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Abstract
Background  Nosocomial infections with heavy disease burden are becoming a major threat to the health care 
system around the world. Through long-term, systematic, continuous data collection and analysis, Nosocomial 
infection surveillance (NIS) systems are constructed in each hospital; while these data are only used as real-time 
surveillance but fail to realize the prediction and early warning function. Study is to screen effective predictors from 
the routine NIS data, through integrating the multiple risk factors and Machine learning (ML) methods, and eventually 
realize the trend prediction and risk threshold of Incidence of Nosocomial infection (INI).

Methods  We selected two representative hospitals in southern and northern China, and collected NIS data from 
2014 to 2021. Thirty-nine factors including hospital operation volume, nosocomial infection, antibacterial drug use 
and outdoor temperature data, etc. Five ML methods were used to fit the INI prediction model respectively, and to 
evaluate and compare their performance.

Results  Compared with other models, Random Forest showed the best performance (5-fold AUC = 0.983) in both 
hospitals, followed by Support Vector Machine. Among all the factors, 12 indicators were significantly different 
between high-risk and low-risk groups for INI (P < 0.05). After screening the effective predictors through importance 
analysis, prediction model of the time trend was successfully constructed (R2 = 0.473 and 0.780, BIC = -1.537 and 
-0.731).

Conclusions  The number of surgeries, antibiotics use density, critical disease rate and unreasonable prescription rate 
and other key indicators could be fitted to be the threshold predictions of INI and quantitative early warning.
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Background
Nosocomial infections, also known as hospital-acquired 
infections(HAI) are becoming a major threat to the 
health care system around the world [1, 2]. Due to its 
great impact on morbidity and mortality, the patients 
with HAI may have a prolonged hospitalization and poor 
prognosis [3]. HAI even led to outbreaks of nosocomial 
infections, causing more disease and economic burden 
for both patients and the health care system [4]. Thus, 
consistent effort for the prevention of HAI and decrease 
of nosocomial infections has been taken by governments 
and the health care systems. 3.2% of hospitalized patients 
in 2015 have contact with HAI compared with 4% in 
2011 [5]. Despite efforts to control infection in devel-
oped countries, HAI still caused around 37 000 deaths 
in Europe each year [6]. While in China, according to a 
large multicenter epidemiological survey, 3.60% of hospi-
talized patients had been exposed with HAI [7].

Previous researches on nosocomial infections have 
confirmed that there is a link between the development 
of antimicrobial resistance in pathogenic bacteria and 
HAI [8, 9]. Other related risk factors like prolonged hos-
pital stay [10], stays in ICU [11], and invasive procedures 
were associated with HAI as well [12]. Ventilator-asso-
ciated pneumonia and catheter-associated urinary tract 
infection, are regarded as the common nosocomial infec-
tions [13]. Clearly, the causes of nosocomial infections 
are complex and diverse. Therefore, to fulfill the purpose 
of prevention and control of HAI, tons of related risk fac-
tors should be considered comprehensively.

Nosocomial infection surveillance (NIS) has been 
proved to be a positive measure to decrease HAI [14]. 
Through a long-term, systematic, continuous collection 
and analysis of the rate and quantity of occurrence or 
distribution in a specific population, data and reports of 
NIS are sent to the hospital-related authorities, to pro-
vide valid information support for better prevention and 
control of HAI [6]. What is unsatisfactory is that all these 
data are currently only used as part of the real-time mon-
itoring system, and it is impossible to achieve prediction 
or early warning.

Machine learning, as a major component of artificial 
intelligence, has been applied to health service research. 
It performs well in identifying new variables, visual-
izing generation, and exploring linear and nonlinear 
interactions to improve the accuracy of outcomes [15]; 
Especially in terms of predicting the patient outcome or 
diagnosis, such as based on clinical data from Electronic 
Health Record (EHR), it helps distinguish similar diseases 
or improve informed decision making before the surgery 
[16–18]. However, data from the hospital rather than 
patients themself seems to have been abandoned. Data 
of NIS due to its complexity, heterogeneity and huge 
size, which has caused its poor adaption in using other 

prediction tools. Currently, it is hard to fit into linear or 
quantitative relationships between NIS data and HAI by 
traditional statistical methods. Machine learning meth-
ods exhibit superior performance in fitting nonlinear 
relationships and in the selection of variables [19]. How-
ever, the comparative analysis of their predictive per-
formance in surveillance data has not been thoroughly 
conducted in such studies.

