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Abstract 

Objective  To assess the impact of self-medication on the transmission dynamics of COVID-19 across different age 
groups, examine the interplay of vaccination and self-medication in disease spread, and identify the age group most 
prone to self-medication.

Methods  We developed an age-structured compartmentalized epidemiological model to track the early dynamics 
of COVID-19. Age-structured data from the Government of Gauteng, encompassing the reported cumulative number 
of cases and daily confirmed cases, were used to calibrate the model through a Markov Chain Monte Carlo (MCMC) 
framework. Subsequently, uncertainty and sensitivity analyses were conducted on the model parameters.

Results  We found that self-medication is predominant among the age group 15-64 (74.52%), followed by the age 
group 0-14 (34.02%), and then the age group 65+ (11.41%). The mean values of the basic reproduction number, 
the size of the first epidemic peak (the highest magnitude of the disease), and the time of the first epidemic peak 
(when the first highest magnitude occurs) are 4.16499, 241,715 cases, and 190.376 days, respectively. Moreover, 
we observed that self-medication among individuals aged 15-64 results in the highest spreading rate of COVID-19 
at the onset of the outbreak and has the greatest impact on the first epidemic peak and its timing.

Conclusion  Studies aiming to understand the dynamics of diseases in areas prone to self-medication should account 
for this practice. There is a need for a campaign against COVID-19-related self-medication, specifically targeting 
the active population (ages 15-64).
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Introduction
In response to the outbreak and alarmingly rapid 
spread of COVID-19 around the globe, health authori-
ties implemented disease control strategies centered on 
non-pharmaceutical and pharmaceutical interventions. 
The effectiveness of these measures is partly depend-
ent on available logistics and individual responses to 
such interventions. Owing to inadequate health pro-
motion-related resources and limitations in patient 
health literacy, self-medication and the use of comple-
mentary medicine is a common global phenomenon 
and highly predominant in the global south [1–7]. Evi-
dence of COVID-19-associated self-medication is well 
documented in the literature (see for example, [8–10] 
and referenced articles thereof ), and the reliance on 
self-medication by segments of the global population 
hinders the effectiveness of the various interventions 
instituted by health authorities. This is because, most 
intervention measures do not consider the self-medi-
cated population since these cases often go unrecorded, 
leading to an oversight in the formulation of interven-
tion policies. When measures are implemented without 
taking into account self-medication, there is a risk of 
diluting the overall effectiveness of these efforts.

COVID-19-related health policies have benefited from 
several policy-driven mathematical infectious disease 
models, where these models have helped shape policy 
frameworks in the quest to curb the spread of the disease, 
see, for example, works in [11–16]; also see [17, 18] for a 
good review on some of these models. Despite the large 
body of collections of policy-driven mathematical dis-
ease models on this subject, there seems to be an inad-
equate study on mathematical disease model-informed 
self-medication dynamics. The works in [13, 19] are the 
few attempts to incorporate the dynamics of self-medi-
cation into COVID-19 mathematical models. Both stud-
ies show self-medication dynamics has played a major 
role in the spread of COVID-19, and that efforts should 
be intensified to put that in check. These works are based 
on Cameroon and Nigeria COVID-19 cases, respectively. 
It is imperative that impact of age dynamics is incorpo-
rated in the modelling framework in that the literature 
demonstrates age as an important factor influencing self-
medication [9, 20, 21]. Among others, the limitations of 
the models presented in these studies are that impact of 
vaccination dynamics on the disease prevalence and age 
structure of the population were not considered in the 
modelling framework. In other words, the impact of self-
medication across different age groups on the dynamics 
of the disease transmission, and the interplay of vacci-
nation and self-medication on the spread of the disease 
were missing.

Self-medication within the context of our proposed 
study is defined as any approach by an individual to treat 
the disease through the use of substances (e.g., herbal 
medicine or over-the-counter drugs) or belief systems 
(e.g., faith) without consulting a certified professional 
for such a purpose. These treatments, in most cases, are 
not efficacious. Not only do they increase the likelihood 
of prolonged infectious periods of the disease, but they 
also hinder the isolation of these individuals as they do 
not make themselves available, thereby increasing the 
number of infectious individuals in the population. This, 
in turn, amplifies the force of infection within the pop-
ulation. Therefore, there is a need to incorporate this 
additional layer of dynamics into the disease modeling 
framework.

