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Abstract
Objectives Growing evidence supports the important role of 24-hour movement behaviours (MB) in preventing 
childhood obesity. However, research to understand the heterogeneity and variability of MB among individuals 
and what kind of typologies of individuals are at risk of developing obesity is lacking. To bridge this gap, this study 
identified typologies of 24-hour MB in children and adolescents and investigated their associations with adiposity 
indicators.

Methods In this cross-sectional study, 374 children and 317 adolescents from the Czech Republic wore wrist-worn 
accelerometers for seven consecutive days. Time spent in moderate-to-vigorous physical activity (MVPA), light 
physical activity (LPA), sedentary behaviour (SB), and sleep was quantified using raw accelerometery data. Adiposity 
indicators included body mass index (BMI) z-score, fat mass percentage (FM%), fat mass index (FMI), and visceral 
adipose tissue (VAT). Bias-adjusted latent profile analysis was used on the 24-hour MB data to identify MB typologies 
and their associations with adiposity indicators. The models were adjusted for potential confounders. The identified 
typologies were labelled to reflect the behavioural profiles of bees to aid interpretability for the general public.

Results Two typologies were identified in children: highly active Workers characterised by high levels of MVPA and 
LPA, and inactive Queens characterised by low levels of MVPA and LPA, high levels of SB and longer sleep duration 
compared to Workers. In adolescents, an additional typology labelled as Drones was characterised by median levels 
of MVPA, LPA, SB and longest sleep duration. After controlling for covariates, we found that children labelled as 
Queens were associated with 1.38 times higher FM%, 1.43 times higher FMI, and 1.67 times higher VAT than Workers. 
In adolescents, Drones had 1.14 times higher FM% and Queens had 1.36 higher VAT in comparison with Workers, 
respectively.

Conclusion Our study highlights the importance of promoting active lifestyles in children and adolescents to 
potentially reduce adiposity. These findings can provide insights for interventions aimed at promoting healthy MB 
and preventing childhood obesity.
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Introduction
Obesity has emerged as a significant global health cri-
sis, resulting in millions of premature deaths [1, 2] and 
imposing a substantial economic burden [3]. The current 
global prevalence of childhood overweight and obesity 
is over 18% [4, 5] and is projected to increase signifi-
cantly in the coming years [6], highlighting the urgency 
of addressing this health issue. Suboptimal movement 
behaviours (MB), including insufficient physical activity 
(PA), excessive sedentary behaviour (SB), and poor sleep 
habits, have been identified as one of the key drivers of 
childhood obesity [7–9]. Thus, understanding the inter-
actions between MB and their associations with adipos-
ity indicators is crucial for designing and implementing 
effective public health interventions.

Extensive research has demonstrated the critical role 
of MB in preventing childhood obesity and mitigating 
associated health complications [8, 10, 11]. Regular PA, 
particularly in the moderate-to-vigorous intensity range, 
has consistently been shown to be protective against obe-
sity and promote better physical and psychosocial health 
outcomes [12, 13]. Conversely, excessive time spent in SB 
has been identified as a risk factor for obesity develop-
ment [14, 15]. Furthermore, the role of optimal sleep on 
weight status in young individuals has gained deserved 
attention [16–18], with guidelines indicating the optimal 
sleep duration for school-aged children to be 9 to 11 h, 

and 8 to 10 h for adolescents [19]. However, it is impor-
tant to acknowledge that these components of MB do 
not affect health in isolation but rather interact with one 
another throughout a 24-hour day [20].

To gain a comprehensive understanding of MB and 
its association with adiposity, it is crucial to examine 
24-hour time use data using a person-oriented approach 
[21]. By identifying distinct MB typologies and consider-
ing demographic information, researchers can pinpoint 
individuals at risk of developing overweight/obesity, 
facilitating the tailoring of interventions for specific 
groups. Latent profile analysis is a promising technique 
for this purpose, enabling the identification of unique MB 
patterns [22, 23]. However, there is limited evidence [24, 
25] regarding utilising this data-driven approach to iden-
tify MB typologies based on 24-hour data while respect-
ing the compositional properties of time-use data. Using 
24-hour MB data without accounting for their compo-
sitional nature, can lead to a possible misclassification 
when using latent profile analysis [20, 26].

