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Abstract
Background Extreme weather events like heatwaves and fine particulate matter (PM2.5) have a synergistic effect on 
mortality, but research on the synergistic effect of cold waves and PM2.5 on outpatient visits for respiratory disease, 
especially at high altitudes in climate change-sensitive areas, is lacking.

Methods we collected time-series data on meteorological, air pollution, and outpatient visits for respiratory disease 
in Xining. We examined the associations between cold waves, PM2.5, and outpatient visits for respiratory disease using 
a time-stratified case-crossover approach and distributional lag nonlinear modeling. Our analysis also calculated the 
relative excess odds due to interaction (REOI), proportion attributable to interaction (AP), and synergy index (S). We 
additionally analyzed cold waves over time to verify climate change.

Results Under different definitions of cold waves, the odds ratio for the correlation between cold waves and 
outpatient visits for respiratory disease ranged from 0.95 (95% CI: 0.86, 1.05) to 1.58 (1.47, 1.70). Exposure to PM2.5 
was significantly associated with an increase in outpatient visits for respiratory disease. We found that cold waves 
can synergize with PM2.5 to increase outpatient visits for respiratory disease (REOI > 0, AP > 0, S > 1), decreasing with 
stricter definitions of cold waves and longer durations. Cold waves’ independent effect decreased over time, but their 
interaction effect persisted. From 8.1 to 21.8% of outpatient visits were due to cold waves and high-level PM2.5. People 
aged 0–14 and ≥ 65 were more susceptible to cold waves and PM2.5, with a significant interaction for those aged 
15–64 and ≥ 65.

Conclusion Our study fills the gap on how extreme weather and PM2.5 synergistically affect respiratory disease 
outpatient visits in high-altitude regions. The synergy of cold waves and PM2.5 increases outpatient visits for 
respiratory disease, especially in the elderly. Cold wave warnings and PM2.5 reduction have major public health 
benefits.
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Introduction
During the past few years, the global climate change pro-
cess has intensified, with frequent occurrences of extreme 
weather events such as heatwaves and cold waves impos-
ing a heavy burden on global public health and socio-
economics [1–4]. Meanwhile, the issue of air pollution 
persists, and the combined impact of climate change and 
air pollution exacerbates the health burden on the peo-
ple [5, 6]. Cold waves, not only increase the body’s stress 
response and affect physical and cognitive functions but 
can also induce changes in airway function and bron-
choconstriction [7–9], thereby exacerbating respiratory 
disease, such as asthma and chronic obstructive pulmo-
nary disease [10, 11]. Additionally, the hypoxic and low-
pressure environment in high-altitude areas can trigger 
various diseases by stimulating hypoxia-inducible fac-
tors, enhancing inflammatory responses, and damaging 
mitochondrial functions, with the impact on health pos-
sibly becoming more pronounced during cold wave peri-
ods [12–14]. Fine particulate matter (PM2.5), as a major 
component of air pollution, is widely recognised for its 
aggravating effects on respiratory disease [15]. Although 
previous studies have focused on the individual effects of 
cold waves and high PM2.5 concentrations, research on 
their synergistic effects, especially in winter when both 
are commonly present, remains relatively scarce. While 
current research has shown synergistic effects between 
extreme temperatures and PM2.5, most of these stud-
ies have concentrated on the impacts of extreme heat 
[16–18]. Research on the synergistic effects of cold waves 
and PM2.5, particularly their impact on outpatient vis-
its for respiratory disease, is almost nonexistent. As the 
capital city of a high-altitude province in China, Xining’s 

long heating period in winter, which lasts for half a year, 
and the prolonged cold period may exacerbate air pollu-
tion and health problems [19, 20], especially the negative 
impact on respiratory health.

To fill this gap, this study explored the relationship 
between exposure to cold waves and PM2.5 and outpa-
tient visits for respiratory disease, quantitatively assessed 
their interactive effects on respiratory disease visits, and 
estimated the corresponding excess visit rates and num-
bers of visitors. We also conducted stratified analyses to 
explore potential vulnerable groups. In addition, we con-
sidered the exposure to cold waves and PM2.5 in different 
time periods to assess their specific impacts in the con-
text of climate change in plateau areas.

