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Abstract 

Climate change increases the risk of illness through rising temperature, severe precipitation and worst air pollution. 
This paper investigates how monthly excess mortality rate is associated with the increasing frequency and sever-
ity of extreme temperature in Canada during 2000-2020. The extreme associations were compared among four age 
groups across five sub-blocks of Canada based on the datasets of monthly T90 and T10, the two most representa-
tive indices of severe weather monitoring measures developed by the actuarial associations in Canada and US. We 
utilize a combined seasonal Auto-regressive Integrated Moving Average (ARIMA) and bivariate Peaks-Over-Threshold 
(POT) method to investigate the extreme association via the extreme tail index χ and Pickands dependence function 
plots. It turns out that it is likely (more than 10%) to occur with excess mortality if there are unusual low temperature 
with extreme intensity (all χ > 0.1 except Northeast Atlantic (NEA), Northern Plains (NPL) and Northwest Pacific (NWP) 
for age group 0-44), while extreme frequent high temperature seems not to affect health significantly (all χ ≤ 0.001 
except NWP). Particular attention should be paid to NWP and Central Arctic (CAR) since population health therein 
is highly associated with both extreme frequent high and low temperatures (both χ = 0.3182 for all age groups). The 
revealed extreme dependence is expected to help stakeholders avoid significant ramifications with targeted health 
protection strategies from unexpected consequences of extreme weather events. The novel extremal dependence 
methodology is promisingly applied in further studies of the interplay between extreme meteorological exposures, 
social-economic factors and health outcomes.
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Introduction
Climate change has become a serious threat to the global 
economy, public health and social development [1]. The 
World Meteorological Organization [2] reports that dis-
asters attributed to weather, climate and water-related 
hazards from 1970 to 2019 resulted in over 2 million 
deaths and $3.64 trillion in losses (i.e., accounting for 
50% of records, 45% of related deaths and 74% of related 
economic losses among all geophysical, meteorological, 
climatological, hydrological, biological, extra-terrestrial 
and technological disasters). The number of disasters 
increased five-fold, and economic losses increased seven-
fold over the span of 50 years. Climate change is expected 
to cause approximately 250,000 deaths per year due to 
climate-sensitive diseases between 2030 and 2050 [2]. 
Extreme temperature events (ETEs), particularly those 
associated with heat, have become more frequent, more 
intense, and longer lasting [3].

Recent studies reported the frequency, intensity and 
duration of ETEs influence on mortality, which makes it 
a pressing public health concern [4, 5]. In particular, large 
excess mortality has been observed due to extreme high 
and low temperatures [6]. For example, over 700 peo-
ple lost their lives in the 1995 Chicago heat wave within 
one week, while more than 72,000 people died in the 
2003 Europe heat wave. In Canada, 619 people in Brit-
ish Columbia died due to the heat during the 2021 heat 
dome, and 106 deaths died in 2010 heatwave in Quebec. 
The majority of the deaths occurrhhed in Montreal and 
were among individuals aged 65 and older. In 2019, a 
severe cold wave hit the Midwestern United States and 
Eastern Canada, killing at least 22 people.

Most research focused on the health outcomes result-
ing from extreme (high or low) temperatures, while little 
is known about the impact of the exceptionally high fre-
quency of temperature events that are harmful to human 
life. This paper investigates the influence of extremely 
frequent adverse temperature events, i.e., frequent heat 
waves and cold snaps, on excess mortality. This is also 
motivated by the fact that, the frequency and intensity of 
heat extreme generally increase [7], while neglecting the 
extreme temperature changes might underestimate the 
potential for very serious mortality situations. As shown 
by [8], both regional and age-group difference existed in 
the extreme association between frequent exposure to 
cold/hot temperature and excess death in United States. 
Therefore, our study aims to identify these differences 
in Canada, assisting in the government to better allocate 
healthcare sources to vulnerable population.

In this study, we focus on the association between haz-
ardous-temperature frequency and health consequences. 
The temperature-mortality relationship was identified 
by many studies at different temporal and spatial scales, 

including [9] at annual continent-level worldwide, [10] at 
small area geographical scale, and [11] even at individual 
scale. Statistical methods, including time-series analy-
ses and case-crossover designs with or without lagged 
effects, are commonly used in the aforementioned con-
tributions [12, 13]. In this context, we consider the toler-
ance to relatively extreme temperatures and focus on the 
regions with similar temperature patterns [14]. Noting 
further that, the excessive health crashes (fatalities) are 
likely to observe when the cumulative effects of unusual 
temperature over a period of prolonged duration exceed 
a critical value, we will principally employ extreme value 
theory (EVT) for quantifying the excess temperature-
mortality association [15, 16]. As EVT can provide a 
reasonable extrapolation from observed states to unob-
served states with main focus on the tail of a distribution, 
it is widely used for modelling and measuring extreme 
events in hydrology, environment, finance [14, 15, 17], 
and recently applied in public health settings, such as 
mortality and morbidity peaks [18, 19], and infectious 
disease mortality rate [20].