In view of the above, this paper proposes an age-struc-
tured mathematical COVID-19 disease model that incor-
porates self-medication. We considered the case where 
disease transmission coefficients are different across 
(age)-groups with associated group specific contacts that 
map out the mixing pattern within and between these 
groups. We used case data from Gauteng, South Africa 
in our study. Gauteng has the largest share of the South 
African population, having approximately 15.5 mil-
lion people (26.0%) living in the province [22]. A highly 
urbanised province having Johannesburg as its capital 
city. We addressed the following questions: (i) what is 
the impact of self-medication on the spread and severity 
of COVID-19 with or without vaccination? This ques-
tion we address via the impact of the self-medication 
on the effective reproduction number of COVID-19. (ii) 
Which of the age groups has the highest incidence of 
self-medication? We also assessed the sensitivity of the 
basic reproduction number, first epidemic peak, and first 
epidemic peak time, respectively, to model parameters 
(specifically parameters capturing self-medication). We 
define the first epidemic peak as the first occurrence of 
the highest magnitude of the disease and the first epi-
demic peak time refers to the time duration of which we 
recorded the first highest magnitude of the disease.; the 
effective reproduction number is the average number of 
secondary cases per infected individual in the population 
comprising both susceptible and non-susceptible hosts 
(in our case, vaccinated individuals) and the basic repro-
duction number is the effective reproduction number 
evaluated at the disease-free steady state.

The rest of the paper is organized as follows: The model 
formulation, related assumptions, and remarks are dis-
cussed in “Method”  section. The numerical simulations 
and relevant discussions are provided in “Results”  sec-
tion, where the model is estimated using Gauteng 
COVID-19 age data, and sensitivity analysis of R0 (and 
other model implied quantities) on selected model 
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parameters are also conducted. Finally, the findings are 
summarized in “Conclusion” section.

Method
Model formulation
The schematic presentation of the proposed model is 
given in Fig.  1. The population is stratified into seven 
compartments: susceptible ( Si ), vaccinated ( Vi ), exposed 
( Ei ), infected ( Ii ), infected self-medication ( I smi  ), infected 
formal treatment ( I fti  ) and removed ( Ri ). Individuals tran-
sition across these compartments in accordance with 
their disease status at each time period. These compart-
ments are further stratified into age groups, for which we 
denote as i.

Susceptible individuals are individuals in the popula-
tion that are susceptible to the disease; vaccinated are 
those individuals who have been vaccinated; exposed 
are those who have exposure to the disease; infected 
are those who have been infected by the disease and 
are exhibiting symptoms; infected self-medicated and 
formal-treatment are those infected individuals who 
self-medicate and those who seek formal treatment, 
respectively; removed compartment constitutes recov-
ered individuals—this includes disease induced deaths.

Self-medicated individuals are those who resort to 
any form of remedy to combat the disease, except using 
formal treatment. This can take the form of home rem-
edies (examples, traditional or herbal medicines, over-
the-counter drugs, etc.), spiritual cleansing or prayers 
as recorded in some jurisdictions [13, 19], and others. 
These treatments in most cases are not efficacious; see 

for instance [23] and references therein. Not only does 
this increase the likelihood of prolonged infectious peri-
ods of the disease, it prevents isolation of these individu-
als as they do not make themselves available, therefore 
increasing the number of infectious individuals in the 
population, which will then amplify the force of infection 
within the population. consequently, the need to incor-
porate this additional layer of dynamic into the disease 
modelling framework. The formal-treatment compart-
ment constitutes individuals who resort to treatment at a 
certified or government recognized health care space. We 
define treatment as the administration of drugs, or any 
other medication by healthcare professionals.

The disease system dynamics are as follows: we assume 
a short duration of the disease as in the case of a seasonal 
disease. The assumption of short duration of the disease 
pertains to the exclusion of demographic parameters and 
not related to infection parameters; we excluded popula-
tion demographics such as birth and death rates in the 
modelling framework. Birth and natural death rates can 
be excluded from mathematical models when investi-
gating disease dynamics occurring within few weeks or 
months. See , for example, works in [24–30]. Specifically, 
the works outlined in [25, 26, 28–30] provided COVID-
19 mathematical models excluding effects of birth and 
natural death rates. Mathematical models without demo-
graphic parameters have extensively been used to assess 
dynamics of disease epidemics. Models of this nature 
(epidemic models) are used to model rapid outbreaks 
that happens in less than a year [27].

