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Abstract 

Background Dengue fever stands as one of the most extensively disseminated mosquito-borne infectious diseases 
worldwide. While numerous studies have investigated its influencing factors, a gap remains in long-term analysis, 
impeding the identification of temporal patterns, periodicity in transmission, and the development of effective 
prevention and control strategies. Thus, we aim to analyze the periodicity of dengue fever incidence and explore 
the association between various climate factors and the disease over an extended time series.

Methods By utilizing monthly dengue fever cases and climate data spanning four decades (1978–2018) in Guang-
dong province, China, we employed wavelet analysis to detect dengue fever periodicity and analyze the time-lag rela-
tionship with climate factors. Additionally, Geodetector q statistic was employed to quantify the explanatory power 
of each climate factor and assess interaction effects.

Results Our findings revealed a prolonged transmission period of dengue fever over the 40-year period, transition-
ing from August to November in the 1970s to nearly year-round in the 2010s. Moreover, we observed lags of 1.5, 
3.5, and 3 months between dengue fever and temperature, relative humidity, and precipitation, respectively. The 
explanatory power of precipitation, temperature, relative humidity, and the Oceanic Niño Index (ONI) on dengue fever 
was determined to be 18.19%, 12.04%, 11.37%, and 5.17%, respectively. Dengue fever exhibited susceptibility to vari-
ous climate factors, with notable nonlinear enhancement arising from the interaction of any two variables. Notably, 
the interaction between precipitation and humidity yielded the most significant effect, accounting for an explanatory 
power of 75.32%.

Conclusions Consequently, future prevention and control strategies for dengue fever should take into account 
these climate changes and formulate corresponding measures accordingly. In regions experiencing the onset of high 
temperatures, humidity, and precipitation, it is imperative to initiate mosquito prevention and control measures 
within a specific window period of 1.5 months.
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Background
Currently, vector-borne diseases pose a threat to over 
80% of the world’s population, with mosquito-borne ill-
nesses contributing the most to the overall disease bur-
den [1]. The most prevalent viral infection transmitted by 
Aedes mosquitoes, dengue fever affects at least 128 coun-
tries and is thought to cause between 50 and 100 million 
cases annually [2, 3]. Aedes mosquitos help spread den-
gue disease to humans because they are highly adapted to 
urban settings in tropical and subtropical regions of the 
world [4].

A variety of factors influence dengue fever incidence 
and transmission. Extensive studies have established 
the importance of climate parameters such as tempera-
ture, precipitation, and humidity in driving dengue fever 
dynamics [1, 5, 6]. The dynamics of mosquito growth, the 
spread of viruses, and mosquito-human interactions are 
all influenced by the climate [7]. Temperature plays a cru-
cial role in vector development, biting rates, and the rate 
of pathogen development within mosquitoes [8]. Since 
stagnant water pools are necessary for mosquito breed-
ing and growth, precipitation is an important element in 
climate models used to identify dengue fever. The chance 
of dengue transmission can be impacted by humidity, 
which can also have an impact on mosquito survival and 
flight patterns [1, 9].

In addition to these commonly studied climate factors, 
extreme weather occurrences can also significantly affect 
the incidence of dengue disease [10, 11]. The El Niño-
Southern Oscillation (ENSO), which has a periodicity 
of two to seven years and is defined by alternating warm 
and cool phases in the tropical Pacific, is a persistent and 
irregular phenomena. Anomalies in the world’s tempera-
ture and precipitation patterns are brought on by ENSO 
events. According to several studies, ENSO significantly 
affects dengue fever dynamics by accounting for about 
40% of the fluctuation in temperature and rainfall [11].

