
Dumas et al. BMC Public Health         (2024) 24:1180  
https://doi.org/10.1186/s12889-024-18673-w

RESEARCH

The risk of contact between visitors 
and Borrelia burgdorferi-infected ticks 
is associated with fine-scale landscape features 
in a southeastern Canadian nature park
Ariane Dumas1,2*, Catherine Bouchard2,3, Pierre Drapeau4, L. Robbin Lindsay5, Nicholas H. Ogden2,3 and 
Patrick A. Leighton1,2 

Abstract 

Background Infectious diseases are emerging across temperate regions of the world, and, for some, links have 
been made between landscapes and emergence dynamics. For tick-borne diseases, public parks may be impor-
tant exposure sites for people living in urbanized areas of North America and Europe. In most cases, we know more 
about the ecological processes that determine the hazard posed by ticks as disease vectors than we do about how 
human population exposure varies in urban natural parks.

Methods In this study, infrared counters were used to monitor visitor use of a public natural park in southern Que-
bec, Canada. A risk index representing the probability of encounters between humans and infected vectors was con-
structed. This was done by combining the intensity of visitor trail use and the density of infected nymphs obtained 
from field surveillance. Patterns of risk were examined using spatial cluster analysis. Digital forest data and park 
infrastructure data were then integrated using spatially explicit models to test whether encounter risk levels and its 
components vary with forest fragmentation indicators and proximity to park infrastructure.

Results Results suggest that, even at a very fine scales, certain landscape features and infrastructure can be pre-
dictors of risk levels. Both visitors and Borrelia burgdorferi-infected ticks concentrated in areas where forest cover 
was dominant, so there was a positive association between forest cover and the risk index. However, there were 
no associations between indicators of forest fragmentation and risk levels. Some high-risk clusters contributed dispro-
portionately to the risk distribution in the park relative to their size. There were also two high-risk periods, one in early 
summer coinciding with peak nymphal activity, and one in early fall when park visitation was highest.

Conclusions Here, we demonstrate the importance of integrating indicators of human behaviour visitation with tick 
distribution data to characterize risk patterns for tick-borne diseases in public natural areas. Indeed, understanding 
the environmental determinants of human-tick interactions will allow organisations to deploy more effective risk 
reduction interventions targeted at key locations and times, and improve the management of public health risks 
associated with tick-borne diseases in public spaces.
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Introduction
Shifts in the geographic distributions of infectious dis-
eases are currently being observed in transforming 
ecosystems, highlighting the complex and dynamic inter-
face between landscapes and disease ecology [1, 2]. For 
example, tick-borne diseases have been expanding for 
several years in many parts of the temperate world. In 
Europe and North America, the distribution and abun-
dance of ixodid ticks and their reservoir hosts has been 
linked to land use change and climate change [3–5]. At 
the same time, human behavior risk factors are leading 
to increased contact with ticks [6–8] and as a result, a 
larger portion of the human population is being exposed 
to ticks. This is causing an increase in tick-borne disease 
incidence rates in many regions of the world [9–12]. 
While epidemiologists have emphasized the importance 
of incorporating landscape characteristics into studies 
of the ecological dynamics of infectious disease emer-
gence, less attention has been directed to the human fac-
tors modulating the risk of being exposed to vectors and 
eventually developing disease [1].

To effectively manage the risk associated with dis-
eases in different regions and landscapes, it must first 
be accurately defined, assessed, and the factors that 
determine it understood [13]. Risk represents the likeli-
hood that an adverse event will occur, given the con-
sequences it would cause. These consequences depend 
on the vulnerability of the population of interest to the 
hazard and are determined by factors such as its level 
of exposure and coping capacity [13–15]. In the context 
of tick-borne diseases, the hazard level at a given loca-
tion or time is typically represented by the number of 
pathogen-infected ticks present (hereafter referred as 
the “tick hazard”; [16]). The density of these ticks in the 
environment depends on a set of ecological conditions 
that allow them, their hosts, and the pathogens that cir-
culate between them to complete their life cycles [17, 
18]. Exposure represents the degree to which humans 
encounter vectors. It is related to land use, accessibil-
ity and attractiveness of places where ticks are present 
[19]. The consequences of exposure to the hazard are 
ultimately modulated by a range of social and behav-
ioral factors that determine the coping capacity of the 
population [15]. For example, the use of tick repellents 
decreases the likelihood that an individual will be bit-
ten by a tick, and tick checking decreases the likeli-
hood that an individual will become infected with a 
pathogen if bitten by a tick. The degree of awareness 

and adoption of these personal protective measures in 
populations may vary according to socioeconomic fac-
tors and regional endemicity [20]. Overall, all these ele-
ments − hazard, exposure and coping capacity − and the 
way they interact are likely to vary across landscapes 
and populations [15, 21].

Several studies have examined the relationship 
between the level of forest fragmentation in landscapes 
and the risk of tick-borne diseases to the human popu-
lations present. In North America, this research has 
been conducted primarily in residential agroforestry 
landscapes [16]. Several of these studies have shown 
that the risk of tick-borne diseases is generally higher 
in areas where the forest is fragmented than in more 
homogeneous areas, such as large forest stands or 
urban areas [5, 22]. Different mechanisms have been 
suggested to explain this association. One is that the 
good adaptation of tick hosts (wildlife species used 
by ticks for reproduction or serving as reservoirs for 
pathogen transmission) to the varied habitats present 
in fragmented landscapes and their concentration in 
small fragments could enhance enzootic transmission. 
In addition, the increased presence of areas such as 
forest-field transition zones (ecotones) are favorable for 
contacts between human and infected ticks [3].