Fig. 1  An illustration of COVID-19 transmission dynamics model incorporating self medication and formal treatment
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Now, Observe that subscript i on model parameters 
corresponds to the parameters for each of the age groups 
and that those without subscript i imply that the param-
eter is the same across the age groups. Against this back-
drop, the model assumes a per capita vaccination rate 
ν ( νSi are vaccinated and enters Vi ) and that vaccine-
induced immunity lasts for the entire disease outbreak 
period. Here we assume that ν is the same across all the 
age groups as we recognize that South Africa’s vaccina-
tion program commenced in February 2021 [31], implying 
the vaccination commencement date for Gauteng Prov-
ince is not earlier done February 2021. The current study 
considers COVID-19 infection period between March 1, 
2020 and July 5, 2020-there was no vaccination in place 
nor vaccination strategy. Our considered period is in line 
with the research questions we want to address: it serves 
as the base period to carry out sensitivity analysis on the 
study’s parameters of interest. Also, the proposed study is 
a generic study, not an empirical study, therefore assum-
ing equal vaccination rates across the different age groups 
addresses the purpose of our study. We define vaccination 
under this setting as that which confers protection of indi-
viduals from the disease.

Individuals in Si and Vi are infected with the disease at 
the respective rates of Bs

i and Bv
i—we assume that trans-

mission is frequency dependent. Bs
i Si + B

v
i Vi of individu-

als enter the exposed compartment Ei . The latency rate 
for which individuals transition from Ei is ρ . Thus, ρEi 
individuals transition from Ei to the infected compart-
ment Ii . We acknowledge that this assumption implies 
impact of disease transmissions is via Bs

i and Bv
i .

Following the work in [13], we assume individuals are 
detected of the disease at the rate αi . Consequently, we 
assume αiθiIi and αi(1− θi)Ii number of individuals 
migrates from Ii to I smi  and I fti  , respectively, where θi is the 
proportion of those entering I smi  and (1− θi) entering I fti  . 
Finally, individuals are respectively removed from Ii, I smi  
and I ft at the rates µi, η

sm
i  and ηfti  . System 1 describes the 

evolution of the disease across the different compart-
ments and age groups.

with initial condition

(1)

Ṡi = −νSi − B
s
i Si,

V̇i = νSi − B
v
i Vi,

Ėi = B
s
i Si + B

v
i Vi − ρEi,

İi = ρEi − αiIi − µiIi,

İ smi = αiθiIi − ηsmi I smi ,

İ
ft
i = αi(1− θi)Ii − η

ft
i I

ft
i ,

Ṙi = µiIi + ηsmi I smi + η
ft
i I

ft
i ,

Force of infection Bs

i
 and Bv

i
 and reproduction number

Since the underlying framework of the proposed model 
and study is age structured, the disease force of infection 
( Bs

i and Bv
i  ), defined as the rate at which susceptible/vac-

cinated individuals become exposed, is group specific; 
this is influenced by the activities within and between 
groups, and is captured by the overall contact levels. The 
intensity of a group’s contact level influences the disease 
cases within the group and at the population level. Fol-
lowing the work in [32, 33], and related works in the field, 
we model the force of infection for a representative group 
as follows: Let xij be the average number of contacts per 
person per unit time in a representative group, where 
i = j is within group contact and i  = j outside group 
contacts. The unit time could be day(s) or month(s) (this 
study considered daily number of contacts). This defines 
the contact matrix in the population. We assumed het-
erogeneous effective transmission coefficients across age 
structures; these are respectively denoted as βs

i  and βv
i  

for susceptible and vaccinated individuals. Bs
i and Bv

i  are 
expressed as

where we note that

Nj is the population size of the individuals across age 
group j for all disease compartments, n is the number of 
age groups, and 0 ≤ e ≤ 1 captures the vaccine efficacy. 
Assuming proportionate mixing of individuals between 
groups. Observe that individuals in the formal treatment 
compartment are excluded from the expression for the 
force of infection; this is attributable to the assumption 
that Individuals in the formal treatment compartment 
are assumed to receive effective treatment such that their 
infectivity is reduced to a negligible level. The resulting 
general effective reproduction number from the model is 
derived as (See Supplementary Materials)

where xi in Eq. 4 is the daily number of contacts made by 
an individual in group i per unit time. We note that the 
effective reproduction number is the average number of 

Y (0) = (Si(0),Vi(0),Ei(0), I
s
i (0), I

sm

i
(0), I

ft

i
(0),Ri(0)) ∈ R

+
.