Southern and eastern China are included in the East 
Asian monsoon region, which is highly sensitive to cli-
mate change. The dengue fever epidemic, which has had 
a considerable influence on these areas over the past few 
decades and is defined by different temporal and spatial 
evolution patterns, has had a significant impact on these 
areas. There were no known dengue fever cases in China 
until 1977. However, a dengue epidemic in the prov-
ince of Guangdong in 1978 heralded the start of the ill-
ness’ intermittent predominance across the country [12]. 
Then, dengue fever outbreaks were reported in Hainan, 
Guangxi, Fujian, and Zhejiang provinces sequentially 
[12]. In mainland China, a total of 655,324 cases and 610 
fatalities were recorded from 1978 to 2008, and 52,749 
cases and 6 fatalities from 2009 to 2014 [13]. As a result, 
dengue fever has grown to be a serious illness in China 

and was classified as an infectious disease of type B in 
2004. Despite the fact that there have recently been a few 
dengue fever cases in inland regions like Henan province 
[14], 94.3% total of dengue cases in mainland China were 
from Guangdong province [15], where the hot, humid 
weather conditions are favorable for mosquito breeding 
and dengue disease transmission [16]. Especially, in 2014 
China has undergone the worst dengue outbreak in the 
last 20 years [17], which caused great concern about den-
gue fever in China.

Many studies have focused on the temporal dynamics 
of dengue fever incidence over a period of 10 to 25 years 
[6, 18–20]. However, there is limited research on the epi-
demic patterns of dengue fever and the effect of climate 
factors on dengue fever under long-term climate change 
(climate change refers to climate variations typically 
spanning 30 years or longer). Between the mid-twentieth 
century and 2018, climate change increased the prob-
ability of transmission by 15.0% for Aedes albopictus and 
8.9% for Aedes aegypti, the principal vectors of dengue 
[21]. As global warming continues, several locations, 
including China’s eastern coast, are expected to become 
appropriate breeding grounds for the dengue virus by 
2050 [22]. Hence, it is important to conduct a compre-
hensive analysis of dengue dynamics over a prolonged 
historical period to understand the relationship between 
climate and dengue for formulating effective strategies 
for early warning, prevention, control of dengue fever, 
and informing public health measures aimed at reduc-
ing the burden of dengue fever and guide future research 
efforts in the field of vector-borne diseases.

This study aimed to analyze the periodicity of dengue 
fever incidence, evaluate the lag relationship between cli-
mate factors and the disease, and assess the explanatory 
power and interaction effects of these climate variables 
using dengue fever and climate data from Guangdong 
province spanning the years 1978 to 2018.

Methods
Data
Our study incorporated three distinct datasets. Firstly, 
we utilized monthly dengue fever cases in Guangdong 
province spanning the years 1978 to 2018. These data 
were sourced from previous papers [23–26]. Secondly, 
we obtained meteorological data, including monthly 
mean temperature, monthly mean relative humidity, and 
monthly total precipitation, from the China Meteorologi-
cal Data Sharing Service System (http:// data. cma. cn/). 
Lastly, we incorporated the monthly Oceanic Niño Index 
(ONI) as an indicator for the El Niño-Southern Oscilla-
tion (ENSO) phenomenon. The ONI data, representing 
the sea surface temperature anomaly index for the Niño 
region 3.4, were acquired from the Climate Prediction 

http://data.cma.cn/
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Center of the National Weather Service (https:// origin. 
cpc. ncep. noaa. gov). To supplement our analysis, we 
accessed the monthly population data of Guangdong 
province from the Guangdong Statistics Yearbook. The 
multicollinearity test showed that all climate factors had 
VIF values less than 3, so there the possibility of multicol-
linearity was ruled out.

Wavelet analysis
When analyzing time series that contain non-stationary 
power at various frequencies, the wavelet transform is 
always applied. A wavelet is a zero-mean function that 
is confined in frequency and temporal space. There are 
many wavelets that have been characterized, including 
the Morlet, Paul, and Gaussian derivative, each of which 
has appropriate application conditions [27]. In our study, 
we chose the Morlet wavelet ( ω0 = 6), which is considered 
to provide a good balance between time and frequency 
localization [28]. The Morlet is defined as:

where w0 and η are dimensionless frequency and time, 
respectively. The wavelet is stretched in time by chang-
ing its scale (s) to η = s × t , and normalized to have unit 
energy. The wavelet power is defined as WX

n (s)
2 . The 

specific formula is as follows:

where WX
n (s) is the transformed time series for scale s; δt 

is the time interval; n is the time and n′ is the reversed 
time. Then a wavelet power spectrum is generated to 
explore the periodicity of each time series. The time 
series were padded with enough zeros to generate a time 
series of length since working with finite-length time 
series will result in inaccuracies at the start and end of 
the wavelet power spectrum. The cone of influence (COI) 
is used to depict regions that give erroneous results in 
order to remove the impact of discontinuities at the end-
points and the lowering of edge amplitude influenced by 
zero-padding [27].