This study employs four prevalent ML methods along-
side one traditional statistical model to construct predic-
tive models for HAI. The aim is to assess and compare 
the predictive efficacy and performance of various model 
types. Additionally, the predictive models discern perti-
nent risk factors for HAI from the NIS database, thereby 
optimizing the utilization of NIS data and providing ref-
erence significance for the prevention and management 
of nosocomial infections. Notably, this study incorpo-
rates databases from two hospitals simultaneously, allow-
ing for a comparison of the model performance and risk 
factors across different hospitals to determine whether 
potential differences exist.

Methods
Study setting
We chose two hospitals located in southern and north-
ern China as the study site, that differ greatly in terms 
of climate and economic levels. One is a large teaching 
hospital located in Shenzhen, a megacity in southern 
China (22°38′N, 114°05′E). Shenzhen has the third-larg-
est GDP in China with a permanent resident popula-
tion of 17.56  million (according to 2020 statistics). This 
study setting (hereinafter referred to as Hospital 1, H1) 
is an affiliated hospital of a top comprehensive university 
located in the central urban area of city. Another is a pro-
vincial hospital (hereinafter referred to as Hospital 2, H2), 
located in northern China (38°47′N, 106°27′E), Yinchuan 
city. Compare with Shenzhen, Yinchuan city only has a 
permanent resident population of 0.29  million (accord-
ing to 2020 statistics) and a much lower GDP. Although 
the two hospitals differ greatly in their natural and social 
environments, the number of outpatient and inpatient in 
these two hospitals were comparable. We hope that they 
could represent the most hospitals in China as much as 
possible to improve the representativeness and general-
ization of the analysis results.

Data collection
We retrospectively collected monthly information of 
number and incidence of nosocomial infection from 
Hospital 1 (January 2014 to April 2020) and Hospital 
2 (January 2015 to April 2021), as well as related data 
with the nosocomial infection surveillance report dur-
ing the same period, respectively; Specifically includ-
ing 39 factors (refer Appendices Table S1 for details in 
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the supplemental material), namely hospital operation 
volume (15 variables, x1–x15), nosocomial infection (8 
variables, g1–g8), antibacterial drug use (10 variables, 
y1–y10) and the number of patients with multidrug-resis-
tant bacteria (c4). Considering the influence of climate, 
we also collected the outdoor temperature data, includ-
ing average daily temperature (TAVE), daily maximum 
temperature (TMAX), and daily minimum temperature 
(TMIN). These five groups of factors were determined 
as continuous predictors (independent variables), and 
the number of patients with nosocomial infection (NNI) 
and the incidence of nosocomial infections (INI) was set 
as the prediction target (dependent variable, c1-c3). All 
variables were organized into a monthly database. We 
performed the logarithmic transformation using the nat-
ural logarithm (base e) due to the large differences in the 
order of magnitude among the factors.

Statistical analysis
Comparison and evaluation of multiple models.

We used Spearman correlation analysis to explore 
that these factors were not highly correlated with INI 
and NNI (Appendices Fig. S1). Logistic regression mod-
els and four most common Machine Learning methods 
were chosen furtherly: Logistic regression (LR), Decision 
tree (Dtree), Conditional inference tree (Ctree), Random 
Forest (RF) and Support vector machine (SVM) [17, 20]. 
We convert INI according to the median (non-normal 
distribution) or mean (normal distribution) into binary 
dependent variables (high-risk and low-risk level) as the 
predicted outcome, and split all data into training set 
and test set (70%/30% split). Furthermore, the predic-
tive accuracy of five models were assessed using internal 
cross-validation for two hospitals, respectively. Other 
results showed that the testing performance can vary 
depending on the data split. Therefore, it is important to 
employ multiple data splits when estimating generaliza-
tion performance [16, 21]. To evaluate the variation in 
the estimated performance, we calculated the range of 
AUROC values and reported on the average performance 
and standard deviation for each model using 3-fold and 
5-fold cross-validation.