In this paper, the bivariate POT method, as a new 
research hot-spot of the estimation of extreme values, 
will be applied since it can fully exploit the extreme prop-
erty of the observed data [17]. The study of multivariate 
extremes consists of two steps: the marginal analysis and 
the dependence study, which is commonly supposed to 
be marginally invariant. Generally, one may employ mar-
ginal tail information to transform the marginal distribu-
tion to a common scale, e.g., unit Fréchet distribution. In 
this paper, we will utilize seasonal Auto-regressive Inte-
grated Moving Average (ARIMA) models to adjust pos-
sible trends and seasonality in non-stationary time-series 
data, and then transform the marginal residuals (excess 
extreme temperature and excess mortality) into unit 
Fréchet distribution by generalized Pareto (GP) distri-
butions. Note that the application of the POT approach 
involves some complexities, and one of the most impor-
tant issues is the threshold selection since it must bal-
ance the trade-off between variance and bias. Several 
approaches have been developed to determine a proper 
threshold, and we refer to [21, 22] for a comprehensive 
review.

The bivariate POT method applied here for the joint 
tail distribution of extreme temperature and excess mor-
tality has extensive and powerful applications when the 
linear relationship fails to apply, especially when the 
extreme phenomenon becomes interesting. Although 
there were some studies applying POT models to evaluate 
independent ETEs, few studies considered the bivariate 
POT method to examine the extreme influence of both 
extreme low and high temperature frequency on popula-
tion health except the latest study [8, 14, 23]. Therefore, 
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our results have important implications for comprehen-
sive risk management and mitigation in the healthcare 
systems, public authorities and environmental agencies, 
with the aim to help reduce the adverse effects of extreme 
weather events and improve health protection.

The remaining paper is organized as follows. “Data 
description”  section presents a comprehensive descrip-
tion of the data and its exploratory analysis. “Methodol-
ogy”  section provides a review of the seasonal ARIMA 
model and the fundamental concepts in EVT, with an 
emphasis on the bivariate case. “Results” section presents 
the main results, followed by an extensional discussion 
of the results in “Discussion”  section. Finally, “Conclu-
sion” section concludes this paper.

Data description
This research was conducted based on a recently devel-
oped meteorological time series for severe weather - 
the Actuaries Climate Index or ACI1 (developed by the 
actuarial associations in Canada and the US), and rel-
evant mortality in Canada over the period 2000–2020. 
The ACI is a useful severe weather monitoring method 
to measure and monitor the frequency of severe weather 
and the extent of sea level rise in the United States and 
Canada. We chose two important components of the 
ACI: monthly T90 and monthly T10. Monthly T90 (T10) 

tracks the change in the frequency of temperature above 
the 90th percentile (below the 10th percentile for T10) 
relative to the reference period (1961 to 1990), and it is 
the aggregated value on gridded data at the resolution 
of 2.5 by 2.5 degrees latitude and longitude. We refer to 
[24, 25] for extensional studies on the interplay of climate 
changes, health risks, insurance, agriculture and macro-
economics. In this study, we used the monthly T90 and 
T10 with unsmoothed and unstandardized values.

We considered five continental regions in Canada 
used in the ACI, namely Central Arctic (CAR), North-
east Atlantic (NEA), Northeast Forest (NEF), North-
west Pacific (NWP), and Northern Plains (NPL); these 
regions are defined along state and provincial borders 
(Fig.  1). Since the monthly mortality data for specified 
age groups at the regional level are not publicly available, 
we assumed that the overall age structure of population 
and deaths did not change greatly annually, and then 
adopted the annual population and deaths age structure 
so as to obtain the monthly mortality per 100,000 people 
for five regions and different age groups. Provincial-level 
death data by month were obtained from Statistics Can-
ada2, while the annual provisional death counts for four 
age groups of 0–44, 45–64, 65–84 and 85+ (commonly 
used for statistics and analysis [26]), were collected 

Fig. 1 Five regions in Canada used in the ACI: Central Arctic (CAR), Northeast Atlantic (NEA), Northeast Forest (NEF), Northwest Pacific (NWP), 
and Northern Plains (NPL). Sources: https:// actua riesc limat eindex. org/ data/ region- defin itions/

1 https://actuariesclimateindex.org/ (accessed April 27, 2023) 2 https://www.statcan.gc.ca/en/start (accessed April 27, 2023)

https://actuariesclimateindex.org/data/region-definitions/
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from the Canadian Vital Statistics Deaths Database3 
(data for Yukon are not available as of 2017). The provi-
sional annual estimates of population by age group were 
obtained through Statistics Canada’s Demographic Esti-
mates program4.