Cross Wavelet Transform (XWT) is used to probe 
coincident high power between two time series which is 
defined as:

where * means complex conjugation. The XWT power 
is defined as 

∣

∣WXY
∣

∣ . There is also a power spectrum in 
XWT, where the arrows represent the relative phase [28]. 
Phase arrows pointing right mean the two variables are in 
phase, and the left arrows mean anti-phase. Down arrows 
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]

(3)WXY
= WXWY ∗

mean X leads Y by 90 degrees, and up arrows mean Y 
leads X by 90 degrees [29].

Geodetector q statistic
In order to explore the association between long-term 
climate factors and the incidence of dengue fever, and 
reveal the interaction between these climate factors, 
Geodetector q statistic was applied. The basic principle 
of the method is to assume that if the spatial or tempo-
ral distribution of two variables tends to be consistent, 
there is statistical association between them [30]. Our 
study aimed to explore the impact of different factors 
on the variation in time of dengue fever incidence.

In our study, q statistic of Geodetector were used 
to illustrate the explanatory power of independent 
variables:

where q is the explanatory power of each factor on den-
gue fever incidence, which follows a Noncentral-F distri-
bution [30, 31] and the range is from 0 to 1. The q value 
indicates that X explains 100 × q% of Y, the larger the 
value is, the stronger the explanatory power of independ-
ent variable X to Y is, and vice versa. h is the number of 
the strata of variable X (climate factors); Nh and N are the 
sample size in the h-th stratum and the whole regions, 
respectively; σ 2

h  and σ 2 are the variance of Y (dengue 
fever incidence) for the h-th stratum and the whole 
regions; SSW and SST indicate the within sum of squares 
and total sum of squares, respectively.

Interaction detector of Geodetector can be used to 
assess the interaction effect of two variables, e.g.,X1 and 
X2, which can calculate the explanatory power q(X1 ∩ X2) 
of two factors and probes whether the explanatory power 
of two factors is enhanced or weakened when taken 
together, or whether they are independent by comparing 
q(X1 ∩ X2) with q(X1) and q(X2). The description of each 
interaction demonstrates in Table 1 [32, 33].

(4)
q = 1−

L
∑

h=1

Nhσ
2
h

Nσ 2
= 1−

SSW

SST

Table 1 The interaction relationship of Geodetector q statistic

X1 ∩ X2 means the new stratum created by overlaying X1 and X2

Interaction relationship Interaction effect

q(X1 ∩ X2) < Min(q(X1), q(X2)) Weaken, nonlinear

Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) Weaken, univariate

q(X1 ∩ X2) > Max(q(X1), q(X2)) Enhance, bivariate

q(X1 ∩ X2) = q(X1) + q(X2) Independent

q(X1 ∩ X2) > q(X1) + q(X2) Enhance, nonlinear

https://origin.cpc.ncep.noaa.gov
https://origin.cpc.ncep.noaa.gov
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Results
Periodicity of dengue fever and climate factors
The 40-year time series analyzed in this study revealed 
noticeable fluctuations in dengue fever incidence. Spe-
cifically, there were seven years during which the num-
ber of dengue fever cases exceeded 10,000: 452,674 in 
1980, 118,881 in 1986, 45,189 in 2014, 32,830 in 1987, 
22,122 in 1978, 19,543 in 1981, and 16,385 in 1985 
(Fig.  1). In comparison to these high-incidence years, 
the occurrence of dengue fever in other years was rela-
tively lower.

To assess the periodicity of dengue fever incidence 
and its association with climate factors, we conducted 
Continuous Wavelet Transform (CWT) analysis on 
these variables (Fig.  2). The wavelet power spectrum 
revealed distinct scales of periodicity in dengue fever 

incidence during specific time intervals, namely 1980–
1982, 1985–1987, 1994–2004, 2006–2007, and 2011–
2016, dengue fever incidence was composed of different 
scales periods: a distinct one-year cycle and a cycle 
of half a year. Notably, over the 40-year period, the 
prevalence of the half-year cycle gradually diminished, 
transitioning into a one-year cycle. This observation 
implies an extended transmission period for dengue 
fever, encompassing nearly the entire year instead of 
being limited to August to November. Additionally, a 
five-year cycle was evident during the 1980s, indicat-
ing notable inter-annual variation in dengue fever inci-
dence (Fig. 2a).