We trained five different models using the training data 
and tuned hyperparameters for each model. The hyper-
parameter value that leads to the best predictive perfor-
mance was selected by using the performance metric 
(sensitivity, specificity, positive predictive value, negative 
predictive value, and accuracy).

Predictors selected by Importance analysis.
Based on above comparisons, the RF model was cho-

sen for its best performance. The RF model’s importance 
analysis was then used to evaluate the significance of 
variables (details of the comparative analysis are provided 
in the Results section). We evaluated the importance of 

variables by calculating and ranking Increase in mean 
square-error (%IncMSE) and Increase in node purities 
(IncNodePurity), which related to the loss function and 
selected the loss function through the best segmentation. 
It evaluated multivariate importance by removing pre-
dictor variables from each single tree in the forest with 
the RF model and to measure the change in accuracy 
to evaluate the effect of the predictor variables. More 
useful variables achieve higher %IncMSE (Appendices 
Table S2) [22]. To enhance the stability and accuracy of 
the RF model and prevent overfitting, we employed sev-
eral strategies, including: increasing the number of trees 
(n_estimators) to 500 for better prediction averaging and 
reduced variance; limiting the number of variables con-
sidered at each split (max_features) to 3 to encourage 
diversity among trees and reduce correlation; and impos-
ing a maximum depth restriction (max_depth) to prevent 
excessive complexity and overfitting to training data.

Trend prediction and risk threshold prediction.
Autoregressive integrated moving average (ARIMA) 

is a statistical analysis model that uses time-series data 
to either better understand the data set or to predict 
future trends. We used INI of two hospitals as the depen-
dent variable, factors with higher %IncMSE according 
to Importance ranking of RF analysis as the indepen-
dent variables. ARIMA makes use of lagged moving 
averages to smooth time series data. An autoregressive 
notation (p), a differencing notation (d) and a moving 
average notation (q) will form the multiplicative process 
of ARIMA as (p, d, q) [23]. An ARIMA model can be 
considered as a good model if it has a large stationary R 
square (R2) value and small Bayesian Information Criteria 
(BIC) and Root Mean Square Error (RMSE).

Classification and regression trees can create a binary 
tree; each node has exactly two outgoing edges, finding 
the best categorical or numerical feature to split using 
an appropriate impurity criterion. The independent vari-
able can be a categorical (Classification tree) or a con-
tinuous variable (Regression tree) [24]. In this study, we 
performed Regression tree analyses to determine the 
hierarchical threshold between the NNI and important 
variables. The model evaluated the quantitative relation-
ship among multiple variables and ranked them from 
greatest to least, according to the degree of impact, and 
calculated the risk threshold and the estimated number 
of cases in different situations.

All the above analysis methods were performed sepa-
rately in H1 and H2 databases, to ensure a diverse rep-
resentation of predictability of Nosocomial Infections, 
which is critical for the generalizability of our ML mod-
els. We conducted same modeling analyses using data 
from two different hospitals, aiming to evaluate whether 
the best ML models identified in this study also perform 
well in other hospitals, and whether the factors selected 
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by the models are consistent across different hospitals. 
Overall, the aim was to assess the generalization of the 
models constructed and the universality of risk factors 
screened in this study.

R software version 4.0.3 (The R Project for Statistical 
Computing, Vienna, Austria) was used for the estab-
lishment and comparison of models based on Machine 
Learning. The following R packages were used for these 
approaches: GGally package for correlation analysis; 
forecast package for ARIMA analysis; glm package for 
logistic regression; rpart, rpart.plot packages for deci-
sion tree model; party package for conditional inference 
tree; randomForest package for random forest; and e1071 
packages for support vector machine; PROC and ROCR 
packages for receiver operating characteristic (ROC) 
curve analysis. SPSS version 25.0 for Windows (SPSS Inc., 
Chicago, IL, USA) was used for the ARIMA analyses.

Results
Comparison and evaluation of multiple models
RF has higher predictive power than the other four 
methods, as shown in Tables  1 and 2, and Appendices 
Fig. S2. AUC value of five models are all higher than 0.5, 
and the RF and SVM are both higher than 0.7. The RF 

model had the best predictive performance with an AUC 
value of 0.750 and 0.834 in H1 and H2, respectively (95% 
confidence interval, CI [95%CI], 0.546–0.954 and 0.621-
1.000). The differences between multiple splits were rela-
tively small and gradually increases, indicating that the 
generalization performance of the model was better. Still, 
RF was the most accurate prediction model compared to 
others for H1 and H2 (AUC = 0.938, 0.796-1.000).