Materials and methods
Study sites
Xining, situated in the Qinghai-Tibet Plateau’s northeast-
ern sector, spans altitudes from 2091 to 4857 m (Fig. 1). 
The terrain is higher in the southwest and lower in the 
northeast. This study covers five districts of Xining City, 
including Chengdong, Chengzhong, Chengxi, Chengbei, 
and Huangzhong, as well as two counties, Huangyuan 
and Datong Hui and Tu Autonomous County. The total 
population of Xining is approximately 2.468  million, 
accounting for about 42% of Qinghai Province’s popula-
tion. The climate belongs to the cold temperate category 
of high mountains and plateaus. The winter is cold and 
prolonged, with an average annual temperature of about 
6℃, and the lowest temperature can reach − 18.9℃.

Fig. 1 Location and altitude range of Xining in China
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Data collection and cold wave definitions
We obtained outpatient visits data for respiratory dis-
ease (ICD-10: J00-J99) from the majority of hospitals in 
Xining city, covering the period from January 1, 2016, to 
December 31, 2021. The data included information on 
age, gender, disease diagnosis, and codes based on the 
International Classification of Disorders, Tenth Revi-
sion (ICD-10). The data were classified according to sex 
(female and male) and age categories (0–14 years, 15–64 
years, and ≥ 65 years). The Qinghai Provincial Meteoro-
logical Bureau produced meteorological data, encom-
passing average daily temperatures and humidity. Five 
national control monitoring stations in the Xining city 
urban area provided average daily concentrations of air 
pollutants PM2.5, SO2, CO, O3, NO2, and PM10. In addi-
tion, data from the China Air Quality Online Monitoring 
and Analysis Platform were used to supplement the miss-
ing pollutant data (https://www.aqistudy.cn/). To address 
air monitoring data with a missing rate of less than 5%, 
we employed multiple imputation techniques to com-
plete the data [21]. Subsequently, we utilised the daily 
average values from several monitoring stations as the 
data for atmospheric pollutants. There was a complete 
absence of any missing meteorological data, and the val-
ues exhibited logical consistency.

Within this study, cold waves were characterised as 
daily average temperatures falling below specific per-
centiles (2.5th, 5th, 7.5th, or 10th) and persisting for a 
minimum of 2 to 4 consecutive days, based on previous 
studies [22, 23]. For instance, 7.5th -2D denotes a cold 
wave defined as at least 2 consecutive days with daily 
apparent temperature at or below the 7.5th percentile. 
Furthermore, based on the equal time span and varia-
tion in cold wave frequency, we considered cold wave and 
PM2.5 exposure at different time periods, aiming to gain 
insight into the impact of climate change on the plateau 
region.

Statistical analysis
We utilised a time-stratified case-crossover approach and 
employed conditional logistic regression to quantitatively 
examine the correlation between cold waves, PM2.5, and 
outpatient visits for respiratory disease [17, 18]. In the 
case-crossover design, each study subject acts as their 
own control. The visit date was designated as the case 
day, while other dates in the same year, month, and day 
of the week as the case day were designated as control 
days. Each case period was matched with three or four 
control periods before or after the case period to control 
for long-term trends, seasonal trends, and day-of-week 
effects. For instance, if a participant visited on a Tuesday 
in August 2021, that specific day would be considered 
the case day, while the remaining Tuesdays in that month 
would serve as control days.