The wavelet power spectra analysis revealed a con-
sistent one-year cycle in temperature, relative humid-
ity, and precipitation. This cycle showed regular 
inter-annual variation throughout the entire time 

Fig. 1 Temporal dynamics of dengue fever incidence and associated variables, 1978–2018. From top to bottom, the figure shows monthly dengue 
fever incidence  (log10), average temperature, relative humidity, precipitation and ONI
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series (Fig. 2b, c, d). Notably, among the analyzed cli-
mate factors, the El Niño Index (ONI) exhibited dis-
tinct characteristics compared to others. Over the 
entire time series, the periodicity of the El Niño phe-
nomenon was observed within the range of 2–7 years, 
with a particular emphasis on the 3–6  year interval, 
indicating an average occurrence every 3–6  years 
(Fig. 2e).

Time‑lag association between dengue fever and climate 
factors
From each two CWTs (one is dengue fever incidence and 
the other is a climate factor), we performed Cross Wave-
let Transform (XWT) to assess their shared power and 
relative phase in the time–frequency domain, thereby 
investigating the association between dengue fever inci-
dence and climate factors (Fig. 3).

Fig. 2 Continuous wavelet transform power spectrum of dengue fever incidence and climatic factors, 1978–2018. a-e dengue fever incidence (a) 
average temperature (b) average relative humidity (c) precipitation (d) EI Niño index (e). The thick black contour designates the 5% significance 
level against red noise and the cone of influence (COI) where edge effects might distort the picture is shown as a lighter shade
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The XWT of dengue fever incidence and temperature 
shows that they have common high power in one year 
over the whole time series, so the temperature is a sig-
nificant factor that influences the dengue fever. The mean 
phase of the XWT phase angle outside the COI and 
inside the 5% significant areas is 45 ± 15°. It indicates that 
within one year, the two factors are in phase and the inci-
dence of dengue fever lags behind the average tempera-
ture by 1/8 cycles, implying that the incidence of dengue 
fever lags behind the average temperature by about 
1.5 months (Fig. 3a).

The XWT of dengue fever incidence and relative 
humidity shows that they also have common high 
power in one year over the whole time series, and the 
mean phase of the XWT phase angle outside the COI 
and inside the 5% significant areas is 105 ± 15°. It means 
that within one year, the incidence of dengue fever lags 
behind the relative humidity by 7/24 cycles, implying that 
the incidence of dengue fever lags behind the relative 
humidity by about 3.5 months (Fig. 3b).

The XWT of dengue fever incidence and precipita-
tion shows that they are in phase with significant com-
mon power in one year during the 40  years. The XWT 
phase angle has a mean phase of 90 ± 15°, which means 
that within one year, the incidence of dengue fever lags 
behind the precipitation by 1/4 cycles, implying that the 

incidence of dengue fever lags behind the precipitation 
by about 3 months (Fig. 3c).

The relationship between dengue fever incidence and 
the El Niño Index (ONI) exhibits a relatively complex 
nature. The Cross Wavelet Transform (XWT) analysis 
reveals a significant shared power in the 3–6 year band, 
particularly during the period from 1984 to 1992, indi-
cating a strong correlation between the two variables. 
Furthermore, throughout the entire study period, they 
also exhibit consistent power in the one-year band, fur-
ther indicating a correlation between these factors on an 
annual basis (Fig. 3d).

