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Abstract 

Background Count time series (e.g., daily deaths) are a very common type of data in environmental health research. 
The series is generally autocorrelated, while the widely used generalized linear model is based on the assumption 
of independent outcomes. None of the existing methods for modelling parameter‑driven count time series can 
obtain consistent and reliable standard error of parameter estimates, causing potential inflation of type I error rate.

Methods We proposed a new maximum significant ρ correction (MSRC) method that utilizes information of sig‑
nificant autocorrelation coefficient ρ estimate within 5 orders by moment estimation. A Monte Carlo simulation 
was conducted to evaluate and compare the finite sample performance of the MSRC and classical unbiased correc‑
tion (UB‑corrected) method. We demonstrated a real‑data analysis for assessing the effect of drunk driving regulations 
on the incidence of road traffic injuries (RTIs) using MSRC in Shenzhen, China. Moreover, there is no previous paper 
assessing the time‑varying intervention effect and considering autocorrelation based on daily data of RTIs.

Results Both methods had a small bias in the regression coefficients. The autocorrelation coefficient estimated 
by UB‑corrected is slightly underestimated at high autocorrelation (≥ 0.6), leading to the inflation of the type I 
error rate. The new method well controlled the type I error rate when the sample size reached 340. Moreover, 
the power of MSRC increased with increasing sample size and effect size and decreasing nuisance parameters, and it 
approached UB‑corrected when ρ was small (≤ 0.4), but became more reliable as autocorrelation increased further. 
The daily data of RTIs exhibited significant autocorrelation after controlling for potential confounding, and therefore 
the MSRC was preferable to the UB‑corrected. The intervention contributed to a decrease in the incidence of RTIs 
by 8.34% (95% CI, ‑5.69–20.51%), 45.07% (95% CI, 25.86–59.30%) and 42.94% (95% CI, 9.56–64.00%) at 1, 3 and 5 years 
after the implementation of the intervention, respectively.

Conclusions The proposed MSRC method provides a reliable and consistent approach for modelling parameter‑
driven time series with autocorrelated count data. It offers improved estimation compared to existing methods. The 
strict drunk driving regulations can reduce the risk of RTIs.

Keywords Autocorrelated count data, Parameter‑driven models, Type I error inflation, Unbiased correction, 
Interrupted time‑series

Background
Count time-series data are a common type of data in 
environmental epidemiology and public health, such as 
monthly road traffic deaths [1] and daily hospital admis-
sions [2]. These count data are generally autocorrelated 
since the series are measured sequentially over time 
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[3]. Previous studies generally use the maximum likeli-
hood estimate of the traditional generalized linear model 
(GLM) as the point estimate of the regression coeffi-
cients, which are consistent and asymptotically normal 
[4, 5]. However, the GLM is based on the assumption 
that the outcome observations are independent, which 
ignores the potential autocorrelation of the data and 
therefore leading to an underestimation of standard 
error, probably resulting in false positive results when 
estimating the effect of influencing factors [6].