In urban areas, the risk is generally concentrated in 
smaller portions of the territory, such as publicly acces-
sible green spaces and natural conservation parks [23, 
24]. However, we do not know currently whether simi-
lar processes linking forest fragmentation to increased 
tick-borne disease risk also take place in these environ-
ments. Indeed, in public nature parks, the causes of for-
est fragmentation, its general importance, and the way 
it impacts ticks, wildlife and people distribution and 
thus the tick-borne diseases risk may be different. The 
natural or anthropogenic presence of different types of 
habitats such as herbaceous or shrubby areas, the pres-
ence of road and trail networks, or built features (e.g., 
service buildings, lookouts) are all elements that can 
lead to forest fragmentation in the context of natural 
parks [25]. These elements could influence the distribu-
tion of tick hazard, human exposure, or both. For exam-
ple, trail networks are generally the principal driver of 
visitors’ spatial distribution across the different areas 
of a park [26–28]. Trails can also create edge effects, 
causing changes in the adjacent vegetation, altering 
abiotic conditions such as light and affecting wildlife 
and tick presence [29, 30]. The presence of features like 
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viewpoints, waterbodies or facilities like picnic areas 
and playgrounds can influence landscape attractiveness 
for people [28, 31, 32] and therefore influence the level 
of the park users’ exposure.

Limited research has been conducted to character-
ize the risk associated with tick-borne diseases in the 
context of public parks of North America. In parks of 
southern Quebec (Canada), Ripoche et  al. [30] found 
more nymphs in forest habitat adjacent to park trails 
(measured at points between 20 and 60  m from trails) 
than directly along the trail edges and higher nymph 
densities near trails with soil surfaces compared to those 
with gravel surfaces. Hotspots of high nymph densi-
ties were observed in less frequented parts of the parks, 
while cold spots were located in high-traffic areas such as 
park entries, trailheads and at park edges, close to resi-
dential neighborhoods. Falco and Fish [33] found lower 
distances to encountering nymphal or adult I. scapu-
laris in plots that were randomly sampled throughout 
parks than in areas of high public use identified by park 
managers, suggesting that high-use areas were charac-
terized by lower tick densities. In view of these results, 
the authors proposed that a high human presence could 
limit the local abundance of tick hosts. Indeed, animals 
generally respond to human presence in a manner simi-
lar to their response to predation, i.e., by avoiding or 
underutilizing highly disturbed areas [34]. If fewer hosts 
are available locally, the probability for ticks to complete 
their life cycle may be reduced, eventually limiting their 
local abundance. Through these mechanisms, the risk of 
tick-borne disease transmission could be influenced by 
the intensity of human presence in public natural areas. 
However, in these two studies, space use by people and 
hosts were not directly measured. Overall, quantitative 
relationships between the tick hazard and population 
exposure and fine-scale habitat characteristics in parks 
have not yet been clearly established. In highly used 
urban natural areas, improving this baseline knowledge 
would be particularly relevant to inform local tick-borne 
diseases risk reduction efforts, for both public health and 
park managers.

Here, we present a case study of the spatial and tempo-
ral variation in risk across a periurban nature park with 
an emerging risk for Lyme disease (LD) transmission. To 
do so, we integrate population exposure and tick hazard 
data. These are respectively represented by each trail’s 
usage intensity and the density of infected nymphs (DIN) 
with the LD agent, Borrelia burgdorferi, in the vicinity 
of the trails. This allows us to create an indicator of the 
probability of human-tick contact (risk) across the park. 
We also verify the presence of risk hotspots. From a park 
risk management perspective, the deployment of risk 
reduction interventions in these hotspot areas could have 

a significant positive impact. We explore which features 
of the park landscape are associated with risk and its two 
components, hazard and exposure. We hypothesize that 
forest fragmentation is a determinant of risk distribution 
across the park. In this park context, the level of forest 
fragmentation can be represented by indicators such as 
trail density and the presence of developed areas. First, 
these elements could generate ecological transition zones 
(ecotones) between two types of habitats, i.e. zones where 
tick-host reservoir interactions favour the transmission 
of pathogens and therefore an increase in the tick haz-
ard. Secondly, a high density of trails and the presence of 
developed elements could promote the attractiveness and 
accessibility of the sectors, parameters associated with 
high visitor traffic and therefore an increase in exposure. 
Our results will allow for better management of emerging 
tick-borne diseases in nature parks and contribute to the 
body of knowledge on the links between fine-scale land-
scape ecology and the dynamics of tick-borne diseases.

Methods
Study site
The study took place in Mont Saint-Bruno National 
Park, located in southern Quebec, Canada. Mount Saint-
Bruno (Fig.  1), with an altitude of 218  m, is dominated 
by stands of deciduous forest (mainly sugar maple (Acer 
saccharum), American beech (Fagus grandifolia) and 
red oak (Quercus rubra)). Humans have inhabited and 
transformed this forest over the course of history, and 
the forest is fragmented by private properties, landscaped 
gardens, former orchards and open areas where herba-
ceous and bushy vegetation dominate. Located just out-
side of the city of Montréal, this small park of less than 
10  km2 is a popular destination for hikers and attracts 
approximately one million visitors each year. The park’s 
27 km unpaved trail network includes wide trails where 
cyclists and authorized vehicles can circulate, and narrow 
trails reserved for pedestrians. Several facilities are avail-
able to visitors, including a visitor center, shelters, picnic 
areas, a playground and several lookouts. Sampling con-
ducted in the park as part of the provincial tick surveil-
lance program detected the presence I. scapularis in 2007 
and the first B. burgdorferi infected ticks in 2012, with 
tick density increasing steadily in the park ever since.