Despite the growing recognition of the importance of 
MB in relation to adiposity indicators, there is a lack of 
evidence examining 24-hour MB compositional data 
based on the person-oriented approach in children and 
adolescents. Furthermore, the associations between MB 
typologies and childhood adiposity remain unclear. To 
help bridge this evidence gap, the present study aimed 
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to identify 24-hour MB typologies in children and ado-
lescents using latent profile analysis and investigate their 
associations with adiposity indicators.

Methods
Participants
The present study used cross-sectional data on 24-hour 
MB and adiposity among children (8–13 years) and 
adolescents (14–18 years). Participants were recruited 
from 11 elementary and secondary schools in the Czech 
Republic. Data were collected in the spring and fall (i.e., 
from March to May and September to November) of 
2018 and 2019. Participants were eligible if they were 
apparently healthy and without physical disability, which 
was determined by an experienced field researcher, and 
did not report any condition that could affect their MB or 
weight status.

24-hour movement behaviours
Participants wore a triaxial accelerometer ActiGraph 
(ActiGraph LLC, Florida, USA) model GT3X+ (children) 
and GT9X Link (adolescents) for 24  h over 7 consecu-
tive days, excluding activities that involved submerging 
the device in water for a prolonged time. Both devices 
are proven to be comparable [27, 28] and to provide valid 
and reliable measures [29, 30]. Accelerometers were ini-
tialised using ActiLife software version 6.13.4 (ActiGraph 
LLC, Pensacola, FL, USA) at a 100  Hz sampling fre-
quency on three axes and then attached to the non-domi-
nant wrist of the participant using wrist strap provided by 
the manufacturer. The software was also used to down-
load the raw data in the .gt3x format. The raw accelerom-
eter data were further processed using the open-source 
R package GGIR version 2.5-1 [31]. This package with 
default setting was used for autocalibration, non-wear 
time detection, and imputation of missing data with aver-
age values from the same time points on other days. The 
average magnitude of dynamic acceleration using Euclid-
ean Norm minus 1 g with negative values rounded up 
to zero was calculated over 5-s epochs and expressed in 
milli gravitational units (mg) [32]. Each waking behaviour 
was categorised using previously published age-specific 
cutpoints, for SB (< 36 mg), light PA (LPA) (36–200 mg) 
and moderate-to-vigorous PA (MVPA) (≥ 201 mg) [33, 
34]. Sleep was defined as the difference between the sleep 
onset and waking time detected by the default automated 
algorithm based on wrist rotation [35]. An analysed day 
was considered to have 24  hours starting at midnight. 
Participants were excluded if accelerometer files demon-
strated post-calibration error > 10 mg, they did not meet 
the wear time criteria, which was set at 3 school days and 
1 weekend day with a minimum of 16 hour per day [36]. 
or if wear data for each 15-min period in the 24-hour 
cycle were not available.

Adiposity indicators
Body mass index (BMI) z-score was used as a proxy-
indicator of adiposity. To calculate BMI, body weight 
was measured using an InBody 720 body composition 
analyser (Biospace, Seoul, South Korea) and body height 
using a research grade stadiometer Anthropometer P-375 
(Trystom, Olomouc, Czech Republic) with an accu-
racy of 0.1  kg and 0.1  cm, respectively. The WHO BMI 
z-score was then calculated to adjust the BMI according 
to international age and sex standards [37]. To provide 
more precise information on adiposity status, partici-
pants underwent a body composition assessment using 
the portable InBody 720 multifrequency bioimpedance 
segmental analyser that was proven to be sufficiently pre-
cise for measurements of adiposity in the target popula-
tion [38]. Fat mass percentage (FM%) and fat mass index 
(FMI) were used as indicators of total adiposity, while 
visceral adipose tissue (VAT) indicated central adiposity. 
FMI was calculated by dividing the amount of fat mass 
(kg) by body height squared (cm2). Participants were 
asked to fast at least 4 hour before the examination and 
to avoid vigorous PA at least one day before the measure-
ment to ensure a standard measurement procedure. An 
experienced field researcher carried out the evaluation of 
adiposity indicators during the morning school hours at 
school.

Confounders
Potential confounders were selected based on previous 
research [39] and preliminary analysis. The following set 
of confounding variables was used when analysing asso-
ciations between MB typologies and adiposity: sex, age, 
birth weight, unhealthy snacking, parental obesity, and 
parental education level.