The modelling of autocorrelated count data is complex, 
particularly as it has not yet been developed in a unified 
framework. Cox (1981) [7] proposed to divide the mod-
elling methods into two categories: observation-driven 
model and parameter-driven model. In the observation-
driven model, the autocorrelation is specified by directly 
incorporating the lagged values of observed counts (e.g., 
first-order autoregressive (AR(1))) into the mean func-
tion of the outcome. The regression parameters can be 
directly estimated by maximum likelihood estimation. 
However, the interpretation of the regression param-
eters may be challenging, since it represents the effect 
of corresponding covariates on the expectation of count 
outcomes conditional on the history of outcomes. For 
the parameter-driven model, the serial autocorrelation 
is driven by an unobserved latent process. That is, the 
parameter-driven model can be considered as GLM with 
a pre-specified dependence structure [8], allowing for 
straightforward interpretability of regression coefficients. 
However, the parameter estimation by maximizing the 
full likelihood function is also very difficult to perform 
the n-fold integral of the AR(1) Gaussian probability den-
sity function of the latent process [9]. Therefore, applied 
research has commonly not checked the problem of 
autocorrelation or disregarded this issue even if it exists, 
mainly because of methodological challenges. To attempt 
to resolve the methodological problem, Davis et al. (2000) 
[10] developed an unbiased correction (UB-corrected) 
method to obtain the asymptotic properties of the GLM 
estimator by adjusting the autocovariance matrix based 
on the nuisance parameters of the latent process. The 
estimates of the nuisance parameters, including the vari-
ance and the first-order autocorrelation coefficient ρ(1), 
are obtained from the moment estimation proposed 
by Zeger (1988) [11]. Although this method has raised 
many concerns [12–14], it still tends to underestimate 
the standard error (SE) in the presence of time-varying 
covariates, which can lead to the inflation of the type I 
error rate [13, 15].

A real data analysis was motivated by the issue of auto-
correlation. In May 2011, China introduced the criminali-
zation of drunk driving, followed by a series of detailed 

penalties to enhance its implementation. Road traffic 
injuries (RTIs), as a crucial indicator of road safety, are 
affected by drunk driving regulations. Previous stud-
ies have assessed the time-invariant intervention effect of 
these regulations based on annual or monthly data [16–18]. 
However, the effect of drunk driving regulations is most 
likely to vary over time due to the successive introduction 
and increased enforcement of related regulations. There-
fore, based on daily data of RTIs, the investigation of the 
potential time-varying effects is of great significance for 
modification and generalization of the intervention. In 
addition, only one previous study considered the potential 
autocorrelation of the RTIs. It addressed the issue by using 
an observation-driven model, the autoregressive integrated 
moving average model after transforming the count data 
into rates, which might ignore the specific distribution and 
dispersion of the count data [17]. Meanwhile, our prelimi-
nary analyses showed that the RTIs data still presented a 
significant autocorrelation after controlling for seasonality, 
long-term trend and meteorological factors. It is necessary 
to develop an appropriate parameter-driven method.

To ensure effective statistical inference on the regression 
coefficients, it is essential to address the issue of underes-
timation in the SE. Therefore, on the basis of the UB-cor-
rected method, this study innovatively proposed a new 
correction method using the maximum of the significant 
ρ estimates within order 5. A Monte Carlo simulation was 
used to evaluate and compare the finite sample perfor-
mance between the UB-corrected method and the new 
method. Then, the intervention effect of drunk driving reg-
ulations on RTIs was assessed to demonstrate the applica-
tion of the proposed method. This study may provide some 
insights into the method development and practical appli-
cation of the parameter-driven model of autocorrelated 
time series with count data.

Methods
Parameter‑driven autocorrelated time series of count data
In this study, the time series of count observed at time t is 
denoted as { Yt : t = 1, …, n}. When the counting process is 
assumed to follow a Poisson distribution, the specific form 
is as follows:

where xt is the p-dimensional regressors; β is the cor-
responding vector of coefficients; and αt is a latent pro-
cess following its stochastic mechanism, which is usually 
assumed to follow a stationary Gaussian process with 
mean µα , variance σ 2

α , autocovariance function γα(h) , and 
autocorrelation function ρα(h) [9, 10, 19]. To satisfy the 
identifiability, it is necessary to make E(exp(αt)) = 1, i.e., 

Yt | αt , xt ∼ Poisson exp(αt + x
T
t β) ,
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αt ∼ N (−σ 2
α /2, σ

2
α) . The marginal mean, variance, and auto-

correlation forms of Yt are as follows [12]:

where wt = exp(αt) , σ 2
w = exp

(
σ 2
α

)
− 1 , and ρw(h) =

exp
(
ρα(h)σ

2
α

)
−1

exp(σ 2
α )−1

 with h ≥ 0. The outcomes are uncondition-
ally correlated due to the serial correlation of the latent 
process, and the autocorrelation increases with the nui-
sance parameters σ 2

w and ρw(h).

