverage. As of 2022, Street View is accessible 
for more than 10 million miles of roads in excess of 100 
countries and territories around the world [8]. Google 
also offers a dedicated API for downloading Street View 
images.

For training and validating the proposed algorithm, we 
selected Bandung, Indonesia, as the study site due to its 
significant usage of motorcycles and the high burden of 
deaths among motorcyclists [9]. About 34% of road safety 
deaths are motorcyclists in the South-East Asian and 
Western Pacific Regions [2]. Utilizing the city’s shape-
file, we randomly selected intersections across the city 
and subsequently captured images around the selected 
locations.

Prior to the training of the deep learning algorithm, 
images undergo pre-processing. The first phase of pre-
processing entails the removal of images devoid of 
motorcycles. YOLO (You Only Look Once, version 5) 
was selected as the detection algorithm for this task [10]. 
YOLO is capable of detecting multiple objects in a sin-
gle pass through the network and delivering real-time 
results. Since its 2016 inception, YOLO has undergone 
considerable refinement in terms of performance and 
speed. Renowned for its speed and accuracy, YOLO is 
extensively utilized within the computer vision research 
community and industry [11–13]. Trained on COCO, 
one of the most popular object detection datasets, the 
default specification of YOLO can detect about 80 differ-
ent categories. Another critical feature of YOLO is that 
it can be trained on a customized dataset to detect user-
defined object classes.

The subsequent phase of image pre-processing involves 
cropping motorcycles from the images. Formally known 
as image segmentation or background subtraction, this 
step potentially improves model performance by reduc-
ing input complexity and focusing on objects of inter-
est. Consequently, during training, the algorithm is 
less affected by noises in the images and more able to 
concentrate on learning relevant features [14]. Similar 
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pre-processing has been applied and achieved significant 
model improvement [15–17]. 

- Object Detection

The second module detects objects of interest from the 
images, namely helmets, motorcycle drivers, or pas-
sengers. The default specification of YOLO is incapable 
of identifying those object classes. To train YOLO to 
detect those object categories, we created a custom data-
set where those objects are labeled (Fig. 2). The labeling 
was done manually by drawing bounding boxes around 
three object categories of interest: helmet, front wheel 
plus driver, and rear wheel plus passenger. Wheels are 
included in defining drivers and passengers in order to 
better differentiate them from other road users, such as 
pedestrians. There are few motorcycles with more than 
two riders; therefore, this instance is not accounted for 
that possibility in object definitions.

For the task of image annotation, we initially employed 
Amazon Mechanical Turk (AMT), a platform widely 

recognized and utilized in both industry and academia 
for various annotation tasks [18, 19]. We required that 
the workers hold a Masters qualification, a credential 
granted by Amazon for achieving top-tier performance 
metrics. These workers have consistently demonstrated 
high accuracy across a broad spectrum of annotation 
tasks. Each image was annotated independently by two 
different AMT workers. Our evaluation revealed an over-
all inter-rater reliability (IRR) of 0.85. The IRR for the 
helmet class was nearly perfect, standing at 0.98. Such 
levels of IRR are considered excellent or almost perfect 
in the literature [20, 21]. The results demonstrate that it is 
a simple and straightforward task for humans to identify 
objects of interest in the images.

However, we noticed an issue with the exact placement 
of the bounding boxes by AMT workers. The bounding 
boxes did not always tightly enclose the objects of inter-
est, particularly when the image was captured from a side 
angle. This characteristic is crucial for our algorithm, 
given the relatively low resolution of our images. Given 
the challenge for the AMT workers to rectify this issue, 
one of the co-authors of the study annotated the images 
used in the final analysis. Our subsequent evaluation 
indicates that the issue observed in the AMT results has 
been almost entirely resolved. Approximately 80% of the 
labeled images were randomly selected for training, with 
the remaining 20% set aside for validation. During train-
ing, the algorithm adjusts its parameters to minimize the 
discrepancies in patterns between predicted outputs and 

Fig. 2 Labeled images with manually drawn bounding boxes around ob-
ject classes

 

Fig. 1 (a): Google Street View
(b): detecting motorcycles using YOLO
(c): cropped motorcycles
Extracting and pre-processing images from google street view
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true labels. Upon completion of training, the algorithm 
was tested with the images in the validation dataset. The 
accuracy of the algorithm was then assessed by compar-
ing its predictions with the true labels.

Given our focus on the algorithm’s capacity to accu-
rately detect the objects, we chose precision, recall, and 
mean average precision at 50 (mAP50) scores in algo-
rithm evaluation. We also made efforts to optimize the 
algorithm’s overall performance in terms of speed, effi-
ciency, and computational complexity.