On the basis of the above, we used a distributed lag 
non-linear model (DLNM) to calculate the exposure-
response and lag-response correlation between cold 
waves, PM2.5, and outpatient visits for respiratory disease 
[24]. The linear function was employed to represent the 
exposure-response relationship [25], while the natural 
spline (ns) with 3 degrees of freedom (df ) was utilised to 
suit the lag-response correlation. According to previous 
studies, the lag of cold wave was typically 21 days [26] 
and the lag of PM2.5 was typically 7 days [27]. Based on 
previous research, the natural spline (ns) with 3 df was 
used to control for the confounding effects of relative 
humidity [28]. The expression is as follows:

 

log (E( Y )) = α + cb(CSi/P Mi, lag)
+ ns(rh, 3) + stratum + vacation

Where E(Y) is the expected number of daily outpatient 
visits; α is the intercept; cb(CS) and cb(PM) are cross-
basis functions for cold waves and PM2.5, used to exam-
ine lag effects; stratum is a time-stratification variable, 
used to control for long-term trends, seasonal changes, 
and other time-related factors; ns (rh, 3) is a natural cubic 
spline of relative humidity with 3 df; vacation is a binary 
variable used to control for Chinese holidays.

In order to further examine the interactive effects of 
exposure to cold waves and PM2.5 on outpatient visits for 
respiratory disease, we categorised PM2.5 exposure into 
two categories (low concentration: ≤37.5  µg/m3, high 
concentration: >37.5 µg/m3) based on the World Health 
Organisation’s 2021 Air Quality Guidelines Interim Tar-
get 3 for PM2.5 [29, 30]. We then created a new variable 
with 4 levels to represent different combinations of expo-
sure to cold waves and PM2.5. These levels include: (1) 
no-cold wave and low-level PM2.5 (level 1), (2) cold wave 
and low-level PM2.5 (level 2), (3) no-cold wave and high-
level PM2.5 (level 3), and (4) cold wave and high-level 
PM2.5 (level 4), with level 1 serving as the reference group 
[17]. The assessment of this effect involved the inclusion 
of this variable in a conditional logistic regression model, 
utilising three measures: the relative excess odds ratio 
due to interaction (REOI), the proportion attributable to 
interaction (AP), and the synergy index (S), which quan-
tified the proportion of the effect that can be attributed 
to interaction. The formulas below were used to calcu-
late the proportions of joint effects resulting from inter-
actions and the proportions of joint effects compared to 
individual effects for these 3 indicators [31–33]:

 
REOI = (OR11 − 1) − (OR10 − 1) − (OR01 − 1)

= OR11 − OR10 − OR01 + 1

https://www.aqistudy.cn/
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AP =

REOI

OR11

 
S =

OR11 − 1
(OR10 − 1) + (OR01 − −1)

Where OR10, OR01, and OR11 correspond to levels 2, 
3, and 4, respectively, with relation to level 1 (where 
OR00 = 1). When REOI = 0, AP = 0, and S = 1, it means that 
there is no interaction between the cold wave and PM2.5 
on respiratory disease visits. On the other hand, when 
REOI > 0, AP > 0, and S > 1, it indicates that the combined 
effect of the cold wave and PM2.5 on respiratory disease 
visits is greater than the sum of the effects of individual 
exposures, which is known as a synergistic effect. Con-
versely, when REOI < 0, AP < 0, and S < 1, it means that the 
combined effect is smaller than the sum of the individual 
effects of the cold wave and PM2.5. The delta approach 
was employed to get the 95% confidence interval (CI) 
associated with the three indicators [34].

We assessed the independent effects of cold waves 
and PM2.5 on respiratory disease visits and their interac-
tions by disaggregating by sex and age in order to identify 
potentially vulnerable groups. We utilized two-sample 
Z-tests to examine whether there were differences in 
stratum-specific effect estimates for each stratification 
variable.

 

Z =
βmale − βfemale√

SE2
male − SE2

female

where β represents a particular point estimate in a condi-
tional logistic regression model; SE is the standard error 
associated with each β.

To verify the reliability of the findings, we modified the 
degrees of freedom for relative humidity, increasing it 
from 3 to 6, and changed the linear function (fun=“lin”) of 
the crossbase of PM2.5 to a nonlinear function (fun=“ns”). 
Furthermore, we incorporated individual air pollutants 
(NO2, CO, SO2, and O3) as well as combined air pol-
lutants (PM2.5 and O3) into the model as distinct vari-
ables. The sensitivity studies limited the heating period 
(October 15 to April 15) in Xining City. Additionally, to 
observe the interference of the COVID-19 pandemic and 
variations in RR across different time periods, we catego-
rized the study period as follows: 2016–2018, 2016–2019, 
2019–2021, and 2020–2021. The percent excess risk was 
calculated as [(exp[β]-1)]. The statistical analyses in this 
study were mostly conducted using R software (version 
4.3.1).