GLM estimator with UB‑corrected covariance
The GLM can be used to estimate the parameters by 
ignoring the latent process, and the resulting regression 
coefficients β are consistent and asymptotically normal. 
However, the estimation of the covariance matrix must 
take into account the impact of the latent process [10]:

where �̂−1
I ,n is the estimate of the asymptotic covariance 

matrix obtained from the standard GLM, �̂−1
I ,n�̂II ,n�̂

−1
I ,n 

is the additional covariance imposed by the presence of 
the latent process, and γw(s − t) is the autocovariance 
function of process wt . When the latent process does not 
exist, i.e., γ̂w(s − t) = 0 and �̂II ,n = 0 , the model degen-
erates into a classical GLM.

The estimation of γw depends on the nuisance param-
eters σw2 and ρw , which would be underestimated by 
directly using the GLM estimates µ̂t . Therefore, Davis et al. 
(2000) [10] proposed UB-corrected estimates of nuisance 

E[Yt ] = µt = exp
(
x
T
t β

)
,

Var[Yt] = µt + σ 2
wµ

2
t ,

ρY (h) = Corr
(
Yt ,Yt+h

)
=

ρw(h)
{
1+

(
σ 2
wµt

)−1
} 1

2
{
1+

(
σ 2
wµt+h

)−1
} 1

2

,

Var
(
β̂GLM

)
= �̂−1

I ,n + �̂−1
I ,n�̂II ,n�̂

−1
I ,n ,

�̂I ,n =
∑n

t=1
xtx

T
t exp

(
x
T
t β̂GLM

)
, �̂II ,n =

∑n

t=1

∑n

s=1
xtx

T
s exp

((
x
T
t + x

T
s

)
β̂GLM

)
γ̂w(s−t),

parameters using the asymptotic unbiased estimator µ2
t  as 

µ̂2
t exp(−2xT

t
Ĝnxt) , where Ĝn = �̂−1

I ,n + �̂−1
I ,n�̂II ,n�̂

−1
I ,n is 

the asymptotic covariance matrix. The specified form of 
the correction is as follows:

where �̂II ,n =
∑L

h=−L

∑min(n−h,n)
t=max(1−h,1) xtx

T
t+h

µ̂tµ̂t+hγ̂w(h) , 
and the maximum lag L is used to better approximate  
the infinite series [10]. In addition, gt,h = exp{
−(xt + xt+h)

T
Ĝn(xt + xt+h)/2

}
 . The estimated auto-

correlation parameters vary under different orders, and 
the estimation of parameter ρ at h = 1 is treated as the 
true value in practice [10, 14]. However, Wu (2012) [19] 
showed that although UB-corrected provides a consistent 
estimator for nuisance parameters, it is problematic to 
obtain the asymptotic covariance matrix estimation, 
leading to the inflation of the type I error rate.

A new method: maximum significant ρ correction (MSRC)
In order to solve the issue of underestimation of the covari-
ance matrix, we attempted to adjust the estimate of ρw,UB . 

Previous studies have demonstrated that the choice of 
order is crucial and that a fixed autocorrelation order may 
not always be an optimal measure [20, 21]. The time series 
with higher autocorrelation may need a higher order to 
estimate the autocorrelation matrix [22]. Therefore, instead 
of solely using the autocorrelation estimate of order 1 as 
the true value, we fully utilized the information of multiple 
significant orders. First, autocorrelation coefficients for dif-
ferent orders were tested using the following Z test:

σ̂ 2
w,UB =

∑
n

t=1

{(
Yt − µ̂t

)2
+ µ̂2

t exp(−2xT
t
Ĝnxt)