Figure  2 shows the temporal trends (a,c,e) and sea-
sonality (b,d,f ) in the monthly T90, T10, and mortality 
per 100,000 people at the national level between 2000 
and 2020. Figure 2a demonstrates a long-term upward 
trend in monthly T90 before 2016 and a downward 
trend afterwards, while Fig. 2c shows that T10 remains 
relatively stable over 20 years. The overall upward trend 
in T90 (except 2010), indicates that extreme high tem-
perature becomes more frequent due to the warmer cli-
mate. This change is expected to continue in the future 
[27]. This is consistent with the findings of a general 

Fig. 2 Original temporal trends (a, c, e) and seasonality (b, d, f) for T90, T10 and mortality per 100,000 in Canada during 2000–2020. The smooth 
lines in (a, c, e) shows the general trends of the data collected. The seasonality in (b, d, f) is from the decomposition of the original time series

3 https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey 
&SDDS=3233#a1 (accessed April 27, 2023)
4 https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey 
&SDDS=3604 (accessed April 27, 2023)
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increase in the heat extremes frequency [28]. Figure 2e 
shows an upward trend of national mortality after 
2012, probably attributed to population growth and 
population ageing, as well as the increasing exposure 
to unusual temperature in general (cf. Fig. 2a, c). Clear 
seasonality features of T90, T10 and mortality could 
be observed by Fig. 2b, d, f. Similar results are demon-
strated for all five regions in Fig. 3.

Figure  4 shows the trends of monthly mortality per 
100,000 people for four age groups at both national 
and regional levels in Canada. We see that the overall 
monthly crude mortality has increased over 20 years 
and the age group 85+ has higher mortality than all 
the other age groups, roughly four-fold of 65–84 group, 
and 40 fold of 45–64 group. For the age groups 0–44 
and 45–64, a slightly decreasing trend in mortality is 
observed in NEF and NEA over 20 years, whereas the 
mortality has experienced an increase in CAR, NPL and 
NWP since 2015. For the age groups 65–84 and 85+, 
there are noticeable declines in all regions. Moreover, 
seasonal patterns are also observed with higher mortal-
ity in winter (November, December and January) and 
lower mortality in summer (June, July and August).

Methodology
In this section, we introduce seasonal ARIMA models 
in “ARIMA model” section to adjust the seasonality and 
tendency of the data involved. Then, we introduce the 
extreme value theory, including the details of the bivar-
iate POT method in “Extreme value theory” section.

ARIMA model
Seasonal variation of mortality was discovered with asso-
ciation with socioeconomic status and outdoor tempera-
ture due to the nature of the climate change and health 
vulnerability [29, 30]. The seasonality usually causes the 
series to be non-stationary. To remove the possible sea-
sonality and tendency of the data, the seasonal ARIMA 
model is applied [31]. It is one of the most commonly 
used statistical models to deal with non-stationary time 
series, with three key components: auto-regression 
(AR), integration (I) for non-stationary data, and cur-
rent and previous residual series moving average (MA). 
ARIMA(p, d, q) with orders p, d, q, is defined by

where yt is the differenced data, c is the constant term, 
φ1, . . . ,φp and θ1, . . . , θq are parameters, εt is the white 
noise with zero mean and constant variance, and p, d and 
q denote the order of the AR model, the order of differ-
encing, and the order of the MA model, respectively. AR 
and MA are two widely used linear models that work on 
stationary time series. A seasonal ARIMA model incor-
porates both non-seasonal and additional seasonal fac-
tors in the ARIMA model, denoted by

where P,  D and Q have identical meanings that are in 
the non-seasonal part of the model, but involve the time 
span of the seasonality S. In our case, we set S to be 12 
for monthly data. The residuals of seasonal ARIMA mod-
els are expected to be “white noise” (i.e., independent 

yt = c + φ1yt−1 + · · · + φpyt−p + θ1εt−1 + · · · + θqεt−q + εt ,

(1)ARIMA(p, d, q)× (P,D,Q)S ,

Fig. 3 Monthly T90 (a) and T10 (b) compared among the five regions in Canada: Central Arctic (CAR), Northeast Atlantic (NEA), Northeast Forest 
(NEF), Northwest Pacific (NWP), and Northern Plains (NPL) in Canada. Sources: https:// actua riesc limat eindex. org/ data/ region- defin itions/ for five 
regions

https://actuariesclimateindex.org/data/region-definitions/
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and identically distributed), which will be confirmed by 
the Box-Pierce and Ljung-Box tests at 5% significance for 
the optimal ARIMA model for T90, T10 and mortality in 
terms of the Akaike information criterion (AIC).

The general process of fitting seasonal ARIMA models 
is based on the Box-Jenkins method [31]. When dealing 
with time series data that exhibit strong seasonality and 
are non-stationary, we first perform differencing to make 
the data stationary, and then apply both Box-Pierce and 
Ljung-Box tests at 5% significance, to examine whether 
data behaves like white noise. In particular, we utilize the 
auto.arima() function from the forecast R-pack-
age [32] to find the optimal model with the lowest AIC. 
Then, we obtain the residuals of the optimal model by 
arima() function in stats package [33], and apply both 
Box-Pierce and Ljung-Box tests with Box.test() func-
tion. If the residuals fail to meet the criterion for white 
noise (i.e., p-value is less than 0.05), we proceed to fit a 
generalized auto-regressive conditional heteroscedastic-
ity (GARCH) model with garch() function in tseries 

package [34]. Again, we perform the aforementioned two 
tests on the residuals of the GARCH model to ensure that 
they exhibit characteristics of white noise.