Results
During the study period, the average daily temperature 
and average daily relative humidity in Xining City were 
6.4 ± 9.2 (°C) and 71.7 ± 16.2 (%), respectively. Addition-
ally, the average daily concentrations of PM2.5, SO2, NO2, 
CO, and O3 were 40.2 ± 27.9  µg/m3, 20.0 ± 13.1  µg/m3, 
39.3 ± 16.1  µg/m3, 1.4 ± 0.8 mg/m3, and 93.3 ± 33.4  µg/
m3. The overall number of outpatient visits for respira-
tory disease in the population amounted to 393,185 cases 
from 2016 to 2021 (Table S1). A low to moderate cor-
relation existed between the average daily temperature 
and other variables (p < 0.05) (Figure S2). Among these 
variables, the correlation between PM2.5 and PM10 was 
relatively strong (p < 0.05), with a correlation coefficient 
greater than 0.8. However, the correlation between O3 
and relative humidity was minimal (p > 0.05).

Table  1 shows the number of outpatient visits for 
respiratory disease in Xining City at different exposure 
levels from 2016 to 2021. Based on the 7.5th-2D defini-
tion (where “7.5th” refers to a daily average temperature 
below the 7.5th percentile threshold, and “2D” refers to 
the condition lasting at least two consecutive days), there 
were a total of 163 days identified with cold waves. Out 
of these days, 40,238 subjects (10.2%) were observed. The 
bulk of subjects, 352,947 in total, were observed on days 
without cold waves. Out of the total number of visits for 
respiratory disease, 87.3% (35,110) happened during a 
period of both cold waves and high PM2.5 concentrations. 
Additionally, 11.8% (5,128) of respiratory disease vis-
its occurred during a period of both cold waves and low 
PM2.5 concentrations. Overall, the frequency of respira-
tory disease visits fell as the temperature thresholds were 
lowered and the cold wave days lasted longer. Given 
these preliminary results, we used the definition group of 
7.5th-2D to 7.5th-4D for stratified analysis and sensitiv-
ity analysis because, in this definition group, the number 

Table 1 Cold wave days with different cold wave definitions and 
corresponding outpatient visits for respiratory disease in Xining 
from 2016 to 2021
Definition Days Outpatient visits for respiratory 

disease(%)
Overall With low-

level PM2.5

With high-
level PM2.5

10th2D 201 50,511 5,983(11.8) 44,528(88.2)
10th3D 182 45,750 5,607(12.3) 40,143(87.7)
10th4D 164 40,938 4,269(10.4) 36,669(89.6)
7.5th2D 163 40,238 5,128(12.7) 35,110(87.3)
7.5th3D 142 36,532 4,301(11.8) 32,231(88.2)
7.5th4D 119 30,108 3,092(10.3) 27,016(89.7)
5th2D 98 23,981 2,469(10.3) 21,512(89.7)
5th3D 81 18,506 2,358(12.7) 16,148(87.3)
5th4D 63 14,324 1,819(12.7) 12,505(87.3)
2.5th2D 46 10,023 1,713(17.1) 8,310(82.9)
2.5th3D 40 8,838 1,713(19.4) 7,125(80.6)
2.5th4D 31 7,208 1,220(16.9) 5,988(83.1)
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of cold wave days and the outpatient visits for respiratory 
disease were relatively concentrated [35, 36].

Figure  2A depicts the correlation between cold 
wave exposure and visits to respiratory disease. We 
observed that exposure to cold waves was signifi-
cantly associated with increased odds of respiratory 
disease clinic visits. Using the 10th-2D to define cold 
waves, the odds ratio (OR) for exposure to cold waves 
was 1.308 (95%CI:1.258,1.360) (p < 0.05), indicating 
a 30.8% (25.8,36.0) increased risk of clinic visits. The 
OR decreased gradually as the definition of cold waves 
became more stringent, possibly due to individuals 
adopting precautionary measures.