Tick sampling and diagnostic testing
Thirty-two sampling sites were systematically located 
in tick habitat. They were spaced at 325  m intervals 
throughout the forested zones of the park using a grid-
based sampling design. Some sites were excluded if they 
were predominantly wetlands or open fields, had major 
access barriers (such as a cliff or very steep terrain), or 
were crossed by trails (Fig. 1). At these 32 forested sites, 
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ticks were collected in 2017 and 2018.1  m2 flannel cloth 
was dragged across the forest floor along 260  m tran-
sects, once a month from May to October when ticks 
are most active. Sampling was conducted between 8 
am and 4  pm on days without rain. The investigators 
walked at a natural and steady pace while ensuring the 
flannel dragged the ground correctly and stopping at 
every 25 m interval along the transect to check the flan-
nel and count and collect any attached ticks. Ticks were 
preserved in 1.5 ml vials containing 70% ethanol.

Tick species identification was confirmed at the 
National Microbiology Laboratory (NML) in Win-
nipeg, Canada using taxonomic keys [35–37]. Then a 
subset of up to 30 nymphs per location per year were 
tested using RT-PCR to detect B. burgdorferi infection. 
Extraction of tick DNA was performed according to the 
manufacturer’s protocol using QIAGEN®DNeasy®96 
Tissue kits (QIAGEN Inc., Mississauga, ON, Canada). 
Extracted DNA was screened using a duplex real-time 
PCR assay targeting the 23S gene of Borrelia spp. [38]. 
Borrelia-positive samples were subsequently tested for 
B. burgdorferi sensu stricto using a second ospA/flab 
duplex assay [39].

For each site-year, the density of nymphs (DON) was 
calculated as the total number of nymphs collected 
per 100  m2 over the entire tick sampling season. The 
annual park-level nymphal infection prevalence (NIP) 
was estimated as the proportion of B. burgdorferi posi-
tive nymphs among those tested. Lastly, the density of 
infected nymphs (DIN) at each site-year was estimated 
by calculating site-year DON*yearly NIP.

Monitoring trail use and park visitation
Passive infrared counters (3 model TRAFx trail coun-
ters, TRAFx™, maximum range 6  m; 6 model VigilMe-
ter, Vigil™, maximum range 4.5 m) were deployed at 20 
trail segments (the portion of trail between two inter-
sections) in 2017 and 10 additional segments in 2018. 
On a rotating basis, each trail segment received a coun-
ter for a period of one to two weeks, during the period 
from May to October. The counters were placed within 
4.5 m of the opposite edge of the trail and recorded the 
number of passes per hour. To test the agreement of the 
data collected by the two different types of counters, we 
positioned one of each type at the same location (con-
trol trail) for a period of two days and compared the data 

Fig. 1 The location of the study site, Mont-Saint-Bruno National Park, in relation to the city of Montreal, Quebec, Canada (a). The location 
of the sampling sites, landcover types and infrastructures within the park, designated by the identification numbers in the circles (b)
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collected by each with a Pearson correlation test. Since 
the correlation was very high (0.99, p < 0.001, n = 30) it 
was considered that the detection sensitivity of the two 
types of counters was comparable.

To characterize the type of detection recorded by the 
counters, infrared cameras (Spypoint™, model Iron10) 
were also deployed on every trail segment sampled in 
2017. The cameras were deployed on a tree, within 2 m of 
the counter and pointed in the same direction. The cam-
eras were programmed to take a single picture per detec-
tion, with a maximum of one picture per minute. For 
each picture, an observer manually counted the number 
of adults, children, vehicles and animals detected. These 
data were then used to adjust the counters detection 
data. First, the data were adjusted to consider only pedes-
trians and cyclists, which is the population at risk in the 
study. Therefore, using the camera data, the proportion 
of all pictures that detected people in each trail segment 
was calculated. Second, the number of individuals per 
counter detection was adjusted using the average size of 
groups of people on the pictures taken in each segment.

The number of people visiting the park varies across 
seasons and days of the week. Therefore, the data col-
lected by the trail counters was also adjusted to make 
them comparable, regardless of the days sampled at each 
location. This was accomplished using the number of 
daily passes sold and an estimate of attendance by annual 
pass holders generated by the park managers [40]. From 
this, a baseline daily value of the approximate total visi-
tors to the park on each day was calculated. Then the 
adjusted count values at each trail segment were divided 
by the corresponding baseline daily values. This adjust-
ment methodology relies on the assumption that the 
distribution pattern of visitors throughout the park was 
stable over the study period. Indeed, the distribution of 
people in public natural areas is determined by infra-
structure and landscape characteristics [26–28, 31, 32] 
and no modifications were made in or around the park 
during the study period that might have affected these 
features and hence the spatial distribution of visitors. 
Daily adjusted visitor counts were then averaged over the 
period of sampling at each trail segment. Finally, these 
values were interpolated to unsampled locations using 
segment-based ordinary kriging, a geostatistical inter-
polation technique that considers the degree of spatial 
variation of the data as a function of their topological dis-
tance in a network [41]. The model was implemented in 
R using the package SK, version 1.1 [42]. The final out-
put of these steps was a standardized trail use index for 
the entire park trail network, which was then used as an 
exposure index in subsequent analyses.