Extreme value theory
Extreme value theory (EVT) is widely applied in the 
study of rare events with extreme influence on econom-
ics, finance, environment and public health [15]. Sup-
pose that X1,X2, . . . ,Xn is a random sample from parent 
X ∼ F(x) , i.e., Xi ’s are independent and identically dis-
tributed with common distribution function (df ) F(x). 
Given a large threshold u, the distribution Fu(y) of the 
excess Y[u] = X − u | X > u , is thus given by

The Fu(y) can be approximated by generalized Pareto 
(GP) distribution Gξ ,σ (y) = 1− (1+ ξy/σ)

−1/ξ
+ , y > 0 

for sufficiently high threshold [15]. Therefore, the tail 

Fu(y) = P X − u ≤ y | X > u =
P u < X ≤ y+ u

P{X > u}
=

F(y+ u)− F(u)

1− F(u)
.

Fig. 4 Monthly mortality per 100,000 of age groups 0–44, 45–64, 65–84 and 85+ in (a-d) compared among the five regions in Canada: Central 
Arctic (CAR), Northeast Atlantic (NEA), Northeast Forest (NEF), Northwest Pacific (NWP), and Northern Plains (NPL). Sources: https:// actua riesc limat 
eindex. org/ data/ region- defin itions/ for five regions

https://actuariesclimateindex.org/data/region-definitions/
https://actuariesclimateindex.org/data/region-definitions/
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distribution function F(x) = 1− F(x) of X can be 
approximated by

Here ζu = F(u) , and ξ ∈ R and σ > 0 are the shape/tail 
and scale parameters of GP distribution, respectively. In 
practice, the exceedance probability F(x) gives insights 
into the potential risk, and a larger tail risk is indicated 
by a larger tail index ξ . Its estimate can be obtained 
through the extrapolation approach via Eq.(2): to get the 
approximated tail probability of the GP model using the 
maximum likelihood estimation of ξ , σ based on excesses 
(x(i) − u)′s with x(1) ≥ · · · ≥ x(nu) exceeding the thresh-
old u and the estimate of ζu as nu/n . Theoretically, the 
threshold u can be determined by minimizing the mean 
square error of the Hill estimator of ξ , balancing the 
model bias and variance. A common graphical approach 
in the determination of the threshold is to check both the 
linearity of the empirical mean excess function and the 
stability estimation plots of both scale and shape param-
eters, as illustrated by Appendix Figure A.3.

Bivariate POT method. Many problems involving 
extreme events are inherently multivariate. A funda-
mental issue thus arising is how extremes in one variable 
relate to those in another. Dependence occurs if the pro-
cess is studied at neighbouring spatial locations during 
its temporal evolution or shares common meteorologi-
cal conditions. The study of multivariate extremes splits 
apart into two steps: the marginal analysis first and then 
the dependence measures, which are commonly sup-
posed to be marginally invariant. Commonly, one may 
employ marginal tail information to transform the mar-
ginal distribution to a common scale, e.g., unit Fréchet 
distribution. Let (Xi,Yi) be a random sample of size n 
with common distribution function (d.f.) F(x, y). Assume 
its marginal FX and FY  satisfy Eq.(2) on regions of the 
form x > ux and y > uy for large enough thresholds ux 
and uy , with respective parameter sets (ζx, σx, ξx) and 
(ζy, σy, ξy) . Denote by

Thus, (˜Xi, ˜Yi) follows joint d.f. ˜F  with unit Fréchet mar-
gins exp

(

−˜x−1
)

,˜x > 0 and

Suppose that F is in the max-domain of attraction of 
a bivariate extreme value distribution, i.e., the normal-
ized component-wise maxima of observation from F 

(2)F(x) = ζuFu(x − u) ≈ ζuGξ ,σ (x − u), x > u.

(3)















�Xi = −

�

log

�

1− ζx

�

1+ ξx(Xi−ux)
σx

�−1/ξx
��−1

,

�Yi = −

�

log

�

1− ζy

�

1+
ξy(Yi−uy)

σy

�−1/ξy
��−1

.

˜F(˜x, ỹ) = F(x, y), x > ux, y > uy.

follow asymptotically a bivariate extreme value distri-
bution. This is equivalent to

where ˜x and ỹ are defined in terms of x and y by Eq.(3) 
and G is a bivariate d.f. with unit Fréchet margins 
([15],  Chapter  8). Note that G has no parametric form. 
In our context, we take a flexible logistic model for our 
bivariate statistical analysis, given by

with dependence parameter α ∈ (0, 1] . The limiting 
case of α → 0 corresponds to the variables being total 
dependent. That is

As α increases the dependence becomes weak, 
and when α = 1 , the variables are independent: 
G(˜x, ỹ) = exp

(

−1/˜x − 1/ỹ
)

 . Hence, the bivariate logis-
tic model covers all levels of dependence, from inde-
pendence to perfect dependence.

One of the most useful alternative approaches to 
describe the dependence structure of G is extreme tail 
index χ ∈ [0, 1] , giving a rough but representative pic-
ture of the full dependence structure. The extreme tail 
index is a limiting measure of the tendency for one var-
iable to be large conditional on the other variable being 
large, i.e.,

where FX and FY  are the marginal d.f.s of X and Y. We see 
that, the index χ describes the likelihood that the quantity 
X (here the excess high or low temperature frequency) 
becomes so large as to cause Y (here the excess mortal-
ity) to experience such a tail event at least as severe (in 
quantile terms) as X, ranging in [0, 1]. In particular, the 
variables are said to be asymptotically independent when 
χ = 0 , while χ = 1 corresponds to the total dependence.