Figure 2B depicts the correlation between exposure to 
PM2.5 and the frequency of outpatient visits for respira-
tory disease. When different definitions of “cold wave” 
were added to the model to make it more accurate, the 
odds of respiratory disease outpatient visits consistently 
went up when PM2.5 levels were higher.

Figure S2 and Table  2 show the interactive impact of 
being exposed to cold waves and PM2.5 on visits related 
to respiratory disease. As defined by 7th-D3, the OR10, 
OR01, and OR11 for respiratory disease visits were 
1.044 (95% CI:1.002,1.088), 1.025 (1.013,1.037), and 
1.192 (1.159, 1.224); REOI, AP, and S were 0.122 (95% 
CI:0.078,0.165), 0.102 (0.098,0.106), and 1.114 (1.068, 
1.160), suggesting significant synergistic effects of expo-
sure to cold waves and PM2.5 on respiratory disease vis-
its. Except for 5th-2D and 5th-3D, similar synergistic 
effects were found when using alternative definitions of 
cold waves (REOI > 0, AP > 0, and S > 1; p < 0.05). In gen-
eral, there was a decline observed when implementing 
more stringent temperature thresholds and extending the 
duration of cold waves.

Figure 3 illustrate the independent effects and interac-
tions resulting from exposure to cold waves and PM2.5 
during various time periods on outpatient visits related 
to respiratory disease. Comparative analysis indicated 
that the independent impact of cold waves exhibits a 
decreasing trend. During the period spanning from 2016 
to 2018, significant synergistic effects (REOI > 0, AP > 0, 
and S > 1) of cold waves and PM2.5 on respiratory sys-
tem disease mainly occurred within the defined range of 
5th-2D to 2.5th-2D, and no significant synergistic effects 

Table 2 Additive interaction of exposure to cold waves and 
PM2.5 on outpatient visits for respiratory disease
Definition Additive interaction

REOI(95%CI) AP(95%CI) S(95%)
10th2D 0.171(0.135,0.207) 0.140(0.136,0.145) 1.163(1.121,1.205)
10th3D 0.144(0.107,0.182) 0.119(0.115,0.123) 1.135(1.093,1.176)
10th4D 0.152(0.111,0.193) 0.128(0.123,0.133) 1.146(1.097,1.195)
7.5th2D 0.120(0.081,0.159) 0.103(0.099,0.107) 1.115(1.071,1.159)
7.5th3D 0.122(0.078,0.166) 0.102(0.098,0.107) 1.114(1.068,1.160)
7.5th4D 0.135(0.087,0.183) 0.115(0.110,0.120) 1.130(1.077,1.183)
5th2D 0.046(-0.007,0.098) 0.042(0.040,0.044) 1.044(0.991,1.096)
5th3D 0.043(-0.010,0.097) 0.040(0.038,0.042) 1.042(0.987,1.097)
5th4D 0.082(0.021,0.143) 0.074(0.070,0.078) 1.080(1.015,1.145)
2.5th2D 0.079(0.009,0.148) 0.069(0.065,0.073) 1.074(1.009,1.138)
2.5th3D 0.047(-0.025,0.118) 0.042(0.039,0.045) 1.044(0.981,1.107)
2.5th4D 0.071(-0.013,0.154) 0.063(0.059,0.068) 1.067(0.989,1.146)

Fig. 2 Association of exposure to cold waves and PM2.5 with outpatient visits for respiratory disease: A OR (95% CI) of outpatient visits for respiratory dis-
ease associated with exposure to cold waves with a lag of 0–21 days; B: Exposure-response curves of exposure to PM2.5 and outpatient visits for respiratory 
disease with a lag of 0–7 days, adjusted to include different cold wave definitions
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were observed in other ranges. Nevertheless, during the 
period from 2019 to 2021, we observed significant syner-
gistic effects, which may be attributable to the decrease 
in the independent impact of cold waves.