Children aged 13 or older and adolescents self-reported 
their sex, age, and unhealthy snacking in a survey com-
pleted during their free time. Unhealthy diet was assessed 
via the following self-report questions: About how many 
times a week do you usually eat or drink (a) sweets (candy 
or chocolate), (b) coke or other soft drinks that contain 
sugar, and (c) crisps, chips, salt sticks, etc.?, with possible 
responses: “never”, “less than once a week”, “once a week”, 
“2–4 times a week”, “5–6 times a week”, “once a day”, 
“more than once a day”, and dichotomised to unhealthy 
snacking when at least one of the options was reported 
more than once a day.

Parents self-reported their height, weight, and high-
est education achieved and proxy-reported sex, age, and 
unhealthy snacking of their children aged 12 years or 
younger. Parental obesity was defined as at least one par-
ent with BMI ≥ 30  kg/m2. Parental BMI was calculated 
using self-reported height and weight. Parental educa-
tion level indicated whether at least one of the parents 
reported having a university degree.
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Statistical analysis
The analysis was conducted using R software [40] ver-
sion 4.2.2 and LatentGold software version 6.0 (Statis-
tical Innovations, Arlington, USA). The analysis was 
conducted separately for children (aged 8–13 years) and 
adolescents (aged 14–18 years), as it was shown that MB 
differs significantly between these age groups [41–43] 
and to ensure interpretability for more homogeneous 
groups. The level of significance was set at p < 0.05.

There were missing values in covariates, for birth 
weight (n = 27), maternal BMI (n = 46), paternal BMI 
(n = 79), maternal education (n = 24), and paternal educa-
tion (n = 61). Because all data were missing completely at 
random, the multiple imputation approach with predic-
tive mean matching and logistic regression methods for 
continuous and categorical variables, respectively, with 
11 iterations, and 5 imputed datasets was used.

Movement behaviour typologies
The compositional data analysis (CoDA) approach was 
used to generate compositions of MB from 24-hour MB 
data, from which typologies were identified. Such time-
use data exists in a constrained data space, where the sum 
of all parts can be represented with 100% (i.e., 24 hours), 
without loss of information, and are thus compositional 
in their nature [20]. Therefore, the time spent MVPA, 
LPA, SB, and sleep was expressed as a set of isometric 
log-ratios (ilr) using the compositions package [44]. The 
ilr contains all relative information about the MB compo-
sition and can be used as real vectors, assumed for most 
methods in multivariate statistics.

An outlier detection was performed to ensure a better 
generalisability of the results and the stability of possible 
identified typologies. Potential outliers in the MB com-
positional data were identified using the mvoutlier pack-
age [45]. There were no outliers among children and 14 
outliers were identified among adolescents. The models 
were then built with and without outliers. The resulting 
models differed in the optimal number of profiles as indi-
cated by the decision criteria and the typology assign-
ment (Cohen’s Kappa = 0.64). For this reason, outliers 
were removed from the dataset.

The ilrs were then used to fit latent profile models using 
LatentGold software (Statistical Innovations, Arlington, 
USA). A latent profile model was used, which is a type 
of finite mixture model in modelbased clustering, that 
allows for the identification of unobserved homogeneous 
subgroups of individuals that vary in MB composition 
[46]. Covariances of the ilrs were included in the model 
as ilrs are used to construct a coordinate system with a 
regular covariance matrix and a different ilr coordinate 
systems are just mutual rotations. The within-class vari-
ances and covariances were assumed to be equal across 
identified typologies. The fit of the latent profile models 

was assessed using the Bayesian Information Criterion 
(BIC) and the Akaike Information Criterion (AIC) indi-
cating the best balance between the goodness of fit and 
simplicity of the model. Lower values indicate a better-
fitting model. Vuong-Lo-Mendell-Rubin likelihood-ratio 
test (VLMR) was used to evaluate relative fit of two mod-
els, where model with one more solution performs bet-
ter than original model (p < 0.05 indicates better fit) [47]. 
Entropy was used as a measure of the certainty level of 
the classification of each identified typology, ranging 
from 0 to 1. The identified typologies were also evaluated 
by the relevance of their meaning and size, which should 
be no less than 10% of the total sample size [48, 49]. After 
identifying the best model, the modal assignment was 
used to assign each participant to the typology for which 
they had the highest posterior probability, i.e., the high-
est confidence. The typologies were labelled to reflect 
the behavioural profiles of bees (i.e., Queens, Workers, 
and Drones), to help the interpretability for the general 
public. Descriptive statistics for each typology were cal-
culated as weighted means and standard deviations (SD) 
or weighted proportions, using the confidence (posterior 
probability) of assignment to a given typology as a weight 
for each observation.