Another alternative approach for extremal depend-
ence is to develop functions that give a complete 
characterization of the extremal dependence, like the 
spectral distribution function ([35]), the Pickands 
dependence function [36] or the stable tail dependence 
function [37]. These functions can be seen as the ana-
logues of copulas in classical statistics. In this paper, we 
will utilize the Pickands dependence function

F(x, y) =
{

˜Fn
(˜x, ỹ)

}1/n
≈ G(˜x, ỹ), x > ux, y > uy,

G(˜x, ỹ) = exp
(

−(˜x−1/α
+ ỹ−1/α

)
α

)

G(˜x, ỹ) → exp
(

−max(x̃−1, ỹ−1
)

)

, as α → 0.

χ = lim
u→1

P{FY (Y ) > u | FX (X) > u},

A(ω) = −log G(1/(1− ω), 1/ω) : [0, 1] �→ [0, 1],
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which equals (ω1/α
+ (1− ω)

1/α
)
α for the bivariate logis-

tic model. We have

Note that the lower and upper bounds of the Pick-
ands dependence function above correspond to the total 
dependence and independence, respectively. Therefore, 
we can show graphically the dependence by examining 
the closeness of the lower bound of the Pickands depend-
ence function.

With white-noise residuals obtained from the ARIMA/
ARIMA-GARCH models, we employ the bivariate POT 
method with implementation in the POT R-package 
[38]. The marginal thresholds ( ux,uy ) can be selected by 
empirical mean residual life plots and scale/shape param-
eters’ stability plots. These plots are generated using the 
mrlplot() and tcplot() functions, respectively. 
Then we proceed to fit the joint residuals by bivariate 
GP distribution with the logistic dependence structure, 
implemented by fitbvgpd() function. The extreme tail 
index χ is subsequently calculated based on the reported 
α in the bivariate logistic model, and the Pickands 
dependence function is visualized by the pickdep() 
function.

Results
The bivariate POT method requires data to be independ-
ent and identically distributed, thus the ARIMA model 
is applied to adjust the seasonality, trends and non-
stationarity from temperature frequency and mortality 
time series. We first fit monthly T90, T10 and mortality 

max(ω, 1− ω) ≤ A(ω) ≤ 1, ω ∈ (0, 1).

data by seasonal ARIMA models and perform the Box-
Pierce and Ljung-Box tests on the residuals of the opti-
mal ARIMA model in terms of AIC values (“Results of 
ARIMA models”  section). We then present the main 
results of bivariate POT analysis for residuals of T90, T10 
and mortality per 100,000 people (“Results of bivariate 
POT models” section).

Results of ARIMA models
Table  1 shows the parameters involved for the optimal 
ARIMA model based on AIC values. Since the raw data 
is based on month, we set the order of seasonal difference 
S = 12 and D = 1 in the seasonal part of the ARIMA 
model.

The obtained residuals from the ARIMA model were 
considered in this context as excess T90, T10 or mortal-
ity since its trends and seasonality were adjusted and its 
white noise features were confirmed according to the sta-
tionary test at 5% significance, except those for age group 
45-64 in NWP, for 65-84 in NEA, NEF and NWP. In these 
cases, GARCH(1,0) was further conducted [39].

Note that a larger dispersion of residuals for elderly 
groups (aged 65+) was observed (Appendix Figure A.1 
and Table A.1, the mean and standard deviation of rel-
evant residuals). This might be reasonable since elderly 
people may face a higher mortality risk due to confound-
ing variables beyond extreme temperatures. In addi-
tion, larger uncertainty of the mortality was observed in 
CAR from the larger standard deviation. We thus pre-
sented the scaled residuals plots which showed similar 
dispersion in all age groups and regions, but some large 

Table 1 Seasonal ARIMA models for T90, T10 and mortality per 100,000 people per age group at both national and regional levels: 
Central Arctic (CAR), Northeast Atlantic (NEA), Northeast Forest (NEF), Northwest Pacific (NWP), and Northern Plains (NPL) in Canada. 
Sources: https:// actua riesc limat eindex. org/ data/ region- defin itions/ for five regions based on AIC

Region T90 T10 0–44

(p, d, q) (P, D, Q) (p, d, q) (P, D, Q) (p, d, q) (P, D, Q)

National (1, 0, 1) (2, 1, 2) (1, 0, 1) (2, 1, 2) (2, 1, 1) (0, 1, 2)

CAR (1, 0, 0) (1, 1, 0) (0, 0, 1) (2, 1, 2) (2, 0, 2) (1, 1, 0)

NEA (1, 0, 0) (1, 1, 0) (1, 0, 1) (2, 1, 0) (2, 0, 0) (1, 1, 0)

NEF (1, 0, 0) (1, 1, 0) (1, 0, 1) (2, 1, 2) (2, 1, 1) (1, 1, 2)

NPL (0, 0, 1) (2, 1, 0) (0, 0, 1) (1, 1, 0) (1, 1, 1) (1, 1, 1)