The data acquisition process was achieved through 
Python and the Google Street View API. The training and 
testing phases, based on YOLOv5, were carried out on an 
Nvidia GeForce RTX3080Ti GPU with 12 Gigabytes of 
Video-Ram. With a default learning rate and a batch size 
of 10, training the algorithm with a dataset comprising 
3995 images took approximately one hour.

Results
The training dataset has 3995 images, wherein a total of 
9310 instances were manually labeled. That includes 4253 
instances of front-wheel drivers, 1406 instances of rear-
wheel passengers, and 3651 instances of helmets.

Table  1 elucidates the confusion matrices for the 
three object categories. As a commonly used metric 

for classification models, a confusion matrix illustrates 
the true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) predictions formulated by 
the model. Many other performance metrics can be cal-
culated from the confusion matrix, such as accuracy, 
precision, recall, and the F1-score. As Table 1 indicates, 
the algorithm demonstrates remarkable performance in 
the training data. For example, the algorithm correctly 
detected 1127 of the 1181 front-wheel drivers.

 
Precision =

TP

TP + FP  
Recall =

TP

TP + FN

The validation dataset comprised 1257 images, encom-
passing a total of 2984 instances. That includes 1334 
front-wheel drivers, 277 rear-wheel passengers, and 1373 
helmets.

As illustrated in Fig.  3, the algorithm demonstrated 
superior performance overall. For front-wheel drivers, 
the algorithm achieved a precision score of 0.88, sig-
nifying that 88% of instances predicted as positive are 
indeed true positives (Table 2). A high precision score of 
this magnitude is indicative of an exceptionally low false 
positive rate. Concurrently, the algorithm also achieved a 
high recall score of 0.959, indicating that it is capable of 

Table 1 Confusion matrix
Class TP FP TN FN Total Instances
Driver + front wheel 1127 161 N/A 54 1334
Passenger + rear wheel 227 20 N/A 32 277
Helmet 1236 30 N/A 95 1373
Total 2590 211 N/A 181 2984
Notes: TP = true positive; FP = false positive; TN = true negative; FN = false 
negative; The Total Instances count does not precisely equate to the sum of TP, 
FP, and FN due to the potential presence of multiple objects of the same class 
within an image

Table 2 Model performance metrics in the evaluation dataset
Class Total instances Precision @Recall mAP50
Driver + front wheel 1334 0.88 0.959 0.967
Passenger + rear wheel 277 0.926 0.884 0.925
Helmet 1373 0.975 0.923 0.975
All 2984 0.927 0.922 0.956

Fig. 3 (a): output from the algorithm
(b): more examples of algorithm output
Examples of model performance in detecting helmets, drivers, and passengers
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detecting 95.9% of all true positive instances in the test-
ing dataset.

Due to the inherent tradeoff between precision and 
recall, it is imperative for an object detection algorithm 
to strike a balance between those two scores. Therefore, 
our evaluation metrics also include the mean average 
precision value (mAP) defined below [22]. 

 
AP =

∫ 1

0
P (R) dR

 
mAP =

1
C

∑C

i=1
AP (i)

where P (R) denotes the accuracy P  corresponding 
to different recall rates R  and corresponds to the area 
under the P-R curve. In the mAP  formula, C  is 3, rep-
resenting the three object classes detected in the study. 
Combining precision and recall over multiple thresholds, 
mAP is a more comprehensive evaluation metric. In par-
ticular, this study used the mAP50 score, which equates 
to how well the algorithm overlaps with a segmentation 
mask around at least 50% of the ground truth outline of 
the instance. The higher the score, the more accurate 

the model is at overlapping the segmentation mask. A 
mAP50 score of 0.967 corroborates the algorithm’s ability 
to detect the majority of positive instances while main-
taining a low false positive rate. As such, it achieves high 
precision and recall scores across an array of thresholds. 
Comparable performance was observed in detecting 
rear-wheel passengers and helmets.

The precision-recall curves in Fig. 4 illustrate precision 
and recall rates across a range of classification thresh-
olds. Those high mAP50 scores for all object categories 
suggest that our algorithm performed well in identifying 
true positive instances while minimizing the false nega-
tive rate.

The helmet wearing rate is calculated as the number of 
motorcyclists wearing a helmet divided by the total num-
ber of motorcyclists. Our algorithm estimated a wearing 
rate of 83%, while the ground truth stands at 92%. The 
two figures seem close enough to render the results prac-
tically useful for real-world monitoring and evaluation 
purposes. As illustrated in Table  1, the primary cause 
of underestimation in our algorithm stems from falsely 
detected drivers and passengers. The algorithm misclas-
sified other road users, such as pedestrians and bicy-
clists, as drivers or passengers. Although incorporating 

Fig. 4 Area under the Precision-Recall Curves (AUC-PR) for the three object categories
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a wheel into our class definition might have mitigated 
this issue, further research is necessary to prevent such 
misclassifications.