Predictors selected by importance analysis and 
comparative analysis
We used RF model with the best predictive performance 
and merged data of H1 and H2 to select the significant 
influencing factors for nosocomial infection; its results of 
Importance Ranking (Fig. 1) showed that important fac-
tors include indicators mainly related to the number of 
hospital admissions (e.g., x4, x8, x13, x7, x5), multi-drug 
resistance (c4) and antibiotic use (y3), etc., which had a 
higher degree of importance in terms of INI.

The t-test or Mann-Whitney U test analysis showed the 
significance of the difference between the high-risk and 
low-risk levels of INI for these 12 factors with P < 0.05 
(Fig.  2). Emergency visits, Patients visited community 
health service centers, the Number of outpatient and 

Table 1  Performance metrics for the best model for each machine learning algorithm
Sensitivity Specificity Positive

predictive value
Negative
predictive value

Accuracy

H1
Logistic regression 0.58 0.67 0.64 0.62 0.625
Decision tree 0.75 0.58 0.64 0.70 0.667
Conditional inference tree 0.83 0.25 0.53 0.60 0.542
Random forest 0.83 0.67 0.71 0.80 0.750
Support vector machine 0.58 0.92 0.88 0.69 0.750
H2
Logistic regression 0.4 0.71 0.50 0.63 0.584
Decision tree 0.3 0.79 0.50 0.61 0.583
Conditional inference tree 0.8 0.64 0.62 0.82 0.708
Random forest 0.7 0.93 0.88 0.81 0.834
Support vector machine 0.8 0.79 0.73 0.85 0.791

Table 2  Comparison Performance Profiles based on cross-validation
AUC 95%CI 3-fold AUC 3-fold 95%CI 5-fold AUC 5-fold 95%CI

H1
Logistic regression 0.625 0.397–0.853 0.575 0.353–0.797 0.688 0.417–0.958
Decision tree 0.667 0.444–0.889 0.398 0.182–0.615 0.375 0.093–0.657
Conditional inference tree 0.542 0.307–0.777 0.533 0.312–0.754 0.532 0.237–0.826
Random forest 0.750 0.546–0.954 0.847 0.682–1.000 0.938 0.796–1.000
Support vector machine 0.750 0.546–0.954 0.887 0.744–1.000 0.875 0.682–1.000
H2
Logistic regression 0.584 0.318–0.796 0.709 0.508–0.909 0.706 0.443–0.969
Decision tree 0.583 0.303–0.783 0.641 0.413–0.869 0.617 0.314–0.919
Conditional inference tree 0.708 0.510–0.933 0.692 0.472–0.911 0.767 0.518–1.000
Random forest 0.834 0.621–1.000 0.926 0.809–1.000 0.938 0.796–1.000
Support vector machine 0.791 0.599–0.986 0.804 0.612–0.995 0.817 0.593–1.000
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Fig. 2  Violin plots show the difference in significant factors between high-risk and low-risk level Blue dots represent the median or mean

 

Fig. 1  Importance ranking of influencing factors used by the random forest model for predicting the incidence of nosocomial infections (INIs)
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emergency operations were positively correlated with 
the INI; and the Rate of clinical pathways were negatively 
correlated with the INI for H1. For H2, the Utilization 
rate of hospital beds, Average hospital stay (days), Rate 
of antibiotics use in outpatients, Rate of antibiotics use in 
emergency patients, Rate of antibiotics use in discharged 
patients, Cost of antibacterial drugs per capita, Rate of 
unreasonable outpatient prescriptions were positively 
correlated with the INI; and Rate of rational periop-
erative antibacterial drug use were negatively correlated 
with the INI.