This index of trail use by visitors does not distinguish 
between counts at the individual level. That is, this index 

could be the result of some individuals being counted 
while passing through the same trail segment multiple 
times, and other individuals being counted only once 
while hiking a circular route. This is not expected to be 
a major problem because the trails all allow for circu-
lar routes, and because the index is designed to assess 
exposure at the population level. In fact, at the popula-
tion level, exposure is a function of population size, expo-
sure time, and other behavioral factors that are beyond 
the scope of this study [15]. Therefore, in the remainder 
of the text, any reference to the number of visitors will 
implicitly include both types of detections (same or mul-
tiple individuals).

Spatial analysis of risk levels
Relative risk indices were estimated for each trail seg-
ment across the park. Here, the risk was conceptualized 
as a probability of contact between people and infected 
ticks, where the highest density of infected nymphs (tick 
hazard), together with the highest concentration of peo-
ple (population density, as a proxy for exposure) in some 
locations and/or time points represent the riskiest situa-
tions. The rationale for this is that if aggregates of high-
risk are detected in a geographic and/or temporal space, 
these spaces could be targeted to develop interventions 
to prevent tick bites for the greatest number of people 
and potentially reduce LD cases. For this, tick hazard 
indices were first estimated. Site-year DIN values were 
used, which were interpolated across the park. Empirical 
variograms were fit using the package automap version 
1.0.14 [43] in R and the resulting parameters were then 
used in interpolation kriging models implemented in the 
package sp, version 1.4.5 [44]. Then, the average values at 
each trail’s buffered polygon (circle-shaped 25 m buffer) 
were extracted to obtain the trail segment-based tick 
hazard indices. Next, population exposure in each year 
was estimated (i.e. an estimate of the number of people 
who have used each trail segment), by cross-producing 
the total number of registered visitors to the park in each 
year with the relative trail use index obtained in previ-
ous steps. Finally, the relative risk indices were calculated 
by multiplying the tick hazard and population exposure 
indices, in both years of the study.

Then these risk indices were used to perform spatial 
cluster analysis for each year of the study. This analysis 
was performed to detect potential risk hotspots, which 
could then be targeted for risk management. The unit of 
analysis was each trail segment of the park and its imme-
diate surroundings, represented by a 25 m buffer around 
the trails. For this analysis the Local Moran’s I statis-
tics were computed [45] using the Cluster and Outlier 
Analysis tool in ArcGIS Pro version 2.8.0. 999 permuta-
tions were run to assess the significance of the patterns, 
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polygons were considered as neighbours if they shared 
boundaries, and the False Discovery Rate (FDR) correc-
tion was applied to account for multiple tests.

Then, to explore the landscape features that may be 
associated with a higher risk, three different models 
analysing risk index and risk components were built. 
The dependent variables were the population exposure 
index (model 1), the tick hazard index (model 2) and 
the risk index (model 3). The explanatory variables were 
fine-scale landscape features of the park, that includes 
both natural and man-made features. These include 
variables describing habitat structure and composition, 
infrastructure and/or attractions in the park and topog-
raphy (Table  1), and the year of sampling. Variables 
describing the landscape characteristics and facilities 
around each trail segment (Table 1) were derived using 
using various GIS data sources as follows. Provincial 
digital forest cover maps [46] were used to calculate the 
proportion of forest cover around each trail segment. 
Then, a georeferenced layer of trails and park infra-
structure obtained from the park authorities (unpub-
lished data) was used to derive trail (trail density, 
including width and length in meters and the number 
of connections between the trails) and infrastructure 
(proximity of entrances, refuges, viewpoints, and ser-
vice areas) metrics. Fragmentation metrics were then 
calculated using the forest cover map and the trail and 
park infrastructure layer, where trails and boundaries 
between two habitat types were considered as to frag-
ment the forest into patches [25, 29]. The mean size of 
the patches adjacent to the trail segments and the edge 
density between the forest and another habitat type 
around the trail segments were calculated (as detailed 

in Table 1). Finally, the mean elevation in meters along 
the trail segments was extracted from a digital terrain 
model derived from LiDAR [47]. All variables were 
constructed with ArcGIS Pro version 2.8.0.

The statistical analysis were carried out in R version 
4.1.3, and the model selection was performed as fol-
lows. First, all variable distributions were checked and 
normalized by applying log transformations when nec-
essary. Then the effects of each variable were explored 
graphically and in univariate models using p < 0.25 as 
the criteria for variable retention. The presence of col-
linearity between the retained explanatory variables 
was verified, using a variance inflation factor (VIF) 
threshold of 3 [48]. Using the resulting set of covari-
ables, linear models were fitted, in which optimal 
model structures were selected by backwards step-
wise elimination. Residual spatial autocorrelation was 
tested using Moran’s I and correlograms, performed 
with packages spdep version 1.1.11 [49] and function 
icorrelogram [50]. Because all models showed strong 
spatial autocorrelation in their residuals, spatial trend 
surface models were then fitted. This type of model is 
used to deal with dependencies arising from environ-
mental gradients, while allowing flexibility in capturing 
non-linear responses across geographic space [50]. The 
coordinates of trails segments centroid were used as 
covariates in these models, to which smoothing func-
tions were fitted using package mgcv version 1.8.38 
[51]. Lastly, the significance of explanatory variables 
and the presence of spatial autocorrelation in the model 
residuals was reassessed, and the fit of final models was 
verified using graphs and by using the diagnostics func-
tion gam.check of package mgcv version 1.8.38 [51].