The Cross Wavelet Transform (XWT) revealed the 
degree of correlation between climate change and den-
gue fever cases in the time–frequency space, providing 
knowledge about time lags. To further validate these 
computational results, we used another method, the 
Spearman coefficient, to calculate the impact of differ-
ent lag periods of various climate factors on dengue fever 
cases, as shown in Table 2. Temperature showed a signifi-
cant positive correlation with dengue fever incidence at 
different lag times, with the strongest correlation at a lag 
of 2 months, with a correlation coefficient of 0.459; this 
was followed by a lag of 1 month with a correlation coef-
ficient of 0.431. Relative humidity also exhibited a sig-
nificant positive correlation with dengue fever incidence 

Fig. 3 Cross-wavelet power spectrum of dengue fever incidence and climatic factors in Guangdong Province, 1978–2018. a-d dengue fever 
incidence—average temperature (a) dengue fever incidence—average relative humidity (b) dengue fever incidence – precipitation (c) dengue 
fever incidence—EI Niño index (d). The thick black contour designates the 5% significance level against red noise and the cone of influence (COI) 
where edge effects might distort the picture is shown as a lighter shade
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at different lag times, with the strongest correlation at a 
lag of 3  months, with a correlation coefficient of 0.333; 
this was followed by a lag of 4 months with a correlation 
coefficient of 0.305. Precipitation and the Oceanic Niño 
Index (ONI) also showed positive correlations with den-
gue fever incidence at different lag periods. Among them, 
precipitation exhibited the strongest correlation at lag 
times of 2 and 3 months, with correlation coefficients of 
0.371 and 0.353, respectively. ONI, on the other hand, 
showed lower correlations with dengue fever incidence in 
lag periods from 0 to 5  months, indicating longer-term 
interannual lag effects. These results are consistent with 
the Cross Wavelet Transform (XWT), demonstrating the 
reliability of the findings in this study.

Influence of various climate factors on dengue fever 
incidence
Based on the XWT analysis, it is evident that tempera-
ture, relative humidity, precipitation, and the El Niño 
Index (ONI) play significant roles in influencing the 
incidence of dengue fever. To quantitatively assess their 

explanatory power, we employed Geodetector. The geo-
detector q statistic revealed that precipitation, tem-
perature, and relative humidity accounted for 18.19%, 
12.04%, and 11.37% of the heterogeneity in dengue 
fever incidence, respectively, while the influence of the 
El Niño Index was measured at 5.17% (Fig.  4). All the 
findings were statistically significant.

To examine the interactive effect of climate factors 
on the incidence of dengue fever, we conducted geo-
detector analysis to calculate the interaction detector 
for each pair of factors. The results are presented in 
Fig.  5. Notably, the analysis reveals that the interac-
tion between any two variables leads to a nonlinear 
enhancement in their influence. Particularly, when con-
sidering the combined effect of temperature, precipi-
tation, and relative humidity, their impact on dengue 
incidence surpasses 70% of the geodetector q statistic. 
Furthermore, the explanatory power of the El Niño 
Index (EI Niño) significantly improves when interacting 
with any other factor (Fig. 5).

Table 2 Time-lag analysis results between climate factors and dengue fever incidence

* p < 0.05, **p < 0.01

Lag0 Lag1 Lag2 Lag3 Lag4 Lag5

Temperature 0.280** 0.431** 0.459** 0.368** 0.181** -0.049

Humidity -0.051 0.142** 0.280** 0.333** 0.305** 0.239**

Precipitation 0.089* 0.275** 0.371** 0.353** 0.281** 0.113*

ONI 0.133** 0.119** 0.103* 0.096* 0.090* 0.079

Fig. 4 Geodetector q statistic of various climate factors
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Discussion
Dengue fever is considered to be a disease strongly influ-
enced by climate. Climate change can have both direct 
and indirect impacts on the ecology of dengue fever. 
Numerous empirical studies have investigated the rela-
tionship between dengue fever and climate factors using 
various analytical approaches [7, 29, 34, 35]. However, 
the long-term effects of climate factors on dengue fever 
remain unclear. In this study, we conducted wavelet anal-
yses on a time series of monthly reported dengue cases 
and climate variables spanning from 1978 to 2018. The 
aim was to detect the periodicity of dengue fever and cli-
mate factors and qualitatively demonstrate their phase 
and time-lag relationship. Additionally, we employed 
Geodetector to quantitatively assess the relative impor-
tance of each climate factor on dengue fever and their 
interactions. Our findings revealed that dengue fever 
exhibits noticeable inter-annual and intra-annual varia-
tions, with different associations observed between the 
disease and certain climate factors.