Excess outpatient visit rates and numbers resulting 
from exposure to cold waves and different concentrations 
of PM2.5 are shown in Fig.  4 and Table S2. The excess 
rate range under different cold wave definitions spans 
from 12 to 28%, corresponding to excess outpatient visit 

numbers ranging from 46,863 to 112,181 cases, respec-
tively. According to the definition of 7.5th-D3, 19.2% of 
the excess rate was attributed to exposure to cold waves 
and high concentrations of PM2.5, corresponding to 
75,501 cases of outpatient visits for respiratory disease. 
2.52% (9,898 cases) was attributed to non-cold wave peri-
ods with high levels of PM2.5, and 4.47% (17,578 cases) 
was attributed to cold wave periods with low-level of 
PM2.5. Overall, lower temperature thresholds and longer 

Fig. 4 Fraction and number of excess outpatient visits for respiratory disease due to exposure to cold waves and high-level of PM2.5

 

Fig. 3 Independent and interactive effects of exposure to cold waves and PM2.5 on outpatient visits for respiratory disease at different periods. (Different 
periods for 2016–2018 and 2019–2021)
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durations of cold waves were associated with lower excess 
outpatient visit rates.

The stratified analysis in Table  3 indicates a stronger 
correlation between cold waves and respiratory disease 
visit rates in males, children, and the elderly. Meanwhile, 
the correlation between PM2.5 and respiratory disease 
visit rates varied among age groups (p < 0.05). The differ-
ences in interaction were statistically significant in the 
15–64 age group and those aged ≥ 65 (p < 0.05).

Sensitivity analysis indicates that changes in the rela-
tive humidity parameter and cross-base function lead 
to minor variations in the outcomes (Figure S3-4). This 
stability was preserved even when accounting for both 
individual and combined air pollutants. The results con-
cerning the variations in cold waves and PM2.5 across dif-
ferent time periods indicate that both factors had already 
exerted significant impacts prior to the pandemic. How-
ever, during the pandemic period, their effects slightly 
diminished (Figure S5; Table S3). This indicated that 
COVID-19 and its protective measures may have influ-
enced the health effects of these environmental factors, 
but this influence was positive. It suggests that when 
assessing the impact of environmental factors on health, 
the interference of large-scale public health events 
needs to be considered. Such outcomes from the sensi-
tivity analysis highlighted the reliability of our research 
findings.

Discussion
We examined the correlation between cold waves and 
PM2.5 levels in the high-altitude city of Xining. Addition-
ally, we measured the impact of this correlation on out-
patient visits for respiratory disease and quantified their 
interaction. Within this case-crossover study, we discov-
ered cold waves and high- level PM2.5 were closely tied to 
increased outpatient visits for respiratory disease. Cold 
waves and PM2.5 exhibited a synergistic effect in precipi-
tating these health issues. The independent effect of cold 
waves and the interaction between cold waves and PM2.5 
on outpatient visits for respiratory disease decreased as 

the definition of cold waves became stricter and their 
duration extended. Comparative analyses over differ-
ent periods have shown a decreasing trend in the inde-
pendent effect of cold waves, while the synergistic effect 
with PM2.5 persisted. Vulnerability to cold waves and the 
synergistic effect were notably higher among males, chil-
dren, and the elderly.