(2)
B
s
i =

n
∑

j=1

βs
i xij

(

Ij + I smj

)

Nj
,

B
v
i = (1− e)Bs

i ,

(3)βv
i = (1− e)βs

i .

(4)

Rt =

n

i=1

xi
Si(t)β

s

i
αiθi + ηsm

i
+ Vi(t)β

v

i
αiθi + ηsm

i

Ni(αi + µi)η
sm

i

,
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secondary cases per infected individual in the population 
comprising both susceptible and non-susceptible hosts 
(in our case, vaccinated individuals). The basic repro-
duction number is the effective reproduction number 
evaluated at the disease free steady state. It is the average 
number of secondary infections produced by an infected 
individual in the population where everyone is suscepti-
ble. Observing Eq. (4) leads to the following remarks.

Remark 1  All other parameters held constant, the pro-
portion of individuals who undergo self medication θi 
positively relates to Rt and R0 . Implying increasing θi 
increases Rt and R0.

The epidemiological implication of Remark 1 is that the 
more number of people self-medicate the more average 
number of secondary cases of the disease at time t in the 
population, thus to reduce the disease spread, a campaign 
against self-medication may be effective.

Remark 2  All other parameters held constant, the 
detection rate ( αi ) negatively relates to Rt and R0.

Proof  The prove of Remark 2 can be shown by observ-
ing that the first partial derivative of Rt (Eq. (4)) with 
respective to αi is negative for every value of αi , thus Rt 
decreases as a function of αi . 	�  �

Remark 2 indicates, as a policy implication, increasing 
the detection rate of the disease can help curb its spread, 
when other parameters are held constant. Increas-
ing detection rate can reduce disease incidence in the 
population.

Markov Chain Monte Carlo estimation scheme
Markov Chain Monte Carlo Delay Rejection Adaptive 
Metropolis [34] was used to estimate model parameters. 
We adopted the Matlab package mcmcrun provided in 
[35]. The model’s goodness of fit was assessed using the 
normalized mean square error (NMSE), as found in [13]. 
The likelihood function of the observed state, the number 
of new infections, is assumed as normal distribution and 
the prior distributions of the parameters are assumed 
as normally distributed. We started the estimation pro-
cess from non-optimized values; we did three runs of the 
algorithm, starting from the values of the previous run in 
order to locate the appropriate posterior distribution of 
the parameters. Each of the runs has 10,000 simulations, 
making 30000 simulations in total. We then estimated 
the mean from the individual final chains of the model 
parameters of interest.

Estimating contact matrix
We employed the approach used in [36–38] in estimat-
ing the contact matrix. We partitioned the Gauteng case 
data into the three age groups: 0-14, 15-64, and 65+. This 
we did by noting that the case data is partitioned into age 
groups (0-10, 11-10, 21-30, 31-40, 41-50, 51-60, 61-70, 
71-80, 80+); and the age groups do not match appreci-
ably with our proposed age groups for the study. There-
fore, we estimated the cases in each age groups (0-14, 
15-64, and 65+) by first estimating the number of cases 
in, for example, the age group 11-14, and then add that 
estimated number cases to the cases in age group 0-10 
to arrive at the number of cases in 0-14. We do same for 
15-64, and 65+. As notational example, let C0−10 and 
C11−20 be number of cases in age groups 0-10 and 11-20 
respectively, P11−14 and P11−20 be the respective popula-
tion size of age group 11-14 and 11-20, then the number 
of cases for the age group 0-14 is given as

The estimated number of cases for each age group for 
our proposed age groups is then used as input in our esti-
mation scheme. Note that, this approach assumes that 
cases are evenly distributed among the groups.