Our study uncovered a novel finding regarding the 
changing periodicity of dengue fever over time. Spe-
cifically, we observed a shift from a half-year cycle to a 
one-year cycle, indicating a lengthening of the epidemic 
period for dengue fever. This intriguing observation sug-
gests that the influence of global warming and urbani-
zation might contribute to this phenomenon [36]. A 
periodicity of two to three years has been mentioned in a 

few earlier studies conducted in Southeast Asian nations 
like Thailand and Vietnam [37, 38]. Our study suggests 
that Guangdong has a relatively low inter-annual varia-
tion in dengue fever which is stable in both the short and 
long term. This also supports the conclusion that when 
the length of the warm season is short, dengue fever 
cycles in higher latitudes are shorter than those in lower 
latitudes [20]. Guangdong’s lower inter-annual variation 
is most likely caused by the reason that dengue fever in 
China is still an imported illness rather than an indige-
nous one. Although Southeast Asian nations were iden-
tified as the most likely source of DENV in Guangzhou, 
strain and genotype alterations were frequent, and nei-
ther serotype nor genotype was dominant [39].

We established a close relationship between climate 
factors and the incidence of dengue fever. Specifically, 
we observed a lag of 1.5, 3.5, and 3  months between 
dengue fever and temperature, relative humidity, and 
precipitation, respectively. These findings confirm the 
widely accepted notion that temperature, precipita-
tion, and humidity, as representative climate variables, 
play a crucial role in influencing the occurrence of den-
gue fever [1]. Many previous studies have explored the 
time-lag relationship between dengue fever and various 
climate factors, but due to the different time series and 
regions, there are different results [40–44]. For instance, 
Taiwan, which is as the same latitude as Guangzhou, 
had a 3  months lag relationship between dengue and 

Fig. 5 The interaction effect of climate factors on dengue fever
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temperature [41]. Another study also in Guangdong 
province showed that temperature, precipitation, and 
humidity are associated with dengue with 2, 3, 4 months 
lag from 1988 to 2015 [40]. Compared with these stud-
ies, we use a longer time series, which was from 1978 (the 
first reported outbreak in Guangdong, China) to 2018, to 
obtain the phase information in time–frequency by using 
XWT. This provided a more accurate and robust relation-
ship between dengue and climate factors over long-time 
scales.

In contrast to the evident time-lag observed between 
temperature, humidity, precipitation, and dengue fever, 
the relationship between ONI and dengue fever exhib-
ited a more intricate nature. Previous studies have also 
reported divergent findings regarding their association 
in various regions [40, 45, 46]. For instance, a study con-
ducted in Guangdong, China from 1992 to 2011 discov-
ered a significant coherence between ONI and dengue 
fever, with a lag of 12  months [40]. The reason for the 
difference from our study may be that seven large-scale 
outbreaks in Guangdong province (over 10,000 cases per 
year) were included in our study. These seven years which 
had abnormally high numbers of cases may be caused 
by a variety of reasons, and the EI Niño was not the 
only factor, for example one study conducted in Guang-
zhou demonstrated that the outbreak was a combination 
of many factors, including the improved transmission 
capacity of mosquitoes, increased monitoring due to the 
high media attention and so on [47]. In addition, multi-
variate ENSO Index was utilized in a research in Thailand 
to discover an association between ENSO and dengue 
with a 1–11 month lag [46].

The study revealed that precipitation, temperature, 
and relative humidity had high explanatory power to the 
incidence of dengue fever in Guangdong province. This 
finding aligns with a previous study conducted in Guang-
zhou, which demonstrated a positive association between 
cumulative precipitation and the number of days with 
light or moderate precipitation with dengue fever [48]. 
Increased rainfall can contribute to the proliferation of 
vector breeding habitats, thus influencing the incidence 
of dengue fever [1]. Previous studies have found a para-
bolic relationship between temperature and dengue fever 
incidence [5, 19]. Because within a certain temperature 
range, an increase in temperature can accelerate virus 
replication and shorten the external incubation period. 
Nevertheless, mosquito survival rates drop in extremely 
hot weather, which reduces the risk of transmitting den-
gue illness [8, 19, 49]. Prior research has also shown a 
parabolic pattern indicating a non-linear link between 
relative humidity and dengue disease. Suitable humidity 
can influence mosquitoes in many ways, including their 
life cycle, biting rate, flying distance and so on [35]. For 

example, one study discovered that mosquitos bite 19 
times per hour in dry settings and 60 times per hour in 
wet conditions, demonstrating that humidity might affect 
dengue through modifying mosquito behavior [50].