Currently, there are relatively few studies investigating 
the association between cold waves and outpatient vis-
its for respiratory disease, with most research focusing 
on emergencies, hospitalizations, and deaths. The OR 
in this study was close to the estimated values in other 
studies, such as in Shanghai at 1.26 (95% CI: 1.14, 1.38) 
[37], Shanxi at 1.232 (1.090, 1.394) [23], Beijing at 1.811 
(1.229–2.667) [38], and Nanjing at 1.54 (1.16, 2.04) [39]. 
These results indicate that the hazards of cold waves 
should receive sufficient attention. For instance, meteo-
rological monitoring and early warning, as well as the 
maintenance of health services, are necessary. The health 
risks associated with cold waves and air pollution in 
high-altitude areas have not been sufficiently studied. A 
study on the impact of cold waves on the risk of popu-
lation death in provincial capital cities of China revealed 
that the death risk in Xining city is much higher than in 
other western and same-latitude plain areas [22]. Accord-
ing to Tibet research, death risk rises with lower tem-
peratures [40]. These studies emphasize that the health 
risks to the population from extreme weather events in 
high-altitude areas cannot be ignored. Some studies sug-
gest that significant temperature differences between 
indoors and outdoors may exacerbate the risk of respira-
tory diseases [41, 42]. Notably, in Xining City, the heating 
period lasts for half a year, which may further amplify the 
risk of illness due to temperature differences. Compari-
sons of cold waves in different time periods show that the 
risk of respiratory disease generally decreases over time. 
This was attributed to the reduced frequency of cold 
waves after 2018, likely related to global warming [43, 
44]. Comparing the interaction effects in different peri-
ods, the synergistic effect from 2019 to 2021 was found 

Table 3 OR and REOI of cold wave and PM2.5 exposure on outpatient visits for respiratory disease (stratified by sex, age)
Definition Sex Age

Male Female 0–14 years 15–64 years ≥ 65 years
OR
7.5th2D 1.26(1.19,1.34) 1.19(1.12,1.27) 1.26(1.18,1.35) 1.15(1.08,1.23) 1.48(1.30,1.69)*

7.5th3D 1.34(1.25,1.42) 1.23(1.15,1.31) 1.37(1.27,1.47) 1.15(1.07,1.23)* 1.60(1.39,1.84)*

7.5th4D 1.58(1.48,1.70) 1.509(1.40,1.63) 1.70(1.57,1.84) 1.37(1.27,1.48)* 1.94(1.66,2.28)*

PM2.5 1.04(1.03,1.04) 1.04(1.03,1.04) 1.06(1.06,1.07) 1.03(1.02,1.03)* 1.05(1.05,1.06)*

REOI
7.5th2D 0.139(0.086,0.191) 0.098(0.040,0.156) 0.097(0.036,0.157) 0.024(-0.032,0.081) 0.643(0.518,0.768)*

7.5th3D 0.148(0.089,0.207) 0.091(0.026,0.157) 0.078(0.009,0.147) 0.027(-0.036,0.092) 0.675(0.545,0.805)*

7.5th4D 0.165(0.101,0.229) 0.099(0.027,0.171) 0.107(0.031,0.182) 0.043(-0.028,0.116) 0.602(0.464,0.740)*

*p < 0.05,two-sample Z-test estimation
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to be greater than that from 2016 to 2018, possibly due 
to the reduced individual effect of cold waves. Overall, 
extending the duration of cold wave responses through 
measures such as heating and keeping warm can effec-
tively reduce the risk of illness and the onset of diseases 
[45, 46].

This study reveals that cold waves and PM2.5 signifi-
cantly increase the risk of respiratory diseases, an effect 
closely related to physiological response changes caused 
by cold environments and air pollution. During cold 
waves, the stability of the atmospheric layer is enhanced, 
leading to an increase in the ground concentration of air 
pollutants such as PM2.5 [47], which can directly irritate 
the respiratory tract, trigger inflammatory responses, and 
potentially exacerbate existing respiratory diseases. Addi-
tionally, the cold environment may enhance the irritating 
effect of air pollutants on the respiratory tract, while the 
pollutants in the air may decrease the body’s adaptability 
to cold, significantly increasing the risk of respiratory dis-
eases. Specifically, the inhalation of cold air directly cools 
the mucous membrane of the upper respiratory tract, 
causing vasoconstriction and mucous membrane dry-
ness, leading to infections and inflammation [9, 48]. Fur-
thermore, low temperatures and PM2.5 cause oxidative 
damage to bronchial epithelial cells, leading to broncho-
spasm and increased airway reactivity [49, 50], increasing 
the risk of diseases such as asthma. The cold environ-
ment also affects the immune system, reducing the activ-
ity of macrophages and lymphocytes, weakening the 
body’s ability to eliminate pathogens [51, 52]. PM2.5 can 
penetrate into the alveoli, directly suppressing the local 
immune response of lung immune cells [53, 54], making 
individuals more susceptible to pathogen invasion. Mean-
while, cold conditions and PM2.5 activate inflammatory 
cells in the respiratory tract, promoting the occurrence 
of inflammatory reactions [55, 56]. During cold waves, 
people often use heating devices, which may increase 
the concentration of harmful substances in indoor air 
(such as CO, PM2.5), exacerbating the exposure risk to the 
respiratory tract [57]. Cold air and poor air quality may 
limit outdoor activities, leading to indoor gatherings of 
people, thereby increasing the risk of respiratory diseases 
through airborne transmission. These findings highlight 
the importance of protecting respiratory health under 
conditions of cold and high-level of PM2.5, especially 
considering the cumulative negative impact on respira-
tory health of the interaction between cold waves and 
PM2.5. These results emphasize that the body may trigger 
a more intense physiological response under the com-
bined effect of cold waves and air pollutants than under 
the influence of a single factor. This reveals the need to 
consider multiple impacts comprehensively and adopt 