Associations between MB typologies and adiposity
A hierarchical linear model with school as a random 
effect was carried out to verify whether the variance 
of adiposity indicators (dependent variable) could be 
explained by a different school setting. A comparison of 
random effect models did not show significant variance 
explained in adiposity by different schools. Consequently, 
regression models with fixed intercept and slopes were 
used. The proportional typology assignment probabili-
ties were used to investigate the associations between 
MB typologies and adiposity. A bias-adjusted three-
step approach developed by Bolck-Croon-Hagenaars 
[50] was used to ensure the best accuracy of regression 
models while accounting for the bias of misclassification. 
Four separate models were built, one for each indicator 
of adiposity as a dependent variable, to analyse associa-
tions between variables of interest. Due to violations of 
the assumptions of the linear model, FM%, FMI, and VAT 
were transformed using natural logarithms. MB behav-
iour typologies were used as independent variables in 
all models that were adjusted for sex, age, birth weight, 
unhealthy diet, parental obesity, and parental level of 
education.

Regression models with FM% and FMI as dependent 
variables were additionally adjusted for the interaction 
between child age and sex. An interaction between age 
and typology membership was also found. This interac-
tion was included in all models in children and the model 
with BMI z-score as a dependent variable in adolescents. 
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Age was centred to make the models interpretable. To 
verify how the selected covariates differed across the 
identified typologies, we used bias-adjusted three-step 
approach with the maximum likelihood method [51].

Results
In total, 940 participants were recruited, of which 876 
(93%) provided valid accelerometer data. Of these, 374 
children and 317 adolescents met the inclusion criteria. 
Both of our samples, children (Table 1) and adolescents 
(Table 2), were represented by a similar number of girls 
(i.e., 57%). The sample of children included almost 4% 
more participants with overweight or obesity, as indi-
cated by BMI z-score, compared to adolescents. The 
mean BMI z-score differed by approximately 0.3 units 
across the two samples. Adolescents had, on average, 
higher FM%, FMI, and VAT by about 1%, 1  kg/m², and 
approximately 13  cm², respectively, in comparison with 
children. Children spent approximately 18  min more in 
MVPA and almost 47 min more in LPA than adolescents. 
Adolescents spent roughly 116 min more in SB but slept 
about 51  min less. Both of our samples had equivalent 
birth weights and a comparable number of parents with 
obesity and a university degree. Children reported having 
an unhealthy diet to a greater extent than adolescents by 
about 16%. The mean wear time of children and adoles-
cents was practically the same at an average of 23.6 ± 0.8 
(mean ± SD) hours per day, with a median of 6 valid days 
across the whole sample.

The model selection criteria for latent profile mod-
els with 2 to 5 typologies are presented in Table  3. In 
children, the information criteria, meaning, and size 
of typologies indicated the best fit for the model with 2 
typologies. In adolescents, the preferred model indicated 
by the decision criteria was the model with 3 typologies. 
In both age groups, the variables responsible for the sep-
aration of the typologies were MVPA, LPA, and SB, while 
sleep was mostly similar across all identified typologies 
(Figures S1 and S2).

Among children, the identified typologies included 
highly active individuals who were labelled as Workers 
(80%) and inactive individuals labelled as Queens (20%) 
(Table 4, Figure S1). Workers spent 32.3 min and 50.6 min 
more time on MVPA and LPA per day, respectively, com-
pared to Queens. The time spent in SB and sleep was 
shorter for Workers compared to Queens by 73.6  min 
and 9.3 min per day, respectively. The identified typolo-
gies differed significantly in age as Queens included older 
individuals (p = 0.002) (Table 1).