Trend prediction and risk threshold prediction
We used the R software function package to realize the 
automatic selection of the optimal exponential model for 
INI of H1 and H2, respectively, and included the top 15 
factors of %IncMSE according to Importance ranking of 
RF showed in Appendices Fig S3 and Table S3 as the pre-
dictive variables. Two ARIMA models were built for time 

series prediction. One was ARIMA (2,0,0) model for H1 
with R2 = 0.473; another was ARIMA (0,1,0) for H2 with 
R2 = 0.780 (show plots in Fig. 3 and parameters in Table 
S4). In most years, the actual value of INI is consistent 
with the predicted value, and a few have slight differ-
ences; It indicates that the ARIMA model and variables 
have a certain reference value for trend prediction.

The actual value of INIs and the fitted diagram of the 
predicted value of ARIMA in (A) Hospital 1 (2,0,0) and 
(B) Hospital 2 (0,1,0).

A Regression tree auto-selected six factors to build a 
threshold prediction model for NNI of H1 (Left in Fig. 4), 
and predicted that the number of people who may have 
nosocomial infections this month ranges from 6.62 to 
23.8 approximately, which judged according to the cut-
off range of these six factors. Similarly, five factors were 
auto-selected to estimate the number of people who may 
have nosocomial infections in H2 (Right in Fig. 4), rang-
ing from 13.8 to 47 approximately. In Fig. 4, blue factors 

Fig. 3  Trend prediction of the number of nosocomial infections established using the autoregressive integrated moving average model (ARIMA)
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are positively correlated with NNI, and orange factors are 
negatively correlated with NNI; those factors can be used 
to build threshold predictions for NNI of H1 and H2.

Through the threshold of multiple variables, NNI can 
be divided into high and low levels; blue variables are 
positively correlated with NNI, and orange variables are 
negatively correlated with NNI; H1 represents Hospital 1, 
and H2 represents Hospital 2.

Discussion
In this study, we present a completely new approach to 
build a risk assessment system for nosocomial infec-
tion based on Machine learning algorithms, which could 
solve the problems of data fitting and model construction 
by comparing the performance efficiency among them. 
Ultimately, we identified the optimal machine learning 
algorithms for predicting nosocomial infections, along 
with extrapolating primary risk factors across different 
hospitals. Random Forest emerged as the most effec-
tive model for predicting nosocomial infections with the 
dimension of incidence rates and case numbers. Factors 
such as length of hospital stay, antibiotic usage density, 
multi-drug resistance, hygiene of hospital environmental, 
number of operations in hospital, rate of unreasonable 
prescriptions demonstrated significance in predicting the 
incidence of nosocomial infections.

RF model showed better predictive accuracy and 
higher AUC for predicting the incidence and the num-
bers of nosocomial infection than the other models, 
which indicates the RF model in predicting nosocomial 

infection has the higher reliability compared with others. 
RF has shown its potential and superior for predicting 
the impending occurrence of severe diseases and compli-
cations [25]. Such as the postoperative complications [16, 
17], or the survival of cancer patients [18], all of which 
have shown the RF model performs better than the oth-
ers. For RF selected features by random sampling and 
random selection and less likely to cause the phenom-
enon of overfitting, it handles well in anti-noise of non-
linear problems. Plus, it’s dealing well with mixed types 
of missing data and different forms of predictor variables.

For the relationship between antibiotic use and HAI, 
the multi-drug resistance problem takes a huge part 
of it, especially for the ICU patients, who may have a 
greater chance of being treated with invasive operation 
and antimicrobials [26]. When the nosocomial infection 
increases, antibiotic prescribing is tending to be the lead-
ing indicator of the hospital for treatment, especially for 
hospital-acquired pneumonia [27]. The increased num-
ber of antibiotic use(y3) in hospitals may base on the 
empirical antimicrobial therapy, there could be a poten-
tial possibility causing the increased inappropriate, exces-
sive or unnecessary number of antibiotic use, which is 
among the leading causes of the spread of resistance and 
HAI [28], as the increased number of antibiotic use(y3) 
has fastened the selection of naturally resistant bacte-
ria that already exists, therefore may be the cause to the 
increased number of patients with multidrug-resistant 
bacteria(c4) [29].