more comprehensive and personalized health protection 
measures when facing these two interacting factors.

Stratified analysis shows that the risk of respiratory 
disease was slightly higher in males than females, but 
the difference was not significant. This could be related 
to factors such as males engaging more in outdoor work, 
greater temperature differences between indoor and out-
door environments, and demographic scale. Children 
and the elderly faced greater risks, which could be asso-
ciated with physiological characteristics and the immune 
system [58–60]. This could also be linked to their simul-
taneous exposure to higher concentrations of PM2.5. The 
interaction between cold waves and PM2.5 shows statis-
tically significant differences in the age groups of 15–64 
and ≥ 65 years. Additionally, the physiological decline 
that often occurs with aging in the elderly may lead to a 
higher incidence of diseases. Therefore, exposure to cold 
waves and high levels of PM2.5 increases the risk of respi-
ratory diseases in this group [60–62].

Although there is an increasing amount of research on 
the interactive effects of extreme temperatures and PM2.5 
on mortality rates, the potential synergistic effects on 
outpatient visits for respiratory disease, especially dur-
ing cold waves, have not yet been assessed. Our research 
presents new findings suggesting that the combination 
of cold waves and PM2.5 could have a synergistic effect, 
leading to respiratory health issues. The influence of 
these interactions decreased as the duration and inten-
sity of cold waves increased, emphasizing the significance 
and possible advantages of reducing simultaneous expo-
sure to cold waves and PM2.5, especially in high-altitude 
regions. Additionally, we found that combined expo-
sure to cold waves and high level of PM2.5 can result in 
a 21.86% excess in respiratory disease outpatient visits. 
Hence, the implementation of efficient cold wave alerts, 
precautionary measures, and minimizing exposure to 
PM2.5 can yield significant benefits for public health.

This study has certain limitations. Firstly, the meteo-
rological and pollution data primarily come from moni-
toring stations, not individual exposure data, which may 
lead to exposure errors. Secondly, our meteorological 
and PM2.5 data are based on outdoor measurements. In 
cold weather, most people spend more time indoors, and 
the impact of the indoor-outdoor temperature difference 
is overlooked. Thirdly, the study area is a high-altitude 
region with a unique climate, lower average tempera-
tures, and a smaller population size, which limits the gen-
eralizability of our results to other areas.

Conclusions
In this study, acute exposure to cold waves and PM2.5 was 
significantly associated with an increase in outpatient 
visits for respiratory disease, especially among children 
and the elderly. However, the risk impact of combined 
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exposure to these two extreme conditions is greater than 
the sum of their individual effects. This emphasizes the 
public health importance of reducing particulate pol-
lution when providing weather warning services to the 
public and highlights the potential health risks in high-
altitude areas. Given the ongoing progression of climate 
change, regions like Qinghai Province on the plateau are 
sensitive to climate change and air pollution. With an 
expected increase in the frequency of extreme weather 
events and high pollution days, it is urgent to assess 
the health impacts of extreme weather events and air 
pollution.
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