Table 1 Description of the variables tested in the tick hazard, population exposure and risk of tick-human contacts models

Variable Units Expected relationship 
with DIN (tick hazard)

Expected relationship with 
visitor density (population 
exposure)

Forest cover Proportion covered by forest habitat 
around the trail segment (buffer sizes: 100, 200, 
300, 400 & 500 m)

+ +

Forest patch size m2 (the mean size of patches adjacent to the 
trail segment)

- -

Edge density between the forest 
and another habitat type

m of edges/  m2 around the trail segment 
(buffer sizes: 100, 200, 300, 400 & 500 m)

+ NA

Trail density Trail width & length in m. No. of connections 
to other trail segments

+ + 

Proximity of park entrances Distance to or identification of the nearest 
entrance

NA +

Proximity of park facilities and attractions Distance to or identification of the nearest 
refuge, viewpoint or service area. Presence 
of a lake along the trail

+ +

Elevation Mean elevation along the segment, in m - +
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Results
Tick hazard
All collected ticks in this study (n = 24,838) were iden-
tified as I. scapularis. On average, we found 19.3 lar-
vae/100  m2 (range 0 to 263.8, standard deviation: ± 33.0), 
3.2 nymphs /100  m2 (range: 0 to 42.7, standard devia-
tion: ± 4.8) and 0.2 adults /100  m2 (range: 0 to 2.7, stand-
ard deviation: ± 0.4) per site-visit (more details on tick 
density can be found in Dumas et  al. 2022). We found 
nymphs from May to October in both years, and a peak 
in density occurring in June (Fig.  2). We detected B. 
burgdorferi in 9.5% of nymphs tested (149/1542, ticks 
tested represented 49% of those collected (n = 3173)). 
The prevalence of infection in nymphs at sites ranged 
from 0 to 29.4%, with an average of 10.5% in 2017 (CI 
95% [8.67%-12.68%]; n = 948) and 7.4% in 2018 (CI 95% 
[5.34%-9.95%]; n = 540). The density of infected nymphs 
collected at sampling sites ranged from 0.01 to 1.77/ 100 
 m2, with an average of 0.56/ 100  m2 in 2017 and 0.08/ 100 
 m2 in 2018 (Fig. 3). Standard error maps for the kriging 
interpolations are presented in the supplementary mate-
rials (Figure S1).

Population exposure
With the trail cameras deployed in 2017, we collected 
19,639 pictures over 194 sampling days. In these pictures, 
82.10% displayed people on foot or bike, 15.90% were 
misfires, 7.13% displayed wildlife, and 1.29% were vehi-
cles. The majority (91.35%) of the people detected were 

adults. The average group size of visitors was 1.53 (range: 
1–15).

Park visitation varied among seasons and between the 
two years of the study (Fig. 4). There were two peaks in 
visitation, with the largest peak occurring in early fall 
(September to October) and a much smaller one in June 
to July.

The distribution of visitors across the park was het-
erogeneous, with areas located near the southwestern 
entrances to the park and trails surrounding lakes most 
heavily used (Fig. 4).

Spatial and temporal distribution of risk
There was no significant correlation between DIN levels 
and trail use across the park (Pearson’s correlation coeffi-
cient = -0.09, p = 0.20). However, there were specific areas 
where both indicators were high, resulting in spatial clus-
ters of high risk of tick-human contacts. In both years, 
high-risk clusters were present around the trails connect-
ing entrance 3 and Lake Seigneurial (Fig.  5). Also, the 
trail north of Lake Des Bouleaux had significantly higher 
risk index values than the surrounding trails. The rest of 
the areas did not show significant differences in their risk 
levels, except for a few areas with overall lower risk val-
ues (low-risk clusters, not shown). Significant high-risk 
areas (including high-risk clusters and outliers) encom-
passed 41% of the calculated 2017 risk index and 43% of 
the 2018 risk index, and in both cases covered 11% of the 
study area. Similar patterns were present in both years of 
the study, with some variation due to the varying spatial 

Fig. 2 Average seasonal distribution of the risk index and its components, tick hazard (DIN) and exposure (no. of days-visits). A loess function 
was used on the averages of the monthly DIN (no. of infected nymphs/100  m2) data and the number of park visitors in both years. The number 
of visitors to the park is displayed after being divided by 100,000, to allow for better graphic visualization. The average risk index over the months 
was calculated by multiplying the two previous variables and represents a relative probability of human-tick contacts in the population visiting 
the park over this period
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distribution of nymphs in the park in both years. The risk 
level was highest in June, when nymphs are also at their 
peak of abundance. A second, lower, peak of risk was pre-
sent in September, when nymphs are less abundant, but 
more people used the park (Fig. 2).

Using the population exposure model, we found a posi-
tive relationship between the proportion of the area cov-
ered by forest within 100 m of the trails and the number 
of visitors (Table 2). We found the opposite relationship 
with elevation, where trails at higher elevations attracted 
fewer people than trails lower on the mountain. The 
number of visitors on trails also varied with distance 
from the three types of facilities in the park. Trails near 
the entrance 1 received 1.43 times more [95% CI: 1.15–
1.71] visitors than those near the entrance 2, those near 
the refuge 4 received 2.23 times more [95% CI: 1.72–2.73] 
visitors than those near refuges 1 or 2, and those near 
the viewpoint 1 or 4 received 2.98 times more [95% CI: 
2.31–3.65] visitors than those near the viewpoint 2. Dif-
ferences between the other levels for these variables were 
not significant.

Of the predictors tested in the tick hazard model, only 
the proportion of the area covered by forest within 200 m 
of the trail was positively associated with a greater den-
sity of infected nymphs (Table 2).