Among adolescents, an additional typology labelled as 
Drones (48%) was identified (Table 5, Figure S2). Drones 
were characterised by a medium level of inactivity, as they 
spent 24.5  min less time in MVPA than Workers (41%) 
and 15.1 min more time in MVPA per day than Queens 
(11%). Adolescents labelled as Drones spent 248.6  min 
in LPA, which was lower by 7.3 min compared to Work-
ers and higher by 17.1 min per day compared to Queens. 
Drones were more sedentary than Workers by 28.8  min 
but less sedentary than Queens by 47.5 min per day. The 
longest sleep duration was observed in Drones, who slept 
for 472.3  min per day, which was more by 3  min and 
15.3 min compared to Workers and Queens, respectively. 
The identified typologies differed significantly in age as 
Queens included older individuals (p = 0.034) (Table 2).

The associations between the identified typologies and 
adiposity indicators, adjusted for confounders, are pre-
sented in Table  6. A significant association were found 
between typologies and indicators of adiposity in chil-
dren. Queens had 1.38 times higher FM% (B = 0.32, 95% 
confidence interval [CI] = 0.05–0.58), 1.43 times higher 
FMI (B = 0.36, 95% CI = 0.01–0.70), and 1.67 times higher 
VAT (B = 0.51, 95% CI = 0.05–0.98) compared to Workers. 
There were no significant associations between typolo-
gies and BMI z-score amongst children. In adolescents, 
significant associations between typology membership 
and FM% and VAT were observed. Drones had 1.14 times 
higher FM% (B = 0.13, 95% CI = 0.02–0.24), while Queens 
had 1.36 times higher VAT (B = 0.31, 95% CI = 0.03–0.60) 
in comparison with Workers. In adolescents, significant 

Table 1 Individual and parental characteristics of identified typologies in children (n = 374)
Overall Workers

(80%)
Queens
(20%)

p-value

Mean SD Mean SD Mean SD
Age, years 11.6 1.6 11.5 1.6 12.2 1.5 0.002
Birth weight, kg 3.4 0.5 3.4 0.5 3.3 0.6 0.22

% % %
Girls 57.0 55.3 63.7 0.15
Unhealthy diet 41.7 42.5 38.5 0.97
Parental higher education 52.9 53.0 52.6 0.37
Parental obesity 24.6 24.2 26.2 0.18
Boldface values indicate significant difference between typologies at p < 0.05

Abbreviations: SD = standard deviation
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associations between typologies and BMI z-score and 
FMI and typology membership were not observed.

Discussion
To address the gap in the literature in understanding 
how MB typologies are associated with adiposity, we 
employed a person-oriented approach on 24-hour time-
use compositional data among children and adolescents. 
Among children, two distinct typologies were identi-
fied, namely Workers with high MVPA and LPA and 
low SB and Queens with low MVPA and LPA and high 
SB. Among adolescents, an additional typology (Drones) 
characterised by moderate levels of MVPA, LPA, and SB 
was identified. Notably, all identified typologies exhib-
ited almost similar durations of sleep. Our results indi-
cate that children belonging to the Queens typology had 
higher FM%, FMI, and VAT compared to Workers typol-
ogy. In adolescents, individuals in Drones typology had 
higher FMI and those in Queens typology had higher 
VAT in comparison with Workers.

The significant associations observed between MB 
typologies and adiposity indicators in children are note-
worthy and align with previous research linking PA, SB, 
and sleep to adiposity outcomes [8, 52, 53]. Our find-
ings indicate that Queens, characterised by higher SB 
and lower PA levels, had significantly higher FM%, FMI, 
and VAT levels than Workers, representing highly active 
individuals with lower sedentary time. These results sug-
gest that promoting regular PA and reducing SB dur-
ing childhood may have potential benefits in mitigating 
overweight and obesity risks. However, it is important 
to note that no significant associations were observed 
between MB typologies and BMI z-score in children. This 
may indicate that BMI, as a measure of adiposity, might 
have limitations in capturing nuanced differences related 
to MB patterns, particularly in children and adolescents 
[54]. Considering more sensitive measures to better 
assess adiposity outcomes in children is warranted [54, 
55]. Overall, our study adds valuable insights to the rela-
tionship between MB typologies and adiposity in chil-
dren and highlights the significance of early intervention 
strategies aimed at promoting active lifestyles and reduc-
ing SB to improve adiposity-related health outcomes.