NWP (1, 0, 1) (1, 1, 0) (0, 0, 1) (1, 1, 0) (1, 1, 1) (0, 1, 1)

Region 45–64 65–84 85+

(p, d, q) (P, D, Q) (p, d, q) (P, D, Q) (p, d, q) (P, D, Q)

National (3, 1, 1) (0, 1, 2) (2, 0, 3) (1, 1, 2) (3, 1, 2) (0, 1, 2)

CAR (2, 0, 1) (2, 1, 2) (4, 0, 3) (1, 1, 0) (1, 0, 1) (2, 1, 2)

NEA (1, 0, 0) (2, 1, 0) (1, 0, 1) (2, 1, 1) (2, 0, 1) (1, 1, 0)

NEF (2, 1, 2) (1, 1, 2) (2, 0, 0) (1, 1, 2) (2, 1, 1) (1, 1, 2)

NPL (1, 1, 1) (1, 1, 2) (1, 0, 0) (1, 1, 0) (1, 0, 0) (1, 1, 0)

NWP (1, 0, 0) (0, 1, 1) (1, 0, 0) (1, 1, 0) (0, 0, 1) (0, 1, 1)

https://actuariesclimateindex.org/data/region-definitions/
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dispersion in May and June 2020 in all regions and age 
groups (Appendix Figure A.2), probably caused by the 
outbreak of the COVID-19.

Results of bivariate POT models
To conduct the bivariate extreme analysis, we need 
to select a proper threshold with a trade-off between 
bias and variance. One illustrating example is given for 
threshold selection in Appendix Figure A.3, namely, for 
national T90, the 70% quantile u = 3.67 is chosen since 
the mean excess values are approximately linear around 
it, and parameters’ estimations are also stable with subse-
quent values having higher variance due to smaller num-
ber of exceedances. For simplicity, we set the threshold 
to be the 70% quantiles for residuals of both temperature 
and mortality data, and the resulting threshold-excesses 
follow GP distribution using KS test at 5% significance.

The marginal distributions are thus transformed to be a 
common unit Fréchet margins based on calculated scale 
and tail parameter sets given in Appendix Table A.2. We 
observe relatively heavy tails (with tail indices exceeding 
0.10) for mortality rates in NEF and NPL, suggesting a 
higher likelihood of extremely severe mortality events in 
these regions. Meanwhile, the heavy tail indices for T10 
in NEF and T90 in NPL indicate increasing potentials for 
experiencing exceptionally frequent cold or hot days.

Table  2 lists the obtained tail dependence index χ 
together with the marginal thresholds used, the joint 

exceeding proportion for T90/T10 and mortality rate. 
The statistical significance from independence ( χ > 0 ), 
equivalent to α < 1 , is assessed by the estimate of α and 
its 95% confidence interval. In general, the extremal 
dependence between the frequency of low temperature 
(T10) and mortality is relatively strong with almost all χ 
greater than 0.10. In other words, it is likely (more than 
10%) to occur with excess mortality if people are exposed 
to an unusual cold temperature with extreme intensity. In 
other words, once the Canadians experience even more 
frequent cold snaps, the concurrent mortality is more 
likely to increase. This extremal dependence was also 
observed from the empirical estimation of χ at quantile 
levels 0.75,  0.80 and 0.85 for T10 with all greater than 
0.15 (Appendix Table A.3).

The extremal dependence between high/low tempera-
ture and mortality varies across age groups and across 
regions, and the dependence is considered as fairly weak 
if χ is close to zero. Our results show weak dependence 
between extreme high temperature (T90) and mortality 
in age groups 0–44 and 65–84 in NEA, NEF and NPL, 
age group 45–64 in CAR and NPL, and age group 85+ 
in NEF, since χ is less than or equals 0.001. It indicates 
that the health of those people is less likely to be affected 
even if they experience an extremely high-temperature 
frequency. Among all five regions, NWP has the highest 
overall extremal dependence ( χ = 0.3182 ) and NEF has 
the lowest overall extremal dependence.

Table 2 Results from bivariate POT analysis on T90/T10 and mortality per 100,000 people at both national and regional levels. Values 
in bold indicates statistically significant ( χ > 0 ) at 5% level. Five regions: Central Arctic (CAR), Northeast Atlantic (NEA), Northeast Forest 
(NEF), Northwest Pacific (NWP), and Northern Plains (NPL) in Canada. Sources: https:// actua riesc limat eindex. org/ data/ region- defin 
itions/

Region 0–44 45–64 65–84 85+

Threshold χ Threshold χ Threshold χ Threshold χ

Marginal Joint 
(%)

Marginal Joint (%) Marginal Joint (%) Marginal Joint (%)

T90 and Mortality per 100,000

 National (3.67, 5.82) 0.0794 0.0013 (3.67, 0.365) 0.0714 0.0011 (3.67, 1, 93) 0.0873 0.0013 (3.67, 10.9) 0.0635 <0.0000