Fig. 4  Threshold prediction of the number of nosocomial infections (NNI) established using the regression tree model
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The significant factors related to the numbers of hos-
pital admissions, especially average hospital stay (days), 
have been regarded as the related factors of nosocomial 
infection. This probably reflected the prolonged pos-
sibility of contacting other risk factors for the patients, 
such as the pathogens. Qualified hygiene monitoring in 
the hospital environment(g2) also matters as there is evi-
dence like poor hand washing practice among medical, 
nursing and support staff that may have contributed to 
the spread of HAI [30, 31]. Increased number of opera-
tions in hospital (g6, x7), especially for the type I incision 
operations(g3), like lobectomy and its related mechani-
cal ventilation, placement of a central venous catheter, 
as well as the use of a nasogastric tube and urinary tract 
catheterization, all of which are regarded as responsible 
for the increased HAI [32]. That’s why the necessary 
monitoring measures like rate of clinical pathways(x12), 
qualified hygiene monitoring in the hospital environment 
matter(g2) and rate of rational perioperative antibacterial 
drug use in type II incision operations(y10) are needed 
and are the risk factor of HAI.

Other factors exert influence on the NNI through var-
ied mechanisms, including the frequency of emergency 
rescues, patient visits to community health service cen-
ters, outpatient numbers, and the Critical Disease Rate 
(CD%). Emergency rescues typically involve critically ill 
patients who are inherently more susceptible to infec-
tions. An escalation in emergency rescues may corre-
late with heightened NNI, possibly attributable to the 
swift, high-volume processing of patients, potentially 
compromising sanitation protocols or curtailing steril-
ization procedures. Notably, community health service 
centers refer a considerable volume of patients to hospi-
tals, augmenting patient inflow and, consequently, NNIs. 
Moreover, elevated outpatient traffic can engender over-
crowding, fostering increased inter-patient or patient-
healthcare-worker interactions. A heightened CD% may 
correlate with amplified NNI, given the compromised 
immune systems of critically ill patients, rendering them 
more susceptible to infections. Furthermore, prevalent 
invasive procedures and prolonged hospital stays among 
critically ill patients further elevate infection risk. Future 
studies should focus on quantifying the impact of these 
factors on NNI and devising targeted interventions to 
enhance patient safety and healthcare outcomes.

For the realization of the risk assessment and trend 
prediction of nosocomial infection and early warning, 
data from two representative hospitals in China were 
collected. Our study indicates that the predictive factors 
for H1 and H2 are both similar and different, rendering 
it challenging to achieve successful model construction 
across different hospitals using the same set of predictive 
factors. We speculate that this variance may stem from 
differences in hospital environmental hygiene, differences 

in clinical specialties, and distribution of disease, among 
other factors, resulting in varying influences factors on 
HAIs. While we do not offer a universally applicable pre-
dictive index system, we present a series of methodolo-
gies for hospitals to establish their own HAI predictive 
index systems based on their individual characteristics. 
We highlight the potential benefits of our approach, 
acknowledging that while this strategy aims to enhance 
model generalizability, it also presents potential hetero-
geneity in terms of predictors across different hospital. 
Cheerfully both their commonalities and unique prop-
erties have been screened out. Commonalities can be 
extrapolated to the other hospitals by using common risk 
factors for nosocomial infection surveillance and predic-
tion. For their unique indicators, clearly can be regarded 
as key points for nosocomial infection prevention and 
early control in each hospital. We have not only done 
model comparisons and screening of predictive indica-
tors, but also constructed visualization strategies that can 
be used in practical applications through ARIMA and 
Regression trees.

Still, the limitations of this study are that it’s based on 
the ecological approach and the retrospective study of 
“real world” data; Some influential and more precise fac-
tors were not considered comprehensively and partly 
uncollected, such as the number of visits and antibiotics 
use in some key departments, like in ICU, etc. Further-
more, there are a limited number of hospitals included 
in this study. We are expecting that more representative 
hospitals will be considered in future studies, through 
which a more widely used risk evaluation system for the 
early prevention of nosocomial infection can be built up. 
Future research endeavors are anticipated to undertake 
prospective studies aimed at assessing the feasibility of 
utilizing the RF model in conjunction with nosocomial 
infection risk factors to facilitate early detection and 
warning of HAI occurrences. Such studies will seek to 
comprehensively evaluate the predictive accuracy and 
practical applicability of this integrated approach within 
clinical settings.
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