Our analysis revealed mixed results in associations 
between MB typologies and adiposity indicators among 
adolescents. This lack of consistent significance between 
all adiposity indicators aligns with findings from other 
studies, such as those investigating the associations 
between adherence to the 24-hour MB guidelines and 
obesity, as identified by Marques and colleagues [11]. 
One possible explanation for this finding could be the 
changes in other lifestyle behaviours occurring dur-
ing the transition from childhood to adolescence. For 
example, adolescents become more autonomous in food Ta
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Table 3 Statistical indicators for models with 2–5 typologies
2 typologies 3 typologies 4 typologies 5 typologies

Children (n = 374)
BIC –233.0 –217.2 –206.6 –205.9
AIC –284.0 –283.9 –289.0 –304.0
VLMR (p value) 0.004 0.206 0.135 0.006
Entropy 0.54 0.53 0.62 0.83
Minimal size (%) 19.5 4.7 7.2 3.8
Adolescents (n = 317)
BIC –173.4 –160.0 –145.1 –128.9
AIC –222.3 –223.9 –224.0 –222.9
VLMR (p value) 0.181 0.097 0.121 0.565
Entropy 0.44 0.66 0.72 0.75
Minimal size (%)a 30.0 10.7 1.1 1.3
a Minimal size reflects the minimum size of the typologies in each solution.

Boldface values indicate best fit based on our selection criteria

Abbreviations: AIC = Akaike information criterion, BIC = Bayesian Information Criterion, VLMR = Vuong-Lo-Mendell-Rubin likelihood-ratio test

Table 4 Descriptive statistics of adiposity outcomes and 24-hour movement behaviour across the identified typologies in children 
(n = 374)

Overall Workers
(80%)

Queens
(20%)

Mean SD Mean SD Mean SD
Adiposity indicators
BMI z-score 0.23 1.15 0.25 1.15 0.16 1.13
FM%, % 19.3 8.2 19.0 8.2 20.5 7.9
FMI, kg/m2 3.8 2.1 3.7 2.2 4.0 2.0
VAT, cm2 42.5 27.8 41.5 28.2 46.5 25.8
Movement behavioursa

MVPA, min/day 56.3 63.7 31.4
LPA, min/day 298.3 310.5 259.9
SB, min/day 565.5 547.6 621.2
Sleep, min/day 519.9 518.2 527.5
a Compositional means for each movement behaviour

Abbreviations: BMI = body mass index, FM = fat mass, LPA = light intensity physical activity, MVPA = moderate to vigorous physical activity, SB = sedentary behaviour, 
SD = standard deviation, VAT = Visceral adipose tissue

Table 5 Descriptive statistics of adiposity outcomes and 24-hour movement behaviour across the identified typologies in adolescents 
(n = 317)

Overall Workers
(41%)

Drones
(48%)

Queens
(11%)

Mean SD Mean SD Mean SD Mean SD
Adiposity indicators
BMI z-score 0.19 1.00 0.16 0.95 0.21 1.05 0.27 1.03
FM%, % 20.7 9.1 19.1 9.0 21.6 9.1 22.8 9.0
FMI, kg/m2 4.7 2.7 4.3 2.6 5.0 2.8 5.2 2.6
VAT, cm2 54.9 33.5 49.0 30.57 58.6 35.3 61.5 33.1
Movement behavioursa

MVPA, min/day 38.3 56.2 31.7 16.6
LPA, min/day 251.6 255.9 248.6 231.5
SB, min/day 681.7 658.6 687.4 734.9
Sleep, min/day 468.5 469.3 472.3 457.0
a Compositional means for each movement behaviour

Abbreviations: BMI = body mass index, FM = fat mass, LPA = light intensity physical activity, MVPA = moderate to vigorous physical activity, SB = sedentary behaviour, 
SD = standard deviation, VAT = Visceral adipose tissue
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choices, which might be a stronger factor in developing 
adiposity, especially those who prefer energy dense meals 
[56]. There is also evidence that environmental influences 
such as supermarket availability or socioeconomic sta-
tus may contribute to the development of obesity [57]. 
Finally, several biological determinants such as genetic 
predisposition [58] or hormonal changes may play a 
more dominant role and attenuate associations between 
24-hour MB and adiposity among adolescents. Future 
research should investigate these additional factors (i.e., 
pubertal status or dietary patterns of participants) to gain 
a comprehensive understanding of the complex interplay 
between MB, adiposity, and other determinants of health 
during adolescence.