Results
Numerical analysis
This section discusses numerical analyses by first pre-
senting the estimated values of the parameters not found 
in the literature. We based our estimation procedure on 
COVID-19 cases in Gauteng, South Africa. Gauteng has 
the largest share of the South African population, having 
approximately 15.5 million people (26.0%) living in the 
province [22]. Table 1 presents the demographic of Gaut-
eng by age range. Observe that age 15-65 constitutes the 
largest population.

Data set on Gauteng COVID‑19 cases
The data set on Gauteng province COVID-19 cases is 
now publicly available at: https://​www.​covid​19sa.​org/. 
The data set is a record of COVID-19 cases on different 
disease age groups: 0-10, 11-10, 21-30, 31-40, 41-50, 
51-60, 61-70, 71-80, and above 80 (80+). We considered 
cases for the period spanning between March 1, 2020 
and July 5, 2020, inclusive. For the purpose of our study 
we stratified the population into three age groups: 
0-14, 15-64, and above 65 (65+). This stratification is 
to group the population into active and non-active sub-
populations as well as dependent and independent sub-
populations. We hereby assume individuals in ages 0-14 
are dependent sub-population and those in 15-64 and 
65+ are independent with regards to issues relating to 

C0−14 = C11−20

P11−14

P11−20

+ C0−10.

https://www.covid19sa.org/
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self medication; the age group 15-64 is the most active 
sub-population.

Estimated contact matrix for Gauteng
We used South African’s population contact matrix to 
estimate that of Gauteng province, and is adopted from 
[38]; we used the synthetic contact matrix estimated in the 
paper, a decision informed by the fact the estimated con-
tact matrix reflects COVID-19 impact on the population 
social contact. The contact matrix is estimated as

(5)Contact Matrix =





7.8051 5.8937 0.4289

2.9320 12.0201 0.5901

1.5420 4.2639 0.6189



,

where we used density correction approach for reciproc-
ity correction. The graphical presentation of the contact 
matrix is given in Fig.  2. Observe that the Age group 
15-64 has the highest average number of within group 
contacts and age group 65 and above the least.

Model parameters estimation and numerical analysis
Recall the age structure Gauteng’s COVID-19 case data 
is incompatible with the defined age structures for our 
studies—case data is partitioned into age groups (0-10, 
11-10, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 80+). 
Our interest is to group the cases by age groups 0-14, 
15-64, and 65 and above. The estimated population age 
structure of Gauteng is grouped as 0-4, 5-9, 10-14,15-19, 
20-24,25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 
60-64, 65-69, 70-74, 75-79; see [22] for population demo-
graphics. This implies we need to estimate the popula-
tion sizes of the age groups of interest. We first have to 
transform the COVID-19 case age-structured data from 
(0-10, 11-10, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 
80+) to (0-4, 5-9, 10-14,15-19, 20-24,25-29, 30-34, 35-39, 
40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79). 
And then group into 0-14, 15-64, and 65 and above. We 
do this by borrowing the ideas from [39], outlined below: 

	 i.	 Suppose an observed data points (xj , yj), j = 1, 2, ...N , 
where we define xj in our setting as ages in 5 years 
intervals and yj , the cumulative population sizes for 
ages up to and including xi

Table 1  Gauteng: Population demographics [22]

Age Total Age Total

0-4 1 304 927 50-54 716 093

5-9 1 224 646 55-59 598 836

10-14 1 117 926 60-64 479 181

15-19 1 062 602 65-69 360 126

20-24 1 340 369 70-74 244 621

25-29 1 655 304 70-79 141 871

30-34 1 719 113 80+ 84 412

35-39 1 425 916 45-49 908 134

40-44 1 104 058 Total 15 488 137

Fig. 2  Gauteng Province: Contact matrix illustrating the contacts among population age groups: 0-14, 15-64, and 65+. The color bar indicates 
the gradation of the average number of contacts by individuals within and between groups per unit time. We assume a static mixing 
behaviour (that is, number of contacts is static across the disease period. We note that the population sizes of each age group are respectively 
given as 4710101, 9467823, and 1310211. This corresponds to the Gauteng province mid year 2020 population demography reported in [22]. We 
used the estimated (synthetic) South African’s population contact matrix provided in [38]
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	 ii.	 We can define a function f(x) that interpolates all 
points between each of the consecutive pair of 
knots xj and xj+1.

	iii.	 After estimating the pairs (xj , yj) , we can then 
recover individual population estimates for each of 
the age groups by setting the population estimate 
for a representative age group xj as yj+1 − yj.