Compared to other climate factors, the El Niño phe-
nomenon (ENSO) exerts distinct influences in terms of 
intensity, duration, and time lag. Several studies have pro-
vided evidence of a positive association between the El 
Niño Index (ONI) and dengue fever, with increased den-
gue cases occurring during El Niño events in Southern 
Coastal Ecuador [51]. El Niño has been found as one of 
the main causes of dengue fever in Thailand, with ENSO 
events worldwide responsible for 22% of the monthly 
incidence variation in eight northern interior provinces 
[46]. It is important to note that these differences in find-
ings may be attributed to variations in research areas and 
time series. The indirect influence of El Niño on mos-
quito behavior primarily stems from climate variations. 
For example, the ENSO event in Kaohsiung, Taiwan in 
2005 resulted in increased humidity, which gave more 
ideal conditions for mosquito growth and reproduction, 
consequently contributing to the rise in dengue disease 
cases [52].

Surprisingly, our study not only examines the indi-
vidual impact of climate factors but also investigates the 
interaction between them. We discovered that the inter-
action of any two variables exhibits nonlinear enhance-
ment, with the interaction between precipitation and 
humidity being the most significant. Furthermore, the 
explanatory power of the El Niño Index (ONI) is greatly 
enhanced when it interacts with any climate factor. These 
findings lead us to comprehend three crucial aspects. 
Firstly, the transmission of dengue fever is influenced 
by both common climate factors with regular cycles and 
extreme climate events with irregular cycles. This finding 
confirms the close association between El Niño and cli-
mate change. Secondly, research should not solely focus 
on the relationship between individual climate factors 
and dengue fever but should also consider the combined 
influence of multiple factors. Thirdly, the water environ-
ment plays a critical role in dengue transmission, and this 
significant impact may be related to various hydrological 
factors such as soil type and vegetation. Therefore, timely 
monitoring of El Niño and climate change is imperative 
for controlling the spread of dengue fever.

The study employed a long-term series analysis to 
investigate the cyclical patterns of dengue fever, con-
tributing to the body of evidence linking climate and 
dengue from both qualitative and quantitative per-
spectives. Our findings reveal notable inter-annual and 
intra-annual variations in dengue incidence and its sus-
ceptibility to various climate factors. Particularly, the 
interaction between precipitation and relative humidity 
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emerges as the most influential factor. These findings 
enhance our understanding of dengue ecology and offer 
valuable insights for early warning and control meas-
ures. To prevent a resurgence of dengue fever amid the 
challenges posed by global warming, such as increased 
temperatures and precipitation, concerted efforts are 
required to bolster the public health system’s capacity, 
raise awareness about dengue fever, encourage dengue 
vaccinations, and foster a healthier living environment.

This study has several limitations that should be 
acknowledged. As this study is based on a time series 
analysis, the findings may not capture the spatial vari-
ations of dengue fever at more granular levels such as 
prefecture-level cities, districts, and counties, due to 
the availability of only provincial-level dengue inci-
dence data. Furthermore, due to data constraints and 
our specific aims, we did not determine the direct or 
indirect impact of El Niño’s climate variation on den-
gue incidence. Future studies are expected to obtain 
more comprehensive data that allows for individual and 
combined analysis of various factors influencing den-
gue fever, including spatial variations and its temporal 
association with climate and weather. Despite these 
limitations, the findings of this study provide valuable 
insights for dengue fever warning systems and public 
health preparedness efforts.

Conclusions
In the context of global climate change, the epidemic 
period of dengue fever has gradually lengthened over 
the past 40  years. The incidence of dengue is influ-
enced by a combination of climate factors such as pre-
cipitation, temperature, relative humidity and El Niño. 
Therefore, future dengue prevention and control strat-
egies should take these climate changes into account 
and develop corresponding measures. In addition, con-
sidering the lag relationship between the incidence of 
dengue fever and climatic factors, mosquito prevention 
and control should be carried out within a specific win-
dow period of 1.5 months in areas with high tempera-
ture, high humidity and heavy rainfall.
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