 CAR (3.82, 1.89) 0.0833 0.0012 (3.82, 4.52) 0.0794 0.0009 (3.82, 30) 0.1071 0.0417 (3.82, 137) 0.0833 0.0082

 NEA (3.16, 0.094) 0.0714 0.0007 (3.16, 0.732) 0.0675 0.0011 (3.16, 0.465) 0.0797 0.0010 (3.16, 25.1) 0.0794 0.0011

 NEF (3.52, 0.0675) 0.0873 0.0006 (3.52, 0.439) 0.0873 0.0013 (3.52, 0.139) 0.0677 0.0003 (3.52, 14) 0.0992 0.0000

 NPL (2.59, 0.133) 0.0913 0.0002 (2.59, 0.66) 0.0714 0.0008 (2.59, 1.24) 0.0635 0.0008 (2.59, 13.1) 0.0635 0.0013

 NWP (3.43, 0.119) 0.0992 0.3182 (3.43, 0.247) 0.0916 0.3182 (3.43, 0.079) 0.0916 0.3182 (3.43, 7.9) 0.1032 0.3182
T10 and Mortality per 100,000

 National (0.79, 5.82) 0.0913 0.0497 (0.79, 0.37) 0.119 0.096 (0.79, 1.93) 0.119 0.1124 (0.79, 10.90) 0.127 0.1209

 CAR (1.06, 1.89) 0.1111 0.3182 (1.06, 4.52) 0.1151 0.3182 (1.06, 30) 0.0873 0.3182 (1.06, 137) 0.0992 0.3182
 NEA (1.32, 0.094) 0.1270 0.0726 (1.32, 0.732) 0.1310 0.1323 (1.32, 0.465) 0.1076 0.0707 (1.32, 25.1) 0.1389 0.1768
 NEF (1.17, 0.068) 0.1270 0.1341 (1.17, 0.439) 0.1230 0.1469 (1.17, 0.139) 0.1315 0.1455 (1.17, 14) 0.1190 0.1346
 NPL (2.44, 0.133) 0.1111 0.0623 (2.44, 0.66) 0.1190 0.1096 (2.44, 1.24) 0.1349 0.1886 (2.44, 13.1) 0.1270 0.1625
 NWP (1.46, 0.119) 0.1032 0.0484 (1.46, 0.247) 0.1116 0.3182 (1.46, 0.079) 0.1036 0.0835 (1.46, 7.9) 0.1071 0.1122

https://actuariesclimateindex.org/data/region-definitions/
https://actuariesclimateindex.org/data/region-definitions/
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Pickands dependence function plots, as a visualizing 
tool of dependence strength, are given in Figs. 5 and 6 for 
T10 and T90, respectively. In each triangle, the horizontal 
line at the top indicates the independence, and the other 
two lines forming the triangle indicate the full depend-
ence. The colored curves represent estimated Pickands 
extremal dependence. The differences in the strength of 
the extremal dependence between T90 and mortality for 
most regions (expect for NPL) are minor. NPL (in the 
dark red dashed line) is far from the horizontal line of the 

triangle, while other lines almost overlap with the hori-
zontal line, indicating the same finding that NPL has the 
strongest extremal dependence for all age groups, which 
is consistent with the results in Table 2.

Figure  5 shows that the extremal dependence of T10 
and mortality varies in age groups and regions. We see 
that CAR (in blue line) exhibits the strongest and signifi-
cant extremal dependence for all ages among all regions. 
For age groups 0–44 and 85+, NWP (in dark red dashed 
line) demonstrates the weakest and non-significant 

Fig. 5 Pickands dependence functions for T10 and mortality per 100,000 of age groups 0–44, 45–64, 65–84 and 85+ in (a-d) compared 
among Canada and the five contingent regions: Central Arctic (CAR), Northeast Atlantic (NEA), Northeast Forest (NEF), Northwest Pacific (NWP), 
and Northern Plains (NPL). Sources: https:// actua riesc limat eindex. org/ data/ region- defin itions/ for five regions

https://actuariesclimateindex.org/data/region-definitions/
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extremal dependence, and while for age group 65–84, 
NEA (in red dashed line) has the weakest extremal 
dependence. In the age group 45–64, NWP shows the 
same strongest and significant extremal dependence as 
CAR, while NPL has relatively weaker and non-signifi-
cant extremal dependence. These findings align with the 
significance of dependence highlighted in Table 2

To summarize, our results provide the evidence that 
the frequent low temperature gives a larger effect on 

mortality risk in Canada (except NEA, NPL and NWP 
for age group 0–44), while the frequent high temperature 
does not seem to have significant impact in most regions 
(except NWP). This is consistent with existing research 
that winter is at higher risk for temperature-related mor-
tality, mainly because low temperatures can cause a phys-
iological impact on the human body and increase the risk 
of cardiovascular, cerebrovascular, and respiratory dis-
eases [30].