Figure 3 is the plot of the cumulative curve. It plots the 
the age and the cumulative population size. The dots in 
the figure are the cumulative population size obtained 
from [22]. The solid black and red lines connects the 
interpolated points (black dots) using the linear and 
spline interpolation schemes. Observe these interpola-
tion schemes approximately coincide. For this reason, we 
used the estimated cumulative population sizes derived 
from the linear interpolation scheme for our analysis. We 
obtain the population size estimates for the required age 
groups using the method outlined above.

Figure  4 presents the plot of the estimated model 
for the three Age groups, and we see an appreciable fit 
( NMSE ≈ 72.95% ). The grey region indicates 95% con-
fidence bands of the estimated disease states, which we 
obtained by sampling the final respective chains of the 
parameters and using the resulting sample to calculate 
the predictive limit. The chain plots are presented in 
Fig. 5, and it shows generally appreciable convergence of 
the chains. Table 2 presents the values of model param-
eters not estimated and initial system state values. We set 
the value of the measure of vaccine efficacy e at 93% (this 
coincides with that of BNT162b2 (89.0% to 93.2%) [40]). 
The model implied estimates indicates that self-medica-
tion is predominant among Age group 15-64 (74.52%), 

followed by Age group 0-14 (34.02%); Age group 65+ 
records 11.41%.

Sensitivity analysis
This section discusses sensitivity analysis of the basic 
reproduction number R0 , first peak magnitude, and first 
epidemic peak time to model parameters respectively. 
The derivation of the R0 is presented in the Supple-
mentary Materials. We employed the Latin Hypercube 
Sampling Partial Rank Correlation Coefficient (PRCC) 
scheme [42, 43]. The PRCC is a measure of the strength 
of a linear association between the model parameters 
and model derived quantities or outputs (in our case, the 
R0 , first epidemic peak magnitude, and first epidemic 
peak time); the value is between −1 and +1 . We assumed 
a parameter range of values of ±50 of the values of the 
parameters of interest, presented in Table 3.

Figure 6 is the visualization of the degree of the sensi-
tivity of R0 , first peak epidemic, and first epidemic peak 
time to selected model parameters . We observed that 
R0 has high degree of correlation with α1, θ2 , βs

1
 , and 

βs
2
–see Fig.  6a; the First epidemic peak of the disease 

is strongly correlated with α2 , θ2 , and βs
2
—see Fig.  6b; 

and the first epidemic peak time is strongly correlated 
with α2, θ2,βs

2
 . Table 4 present a summary of the above-

mentioned observations. In the interest of our study, 
the policy parameters of interest are the proportions 
of individuals who self-medicate across the various age 
groups—θ1, θ2 and θ3 , and vaccination rate ν . We note 
that θ2 has the most impact on R0 , First Epidemic Peak, 
and First Epidemic Peak Time.

Figure 7 presents the respective histograms of R0 , First 
Epidemic Peak, and First Epidemic Peak Time, with their 

Fig. 3  Gauteng Province: Interpolation of cumulative population sizes across ages using Linear and Spline Interpolations. Data source [22]



Page 8 of 13Avusuglo et al. BMC Public Health         (2024) 24:1540 

respective means. The average R0 is 4.16499, and that of 
First Epidemic Peak and First Epidemic Peak Time are 
241,715 and 190.375, respectively.

The contour plots in Fig.  8 demonstrates the joint 
impact of self-medication and vaccination on the 
effective reproduction number, and thus the spread of 
COVID-19. The figure shows that the joint impact of 
self-medication θ and vaccination ν on the spread of 
the disease is negligible — the value combinations of θ 
and ν for which Rt is above 1 corresponds to negligi-
ble values of ν . We note that effective vaccination cov-
erage is crucial in reducing the spread of the disease; 

self-medication plays a vital role in the spread of the 
disease in the event of little to no effective vaccina-
tion coverage — range of values of the proportion of 
the self-medicated population yielded Rt above 1 (see 
Fig.  8a, obtained by assuming an equal variation of θ 
across the different population groups).