In the risk model, the proportion of forest within 100 m 
of the trail was also associated with higher risk levels. 
Risk levels also varied with proximity to park facilities 
(Table  2). Trails near refuge 4 had 2.32 times the risk 
level [95% CI: 1.80–2.85] as those near the refuges 1 or 2, 
while those near the viewpoint 1 had 2.13 times the risk 
level [95% CI: 1.47–2.80] as those near the viewpoint 2. 

Differences between the other levels for these variables 
were not significant.

Population density (exposure) was 1.53 times higher 
in 2018 than in 2017 [95% CI: 1.48–1.59]. On the other 
hand, the tick hazard was 7.31 times higher in 2017 than 
in 2018 [95% CI: 1.48–1.59] and the resulting risk level 
was 4.76 times higher in 2017 than in 2018 [95% CI: 
4.70–4.83]. The final population density, tick hazard, and 
risk models explained 94.4%, 98.9%, and 96.5% of the var-
iation in deviance, respectively, and the root mean square 
errors for these model predictions relative to observa-
tions were 0.20, 0.11, and 0.23, respectively. Predictions 
from the three models and variation statistics for tested 
covariates are presented in the supplementary materials 
(Figure S2 and S3, Table S1).

Discussion
While many studies have focused on factors driving 
tick-borne disease incidence at large geographical scales 
in North America, very few have investigated simulta-
neously the ecological and human population factors 
that may determine risk at finer scales. It is however 
important to better understand the factors at play at 
this scale, because it is at this scale that interventions to 
prevent infections occur. In this study, we demonstrate 
the applicability and utility of an integrative risk assess-
ment approach to estimate the probability of contacts 
between visitors and infected ticks, at a local intervention 
scale in a periurban park environment. The methodol-
ogy employed allowed for the identification of high-risk 
areas and periods in park, demonstrating its utility as a 
planning tool in risk mitigation intervention plans in the 

Fig. 3 Spatial distribution of the entomological hazard index (density of infected I. scapularis nymphs; DIN) in the study site in 2017 A and 2018 
B. Tick data were collected at sites located in the forest and interpolated with ordinary kriging models, then average values were extracted 
along each trail segment and its immediate surroundings (25 m buffer) and classified by quantile breaks, with classification based on the minimum 
and maximum values of each individual year (notably, 2017 exhibiting higher values than 2018)
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context of natural public parks. In addition, we identified 
biophysical attributes that were associated with the risk 
levels across a highly visited and newly LD-endemic park. 
The relationships uncovered between fine scale landscape 
attributes and spatial variability in risk provide key find-
ings on the ecological determinants of tick-borne disease 
in recreational parks, which may be a significant source 
of exposure to tick-borne pathogens for populations in 
urban areas.

First, we showed that the proportion of forest cover 
around trails was associated with higher levels of risk and 
influenced both the visitor density (exposure) and the 
density of infected nymphs (hazard). These results align 
with previous research indicating that forested habitats 

are associated with the population exposure to B. burg-
dorferi-infected ticks and high population incidence 
rates of Lyme disease cases compared to other habitat 
types (e.g., herbaceous and shrubby environments, agri-
cultural areas, urban areas, or wetlands; [16, 52]. Trails 
located in areas where forest cover was dominant were 
more popular, consistent with the hypothesis that visi-
tors may be more attracted to undisturbed forest areas in 
parks [53]. Also, infected nymphs were more abundant 
in areas where forest cover was dominant. This result is 
consistent with previous observations associating I. scap-
ularis density with proportion of forest cover at several 
geographic scales [54]. However, in contrast to what was 
found in other studies performed at regional scales, we 

Fig. 4 Spatio-temporal distribution of park attendance. A Relative trail uses as measured by counters (scaled from 0.01 to 1), interpolated over all 
trails in the park and classified by quantile breaks. B Variation in park use (number of days-visits) throughout the tick activity season in 2017 (blue 
curve) and 2018 (orange curve), obtained from the number of daily admissions recorded and the estimated number of visits by annual ticket 
holders
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did not find a relationship between the DIN and forest 
fragmentation indicators or high human presence [55–
58]. At smaller spatial scales, some studies performed 
in parks found lower DON or DIN levels in park areas 
with higher public use [30, 33]. In contrast, here, we did 
not observe a correlation between estimated DIN and 
trail use levels. We also found no relationship between 
DIN and indicators of the territory’s accessibility such 
as distance to entrances, or indicators of forest habitat 
fragmentation such as edge and trail density or the size 
of the forest patches. It has been suggested that human 
disturbance of habitat may affect host presence and tick 
survival, and thus, that the lowest tick densities would 
be found in forested areas with the greatest current or 
past human presence [30, 33]. The opposite thesis has 
also been put forward, that the main hosts of blacklegged 
ticks (white-footed mice, white-tailed deer) adapt well to 
disturbed habitats and thus may become dominant there 
at the expense of other wildlife species, which are more 
sensitive to habitat disturbances [22]. Thus, since ticks 
would have more opportunity to encounter reproduc-
tive and reservoir hosts, their survival and reproduction, 
as well as the circulation of tick-borne pathogens, would 
be favored, resulting in a higher level of tick hazard [22]. 
It appears that in our context, neither of these hypoth-
eses apply. Overall, there is relatively low mammal bio-
diversity across the park, with mice and deer present 
and abundant in the majority of areas [59]. The lack of 
relationship between DIN and fragmentation indicators 
therefore suggests that the main hosts, mice and deer, 
are not affected by fragmentation at this fine scale, and 
are present at sufficient abundances in a range of habi-
tats throughout the park [59]. However, we did observe 
a positive relationship between the proportion of forest 

cover and the DIN. This suggests that in this context, it is 
the presence of a habitat favorable to the survival of ticks 
when they are off-host, i.e. a forest floor where the abiotic 
conditions (temperature, relative humidity, presence of 
refuges under the leaf litter) necessary for their survival 
are present, that is the main determinant of their distri-
bution here [59].