Furthermore, the short duration of sleep observed 
in our sample of adolescents may have influenced the 
insignificant associations between MB typologies and 
adiposity [19]. This sleep deficiency may negatively off-
set the benefits of PA in adolescents [59]. Short sleep 
duration has been associated with increased consump-
tion of sweetened beverages [60, 61]. A known risk 
factor for obesity. Similar patterns have been observed 
in children [62], although it is important to note that 
children tend to consume less dietary sugar than ado-
lescents [63], potentially reducing the impact of sleep 
deficiency on sweetened beverage consumption.

It is worth noting that the absence of associa-
tions does not discount the importance of promoting 
healthy MB in adolescents. Even though we observed 
associations between MB typologies and only part 
of our adiposity indicators, regular PA, minimising 
SB and optimal sleep duration have numerous other 
health benefits for this age group. Optimal MB com-
position has been associated with improved cardio-
vascular health, musculoskeletal strength, mental 
well-being, and overall quality of life among adoles-
cents [64, 65]. Therefore, interventions aimed at pro-
moting active lifestyles and reducing SB should be 
prioritised to enhance adolescents’ overall health and 
well-being, irrespective of their adiposity outcomes.

To our knowledge, no previous study has focused 
on identifying MB typologies using a holistic 24-hour 
data collection approach in the paediatric population. 
Studies that identified 24-hour MB typologies have 
focused on adults [24] or did not fully account for the 
compositional nature of the data [25]. However, sev-
eral studies in children and adolescents [66, 67] have 
identified typologies based on specific fractions of the 
24-hour MB, such as PA and SB, without consider-
ing sleep. Many of these studies consistently reported 
typologies characterised by high PA and low SB or low 
PA and high SB, which aligns with our findings. The 
similarity in sleep duration between different typolo-
gies observed in our study, as well as by Brown et al. Ta
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[64] further supports the robustness of our results 
using device-based measures.

The use of 24-hour time-use compositional data, 
which provides a comprehensive view of MB and 
enables the identification of typologies that capture 
the overall activity patterns of children and adoles-
cents, could be considered as one of the strengths. 
Additionally, employing device-based measures of adi-
posity indicators and raw accelerometer data enhances 
the validity and reliability of our findings. Utilisa-
tion of bias-adjusted latent profile analysis is another 
strength of this study as “naive” profile assignment can 
lead to a great misclassification [51].

Several limitations should be also considered. Firstly, 
the cross-sectional design limits our ability to estab-
lish causality between MB typologies and adiposity 
outcomes of the study. Future longitudinal studies are 
warranted to better understand the temporal relation-
ship between these variables. Secondly, the generaliz-
ability of our findings may be limited to the specific 
population and geographic region studied. Conduct-
ing replication studies in diverse populations would 
enhance the external validity. Thirdly, the role of vig-
orous PA in the development of adipose tissue was 
not examined, as our analysis focused on MVPA, the 
broader intensity band most frequently used in the lit-
erature. Additionally, this study did not account for the 
multidimensional nature of the 24-hour MB construct 
[68], limiting our ability to identify specific aspects 
of 24-hour MB, such as posture- or domain-specific 
behaviours (e.g. screen time), that may influence adi-
posity. These behaviours may influence a formation of 
specific typologies with different health outcomes and 
should be considered in future studies. Lastly, pubertal 
status was not measured, which may influence differ-
ent adiposity measures. Despite these limitations, our 
study contributes valuable insights into the associa-
tions between MB typologies and adiposity outcomes 
in children and adolescents.

Conclusion
In conclusion, our study identified distinct 24-hour 
MB typologies in children and adolescents. Associa-
tions between MB typologies and adiposity indicators 
were found in children, emphasising the importance 
of MB in preventing excess adiposity in this age group. 
In adolescent, significant associations were observed 
only in part of our adiposity indicators, suggesting 
that other factors beyond MB may play a dominant 
role in determining adiposity outcomes during adoles-
cence. Promoting healthy MB, including regular PA, 
minimising SB, and ensuring optimal sleep duration, 
is crucial for the overall health and well-being of chil-
dren and adolescents, irrespective of their adiposity 

outcomes. Further research is needed to explore the 
complex interplay between MB, adiposity, and other 
determinants of health during adolescence. By expand-
ing our understanding of the relationship between MB 
and adiposity, we can inform targeted interventions to 
optimize 24-hour MB and improve the health of young 
individuals.
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