Figure  8b-d show the effect of the proportion of self-
medicated individuals in each population group and vac-
cination per capita on the effective reproduction number 
( θi vs ν , i = 1, 2, 3 ). We observe that among the age groups 
self-medication activities corresponding to age group 15-64 
results in the highest value of Rt in the event of little to no 

Fig. 4  Gauteng Province: Dots represent the observed daily cases and the solid line is the fitted model. The population sizes across the three age 
groups are respectively given as 4710101, 9467823, and 1310211, for age groups 0-14, 15-64, and 65+. Initial values are presented in Table 2

Fig. 5  The chain plots of the parameters of interest. The axis is the number of simulations (the third run) and the vertical axis is the generated 
values of the parameters
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effective vaccination coverage. Thus, this group should be 
a target for public campaign against self-medication. The 
effective reproduction number used here is the average for 
the entire period (from 1 to 127, consistent with case data 
used for parameter estimation) for each parameter value 
combination of θ and ν . The computation process is out-
lined in Section 3 of the Supplementary Materials.

Discussion
Self-medication and the use of complementary medicine 
is an integral component of disease treatment globally 

[1–6]. It is an alarming problem among resource limited 
countries in the global south. Even though self-medica-
tion has the potential of reducing health care expendi-
ture [44], it has its own associated cost, among which, 
is the dampening effect it has on health policy interven-
tions towards the control of infectious diseases. Self-
medication as applied in our context of study can range 
from having faith that one will heal from the disease 
without ingesting any form of medicines to application 
of herbal medicine or over the counter drugs. Individu-
als who undergo self-medication in most cases do not 

Table 2  Gauteng Province: Baseline values for the model parameters

Parameter Definition Values Sources

ν1, ν2, ν3 per capita vaccination rate 0 Assumed

ρ Latency rate 1/5.2 day−1 [41]

ηsm1 , ηsm2 Removal rate of self-medicated individuals for age group 0-14 and 15-64 1/14 day−1 [13]

ηsm3 Removal rate of self-medicated individuals for age group 65+ 1/28 day−1 [13]

ηft1 , η
ft
2

Removal rate of individuals individuals who go for formal treatment for age group 
0-14 and 15-64

1/14 day−1 [13]

ηft3
Removal rate of individuals who go for formal treatment for age group 65+ 1/28 day−1 [13]

e measure of vaccine efficacy 93% Assumed

S1(0) 4710101 Assumed

S2(0) 9467822 Assumed

S3(0) 1310211 Assumed

V1(0), V2(0), V3(0) 0 Assumed

E1(0), E2(0), E3(0) 0 Assumed

I1(0), I3(0) 0 Observed data

I2(0) 1 Observed data

I
sm
1 (0), Ism2 (0), Ism3 (0) 0 Assumed

I
ft
1 (0), I

ft
2 (0), I

ft
3 (0)

0 Assumed

R1(0), R2(0), R3(0) 0 Assumed

Table 3  Gauteng Province: Estimated model parameters

Parameter Definitions Values

α1 Detection rate in age group 0-14 0.010287 day−1

α2 Detection rate in age group 15-64 0.33105 day−1

α3 Detection rate in age group 65+ 0.4751 day−1

θ1 Proportion of self medicated population in age group 0-14 0.34017

θ2 Proportion of self medicated population in age group 15-64 0.74522

θ3 Proportion of self medicated population in age group 65+ 0.11408

βs
1 Transmission coefficient relating to susceptibles age group 1 0.0035613

βs
2 Transmission coefficient relating to susceptibles age group 2 0.018702

βs
3 Transmission coefficient relating to susceptibles age group 3 0.041503

µ1 Removal rate for infected age group 0-14 0.00089483 day−1

µ2 Removal rate for infected age group 15-64 0.00061965 day−1

µ3 Removal rate for infected age group 65+ 0.0011337 day−1



Page 10 of 13Avusuglo et al. BMC Public Health         (2024) 24:1540 

use efficacious treatments. Not only does this increase 
the likelihood of prolonged infectious periods of the dis-
ease, it prevents isolation of these individuals as they do 
not make themselves available, therefore increasing the 
number of infectious individuals in the population, which 
will then amplify the force of infection within the popu-
lation. As pointed out in [13], self-medication is a vital 
factor contributing to the spread of the disease although 
frequently overlooked; it contributes to the spread and 
severity of the disease and the population of individuals 
who under self-medication heightens the disease persis-
tence against eradication.