Based on these results, we are suggesting approaches 
to manage the risk associated with ticks in natural parks. 
We recommend that actions aimed at decreasing the 
likelihood of human-tick contact be taken in areas of 
parks where forest cover dominates. For example, more 
emphasis should be placed on encouraging the adoption 
of safe behaviors by users, particularly in forested areas 
of parks. These best practices include staying on trails, 
using tick repellents, wearing long clothing, and practic-
ing tick checks after a forest activity [20, 60]. These prac-
tices could be reminded to visitors directly in the parks, 
through signage in high-risk forest areas, to reinforce 
their adoption levels. Second, we recommend that trail 
edges in high-risk areas be landscaped so that the like-
lihood of human-tick contact is restricted. Trail mainte-
nance that discourages contact includes regular trimming 
of vegetation along trails and removal of dead leaves 
from the ground [61] and installation of wood chips on 
the ground along trail borders [62]. Finally, reducing the 
probability of human-ticks contact can also be achieved 
by reducing the tick hazard in high-risk habitats. For this, 
possible interventions include the selective use of acari-
cides applied to vegetation in high-risk areas and host-
targeted interventions (e.g., treatments with acaricides 
[63, 64]). However, all these interventions are resource-
intensive, which currently limits their deployment over 
large areas such as the territory of natural parks [65]. 

Fig. 5 Spatial distribution of risk levels classified by quantile breaks and high-risk areas based on cluster analyses for 2017 (A) and 2018 (B). The risk 
index represents the probability of human-tick contacts in the population visiting the park
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Therefore, we propose here to deploy them first in high-
risk areas to optimize the cost–benefit of deployment. 
Our cluster analyses have shown the presence of risk 
hotspots. By strategically prioritizing interventions to 
these hotspots, we could act on 41 to 43% (depending 
on the year) of the risk in the entire park, while deploy-
ing resources to only 11% of the territory. Such hotspots, 
when present in a park, are therefore places where high 
impact potential is possible if interventions are deployed. 
Slight variations in the location of high-risk areas were 
however present in this study, consistent with previous 
findings of heterogeneous patterns of tick densities at 
small spatial scales [30, 59, 66]. Therefore, periodic reas-
sessment of the location of high tick density areas should 
be included in park risk management plans. This would 
ensure that interventions are always deployed in areas 
where their impact is expected to be the highest.

Second, we showed that proximity to certain facilities 
was associated with elevated risk. Specifically, we found 
certain park features (refuges, viewpoints and entrances) 
associated with increased levels of exposure and risk. 
This result is consistent with other studies that have 
found these types of elements to be associated with the 
level of attractiveness or accessibility of public natural 
areas [26, 28, 53]. This finding offers another opportunity 
for risk management, that of targeting population expo-
sure patterns. Indeed, parks could be designed so that a 
mismatch between the location of areas of high popula-
tion exposure and high tick hazard is induced. This could 
be accomplished by modifying the attractiveness and 
accessibility of areas, which are important drivers of visi-
tor distribution across territories [19, 67]. As part of this 
approach, parks could develop trails, refuges, and look-
outs in areas with low tick densities, so that people will 
tend to use these areas more. They could also limit public 
access to areas with high tick densities, especially during 
high-risk periods.

The main risk period in this study corresponded with 
the peak in nymph abundance [68, 69]. A second, lower 
peak in risk was present in early fall, when entomological 
risk is lower, but when the park receives large number of 
visitors. We did not, however consider a possible increase 
in entomological hazard associated with the presence of 
adult ticks in the fall and thus, the second peak could be 
underestimated by our analysis. In addition, tick densi-
ties were lower in 2018 than in 2017. While it is theoreti-
cally possible that tick removal by our sampling efforts 
could have influenced these results, it appears more likely 

Table 2 Parameter estimates for the best spatial trend surface 
models of population exposure (model 1), tick hazard (model 
2) and risk (model 3) indices, in 2017 and 2018. The risk index 
represents the probability of human-ticks contact in the 
population visiting the park