Fig. 6 Pickands dependence functions for T90 and mortality per 100,000 of age groups 0–44, 45–64, 65–84 and 85+ in (a-d) compared 
among Canada and the five contingent regions: Central Arctic (CAR), Northeast Atlantic (NEA), Northeast Forest (NEF), Northwest Pacific (NWP), 
and Northern Plains (NPL). Sources: https:// actua riesc limat eindex. org/ data/ region- defin itions/ for five regions

https://actuariesclimateindex.org/data/region-definitions/
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Extreme cold and heat events can both occur in Can-
ada, while extreme cold events are generally more fre-
quent and widespread across the country. This is due 
to Canada’s high latitude and the influence of polar air 
masses that result in long and cold winters. In contrast, 
concurrent extreme heat events in multi-provinces are 
relatively rare. However, in recent years, there has been a 
notable increase in the frequency and severity of extreme 
heat events in some parts of Canada, such as the 2021 
heat dome in British Columbia and the 2010 heatwave 
in Quebec, due to a changing climate [40]. Our results 
show that the mortality in NWP (CAR) is highly associ-
ated with extreme frequency of very high (low) tempera-
ture for all age groups. This suggests that NWP and CAR 
are particularly vulnerable to extreme temperature events 
due to their unique geographic and climatic characteris-
tics. NWP is susceptible to air dryness, low humidity, and 
limited rain during summer due to its location along the 
Pacific Ocean and several mountain ranges, while CAR 
is characterized by its high latitudes, harsh polar climate, 
and limited access to resources and services. We see also 
that the elderly (aged 65+) are very vulnerable to high 
frequencies of extreme low temperatures, and this result 
is consistent with existing research indicating that the 
elderly are at a higher risk for temperature-related mor-
tality [41]. Even middle-aged people (aged 45–64) are 
also observed to be highly associated with effects of the 
high frequency of low temperature.

Discussion
In this study, we examined the extreme association 
between the frequency of high/low temperature and 
mortality for different age groups in Canada. We pro-
posed a combined bivariate peaks-over-threshold and 
ARIMA approach to model the joint extremes in monthly 
high/low temperature frequency and excess mortal-
ity, and quantified the extremal dependence between 
two extreme risks. Our findings reveal that extreme 
cold events are more frequently associated with serious 
mortality than extreme heat events in Canada. Neglect 
of the extremal dependence risks might underestimate 
the potential for very serious mortality events occur-
ring in conjunction with a high frequency of cold days. 
This underestimation could have significant ramifica-
tions, including potentially substantial economic losses, 
strained healthcare systems, and most importantly, the 
tragic loss of human lives that might have been prevented 
with a more accurate modelling approach. The identified 
multi-provincial disparity and uneven vulnerability of age 
groups provide new insights for comprehensive risk man-
agement in the healthcare sector, public authorities and 
environmental agencies.

Quantitative analysis of the strength of extremal 
dependence was successfully conducted by bivariate 
logistic models with also Pickands dependence function 
plots. These plots provide a useful visual tool for model-
ling and displaying the dependence structures between 
variables based on their extremes. The dynamics of 
extreme temperature events and their impact on health 
outcomes frequently vary over time and across geograph-
ical regions. The interpretation of these extreme depend-
encies might be attributed to these covariates. Various 
tools have been developed to address this, including 
the conditional Pickands dependence function [36, 37], 
regression models for spectral density function which is 
an alternative and equivalent Pickands function [35, 42]. 
Notably, this quantitative analysis method can be prom-
isingly applied to the study of the extreme association 
between natural events (e.g., air pollution, wildfire, rain-
fall and droughts) and public health risks (e.g., infectious 
diseases) as well as insurance risk management [14, 20].

The studied association between extreme temperature 
and excess mortality may vary in different spatial scales of 
investigation. The methodology can still assist in exam-
ining the temperature-mortality association in city-level 
and regional-specific studies, where detailed analysis can 
provide valuable findings and targeted recommendations 
for specific areas, see also e.g., [10] for relevant methods 
designed for data analysis at the small-area level. Other 
useful applications refer to the study of the impacts on 
cause-specific mortality, including the leading top mor-
tality of diseases [43].

By focusing on more specific health outcomes, we can 
gain a deeper understanding of how extreme tempera-
tures affect human health and develop targeted inter-
ventions to mitigate their impacts. Further interest is to 
examine the pixel resolution spatial analysis of the post 
influences of extreme temperatures on human health 
across different regions. This technique can be employed 
to assess the spatial and temporal pattern of extreme 
temperature events and their health impacts. Addition-
ally, other factors such as demographic, socioeconomic, 
and infrastructural factors can also be considered in the 
future research [44]. The influences of multiple extreme 
meteorological variables, e.g., humidity and temperature, 
on the resulting diseases’ risks can be conducted at both 
national and county levels for a variety of diseases [45].

Conclusion
The novelty of this paper is the development of mul-
tivariate extreme value modelling methods to identify 
the post-influences of various extreme weather events 
on public health issues. This study employs the bivari-
ate logistic model to examine joint extremes of monthly 
low/high temperature frequency and excess mortality 
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in Canada during 2000-2020. To the best of our knowl-
edge, this is the first study to provide assessments and 
important insights regarding the joint distribution of 
temperature frequency and mortality extremes for dif-
ferent age groups at a regional level in Canada. Our 
results can help researchers, communities, and policy-
makers to reduce the adverse effects of more frequent 
and intense extreme weather events on vulnerable 
populations. Moreover, the multivariate extreme value 
theory can be a useful tool for studying the extremal 
dependence structure between multiple extreme natu-
ral events and consequential public health risks.
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