This study proposed an age-structured mathemati-
cal disease model that incorporates self-medication 
in its dynamics; and used COVID-19 case data from 
Gauteng Province, South Africa, for analysis. We con-
ducted uncertainty and sensitivity analysis on the model 
implied quantities—basic reproduction number, first epi-
demic peak, and first epidemic peak time—to the model 
parameters. The respective means of these quantities 
are 4.16499, 241,715, and 190.376. The model estimated 
proportion of individuals who self-medicated shows that 
self-medication is higher among age group 14-64 than 
the other age groups (0-14 and 65+). Also, the sensitiv-
ity analysis indicated that among the three age groups, 
age group 15-64 self-medicated activities has the most 
impact on the basic reproduction, first epidemic peak, 
and first epidemic peak time. Further analysis shows that 
self-medication is a vital factor impeding control of the 
disease in the absent of effective vaccination, however, 
has negligible joint impact on the disease with effective 
vaccination coverage. This we demonstrated by assessing 

Table 4  Summary: PRCC sensitivity analysis

High Low

R0 α1, θ2,β
s
1,β

s
2 α2,α3, θ1, θ3,β

s
3,µ1,µ2,µ3

First Infection Peak α2, θ2 , βs
1,β

s
2 α1,α3, θ1, θ3,β

s
3,µ1,µ2,µ3

First Epidemic Peak Time α2, θ2,β
s
2 α1,α3, θ1, θ3,β

s
1,β

s
3,µ1,µ2,µ3

Fig. 6  Sensitivity analysis of model quantities to the respective parameters of interest. Baseline parameters and initial state values are found 
in Tables 2 and 3



Page 11 of 13Avusuglo et al. BMC Public Health         (2024) 24:1540 	

the joint impact of the self-medication and vaccination 
on the average effective reproduction number. These 
findings show that in the case of Gauteng province, the 
active population (age group 15-64) have the highest level 
of self-medication incidence; (ii) self-medication is a cru-
cial factor hindering control of the disease; (iii) self-medi-
cation joint impact with effective vaccination coverage on 
the spread of COVID-19 is negligible.

A weakness of our study is that, the proposed model 
used to address the research questions does not account 
for population demographics such as birth and death 
rates. Studies integrating this population demograph-
ics can provide that additional insight into address-
ing the research questions outlined in this paper. The 
method used to estimate the disease incidence cases for 
a given age group where such a group has no record cases 

Fig. 7  Gauteng Province: Uncertainty Analysis. The baseline parameter values are given in Table 2

Fig. 8  Assessing the impact of the interaction of the proportion of self-medicated individuals θ and vaccination rate ν on effective reproduction 
number Rt . R⊔ reported here is the average of the Rt s over the period 0 to 127. Parameter values are given in Tables 2 and 3. The population sizes 
across the three age groups are respectively given as 4710101, 9467823, and 1310211, for age groups 0-14, 15-64, and 65+. Initial values and base 
line parameter values are given in Table 2
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assumes that cases are evenly distributed among the age 
groups. This assumption could either overestimate or 
underestimate the incidence cases in a representative 
group. Future work could address these gaps in our study.

Conclusion
We addressed three research questions using Gaut-
eng province, South Africa, COVID-19 cases spanning 
from the periods March 1, 2020 to July 5, 2020: (i) what 
is the impact of self medication across different age 
groups on the dynamics of the disease (example, dis-
ease prevalence)? (ii) what is the effect of the interplay 
of vaccination and self-medication on the spread of the 
disease? and (iii) which of the age groups has the high-
est incidence of self-medication? Using Gauteng province 
COVID-19 cases from the period March 1, 2020 to July 
5, 2020, we have demonstrated that self-medication plays 
a crucial role in combating COVID-19, and that regard-
less of the level of effectiveness of instituted vaccination 
programs, it must be put in check. Appropriate campaign 
against COVID-19 related self-medication is justified. 
It is also worth noting that campaigns should target the 
active population (ages 14-64).
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