Parameters β SE Edf P

Model 1: Population 
exposure (density)a

(Intercept) 9.01 0.16 < 0.001

Elevation -0.35 0.15 0.03

Forest proportion (100 m radius) 0.28 0.05 < 0.001

Nearest park entrance

 2 vs 1 -0.36 0.14 0.01

 3 and 4 vs 1 -0.17 0.27 0.53

 5 vs 1 -0.09 0.31 0.77

 6 and 7 vs 1 -0.92 0.57 0.10

 8 and 9 vs 1 -0.32 0.34 0.35

Nearest refuge

 2 vs 1 -0.02 0.11 0.88

 3 vs 1 0.11 0.15 0.50

 4 vs 1 0.80 0.26 0.002

Nearest viewpoint

 2 vs 1 -1.09 0.34 0.002

 3 vs 1 -0.46 0.25 0.071

 4 vs 1 -0.04 0.10 0.679

 5 vs 1 -0.10 0.20 0.612

Year

 2018 vs 2017 0.43 0.03 < 0.001

Smoothed coordinates of trail segment 
centroids

27.2 < 0.001

Model 2: Tick hazard 
(DIN)b

(Intercept) 4.06 0.01 < 0.001

Forest proportion (200 m radius) 0.04 0.02 0.026

Year

 2018 vs 2017 -1.99 0.02 < 0.001

Smoothed coordinates of trail segment 
centroids

21.42 < 0.001

Model 3: Risk 
(hazard*exposure)a

(Intercept) 8.24 0.10 < 0.001

Forest proportion (100 m radius) 0.24 0.05 < 0.001

Nearest refuge

 2 vs 1 0.01 0.12 0.95

 3 vs 1 0.04 0.16 0.80

 4 vs 1 0.84 0.27 0.002

Nearest viewpoint

 2 vs 1 -0.76 0.34 0.03

 3 vs 1 -0.53 0.29 0.07

 4 vs 1 -0.01 0.11 0.90

 5 vs 1 -0.28 0.20 0.17

Year

 2018 vs 2017 -1.56 0.03 < 0.001

Smoothed coordinates of trail segment 
centroids

27.61 < 0.001

Table 2 (continued)
a Logged variables
b Multiplied by 100 and logged variable
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that this variation is caused by weather fluctuations dur-
ing these years [70], likely due to high summer tempera-
tures and reduced rainfall in 2018. Indeed, our results are 
aligned with trends observed in active surveillance which 
showed higher generalized tick densities in 2017 than in 
2018 across the province [71, 72].

Here, we conceptualized different levels of risk based 
on the presence and abundance of pathogen-infected 
vectors and the human population at risk, in the same 
space–time. As illustrated above, the approach devel-
oped here could be used as a decision support tool 
for risk management in the context of public parks. 
However, we cannot conclude on the link between the 
observed patterns and the actual incidence of LD in 
the local population. Several other factors could influ-
ence the actual patterns of disease acquisition by the 
local population, such as individual behaviors (i.e., what 
people are doing in the natural space and for how long), 
levels of knowledge and perception of risk in rela-
tion to the disease [7, 20], use of tick bite prevention 
methods or availability of medical management fol-
lowing a tick bite [73]. In particular, we could not con-
sider how user behavior might influence their level of 
exposure to ticks in the environment. For example, we 
could assume that the actual exposure of people using 
the wide trails is less than for the narrow trails. In the 
former case, users may come into contact with the veg-
etation surrounding the trail or leaf litter at the edge of 
the trail less frequently than when using narrow trails. 
In the former case, users may come into contact with 
the vegetation surrounding the trail or leaf litter at the 
edge of the trail less frequently than when using narrow 
trails. Since trail edges can be favorable micro-habitats 
for ticks [30], different exposure to them could impact 
users’ actual exposure to ticks. In addition, bicycle use 
was only allowed on the wide trails in the park. If it 
also turned out that cyclists were less exposed to tick 
bites than pedestrians, then our estimate of the level of 
risk on the wide trails could be underestimated. On the 
other hand, it is also possible that our analysis under-
estimates risk in some areas of the park. For example, 
if certain attributes attracted people to go off trails, or 
to pick things off the ground, these areas could be a 
source of greater exposure to ticks. Such observations 
were made in a French park, where areas conducive to 
picking plants and mushrooms represented the highest 
risk of exposure to Ixodes ricinus ticks for users [74]. 
Further studies would be needed to assess the effect of 
users’ behaviors on their individual risk of exposure to 
ticks. Another limitation of this study is the precision 
of the pathogen prevalence estimates used in the calcu-
lation of the tick hazard indices. Ideally, these estimates 

should be calculated at the site level, but due to limited 
sample sizes and testing capacity, site-level estimates 
were too uncertain. Instead, we opted to use park-level 
estimates, providing higher confidence. While this 
approach is supported by previous studies showing that 
the main driver of local DIN is generally DON [75, 76], 
larger sample sizes in future studies would increase 
confidence in local risk assessments. Finally, the risk 
levels obtained here at the scale of the park would 
also need to be validated with accurate disease acqui-
sition data. However, the level of detail that would be 
required on such a fine scale is difficult to obtain in the 
context of vector-borne diseases. Indeed, the locations 
of acquisition of infection by vector-borne diseases are 
often unknown or confidential. Modeling studies could 
then be used to simulate the dynamics of encounters 
between the populations described here and the subse-
quent steps that could lead to the development of the 
disease in bitten individuals, for example. The proposed 
strategy of prioritizing intervention in high-risk areas 
should also be tested in different epidemiological sce-
narios to demonstrate its effectiveness.

Conclusion
This study demonstrated that the risk of contact between 
visitors and Borrelia burgdorferi-infected ticks within 
a public park of southern Quebec, Canada, varied with 
landscape features and infrastructure at a fine geographic 
scale. We found a positive relationship between forest 
cover and the risk index, but no other associations could 
be found regarding other indicators of fine-scale forest 
fragmentation. This raised questions about the inter-
scale generalizability of previous findings − the large 
majority of which were made at coarser spatial resolu-
tions − about the links between forest fragmentation and 
tick-borne disease risk in various human-altered ecosys-
tems. Thus, we believe that continued research efforts 
investigating these relationships remain important and 
should incorporate more fine-scale data on the distribu-
tion of ticks and people in at-risk habitats. Finally, we also 
demonstrated a practical methodology for integrative 
risk assessment that can be used to guide risk manage-
ment efforts by local stakeholders and translated to other 
contexts as part of One Health approaches to emerging 
infectious diseases management.

Abbreviation
LD  Lyme disease
DIN  Density of infected nymphs
DON  Density of nymphs
NIP  Nymphal infection prevalence
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