In conclusion, the evaluation metrics lend credence to 
the ability of the algorithm to accurately detect motorcy-
clists and helmets, thereby providing a robust foundation 
for the estimation of helmet utilization rates.

Discussion
The high burden of injuries and deaths among motor-
cyclists calls for a comprehensive understanding of the 
current situation and effective interventions to promote 
helmet-wearing. Capitalizing on the prowess of deep 
learning, coupled with the copious availability of Street 
View imagery, we introduce an algorithm endowed with 
the capacity to provide precise and contemporaneous 
information on global helmet-wearing.

Our validation results substantiate the elevated accu-
racy of the proposed algorithm in detecting the object 
categories required to estimate helmet-wearing rates. The 
algorithm’s remarkable performance may be attributed to 
YOLO and our image pre-processing. The cropping of 
motorcycles has proven advantageous in augmenting the 
algorithm’s focus on pertinent features.

Like many computer vision algorithms, identifying the 
precise reasons for misclassification can be challenging. 
Nevertheless, through manual inspection of misclassified 
instances, we observed that the accuracy of the algorithm 
was affected by the image’s perspective and the size of 
objects within it. By constraining the image perspectives 
or object sizes, the algorithm’s accuracy may be further 
improved.

Moreover, the common visual characteristics and 
injury mechanisms between cyclists and motorcyclists 
imply that an adapted version of the proposed algorithm 
could be applied to cyclists, who have been identified as 
another major type of vulnerable road users by the World 
Health Organization. That extends the applicability of the 
proposed algorithm to two of the three types of vulner-
able road users.

Despite our extensive efforts, the study still has several 
limitations. Since the algorithm is trained using a labeled 
dataset from only one city, the algorithm may need more 
fine-tuning on more diverse datasets in order to improve 
its generalization performance. This consideration 
becomes crucial, particularly if the algorithm is expected 
to function optimally across a multitude of global regions, 
where the visual attributes of motorcycles and helmets, 
such as color, size, and shape can vary significantly. The 
reliance on manual labeling presents another limitation, 
given its inherent propensity for human error and the 
substantial investment of time it necessitates. To expand 
the applicability of the algorithm to a global level, which 

requires a much larger number of images, the adoption of 
automated image-labeling techniques may be warranted.

Our algorithm facilitates accurate estimation of hel-
met-wearing in any locale where Street View is accessible. 
The periodic updates of the Street View image collection 
enable the acquisition of information concerning tempo-
ral changes, particularly in major urban environments 
where image updates are conducted frequently. As dem-
onstrated in Fig. 1, Street View surveys were conducted 
seven times in Bandung from October 2014 to August 
2022. That presents an invaluable opportunity to track 
the changes over that period. Such temporal shifts at the 
municipal level could be particularly insightful if the city 
in question has implemented certain helmet-related poli-
cies and interventions.

Given the vast and virtually cost-free repository of 
imagery, our proposed algorithm lends itself readily to 
integration into both national and international monitor-
ing frameworks. The regularity of Street View updates 
implies that recent data can be leveraged by governmen-
tal authorities to oversee compliance with helmet-wear-
ing regulations and to allocate resources efficiently.

The geospatial feature of the results generated by our 
algorithm empowers urban planners and traffic engineers 
to pinpoint high-risk areas where helmet use is subop-
timal. Such information can inform the creation of tar-
geted interventions, such as educational campaigns [23]. 

The standardization of our algorithm with respect to 
deep learning and data sourcing renders it eminently 
suitable for international benchmarking and the tracking 
of progress. The generated estimates are highly compa-
rable across different countries, thereby facilitating the 
identification of best practices and coordination of efforts 
to enhance helmet-wearing globally. For instance, Tar-
get 7 of WHO’s Global Road Safety Performance Targets 
aims to increase the proportion of motorcycle riders cor-
rectly using standard helmets to close to 100% by 2030.

The Google Street View API is a paid service, but new 
users receive a free credit along with a monthly renewed 
allowance. This allocation should enable the acquisition 
of tens of thousands of images each month, which is typi-
cally adequate for the proposed algorithm’s primary use 
case: providing decision-makers with estimates for their 
city or region.

However, the API cost may pose a barrier for large-
scale implementations, such as global situation assess-
ments. Considering the similarities between Google 
Street View and alternative no-cost street view data 
sources, we believe that the algorithm can be readily 
applied to images obtained from alternative sources, such 
as Mapillary.

To conclude, our proposed algorithm affords local, 
national, and international stakeholders an accurate and 
up-to-date understanding of helmet-wearing behaviors. 
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That allows for the development of targeted interven-
tions and the tracking of progress in the ongoing efforts 
to reduce road traffic injuries and fatalities.
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