(
exp

(
2xT

t
Ĝnxt

)
− 2 exp(xT

t
Ĝnxt/2)+ 1

)
− µ̂t

}

∑
n

t=1 µ̂
2
t exp

(
−2xT

t
Ĝnxt

) ,

ρ̂w,UB(h) =
(
σ̂ 2
w,UB

)−1
(

n−h∑

t=1

µ̂t µ̂t+hgt,h

)−1 ∑n−h

t=1

{(
Yt − µ̂t

)(
Yt+h − µ̂t+h

)
+ µ̂t µ̂t+hgt,h

(
1− exp

(
x
T
t Ĝnxt/2

)
− exp(xT

t+h
Ĝnxt+h/2)+ 1/gt,h

)}
,

Z =
ρ̂w,UB(h)

V̂
{
ρ̂w,UB(h)

} ,
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where V̂
{
ρ̂w,UB(h)

}
=

(∑
n−h

t=1
µ̂tµ̂t+h

)−2∑
n−h

t=1
µ̂2
t µ̂

2

t+h(
1+ µ̂−1

t σ̂−2

w,UB

)(
1+ µ̂−1

t+h
σ̂−2

w,UB

)
 , and the significance 

level of the autocorrelation test was set at 0.01 [22].
Then, multiple estimates of ρw,UB(1) can be obtained 

by transforming ρw,UB(h) for different orders. Taking the 
common AR(1) parameter-driven model as an example, 
its autocorrelation matrix is as follows:

The ρw,UB(h) needs to take the square root of the corre-
sponding order to obtain multiple estimates. The existing 
literature of moment estimation emphasized the impor-
tance of considering higher-order information but did 
not demonstrate how to specify the optimal number of 
orders. Wang et  al. (2012) [23] showed the necessity of 
using 5 lags of the partial autocorrelation function of the 
residuals based on influenza-associated mortality data. 
In this study, to avoid over-utilizing the information of 
high orders to affect the robustness of the estimation, we 
chose the maximum autocorrelation coefficients within 
the first 5 orders as the autocorrelation estimate. It is 
expected that a more conservative estimate of the covari-
ance matrix with control over the type I error rate can 
be obtained by the new estimator (denoted as ρw,MSRC ). 
Meanwhile, we performed a sensitivity study using differ-
ent orders of moment estimation.

Simulation study
We performed a Monte Carlo simulation to evaluate 
the finite sample performance of the MSRC method. 
The simulation parameters were specified based on the 
interrupted time-series (ITS) model which has been 
widely used for intervention evaluation [24]. In detail, 
the count time series was assumed to follow a Pois-
son distribution Poisson

(
exp(αt + x

T
t
β)

)
 . The latent 

process αt was assumed to follow the correlation struc-
ture of a Gaussian AR(1) process, with a variance σ 2

α of 
0.5 and 1.0 and an autocorrelation coefficient ρα of 0.2, 
0.4, 0.6, and 0.8, respectively. The covariate matrix was 
x
T
t
= (1, t,X ,X(t − t0))

T , and the corresponding true 
regression coefficient was β =

(
β0,βt ,βX ,βX(t−t0)

)T , 
where t = 1,2, …, n denoted a linear trend term; X rep-
resented the indicator variable of the intervention (0 for 
pre-intervention; 1 for post-intervention), t0 denoted the 
starting time point of the intervention, X(t − t0) repre-
sented the interaction term between the trend and the 
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intervention variable, and the coefficients βX and βX(t−t0) 
indicated the level and trend change after the interven-
tion, respectively. For simplicity, we assumed the num-
ber of time points before and after the intervention to be 
equal; hence, t0 = n/2 throughout the simulation study.

The statistical performances of the UB-corrected 
method and the new method were evaluated using the 
bias of the coefficients and the estimates of the nuisance 
parameters, type I error rate and statistical power. The 
type I error rate was examined for the simulated  
data with the true regression coefficient β of 
(1,1, 0,0)T, (0.5,1, 0,0)T and (1,0.5,0, 0)T , respectively, to 
comprehensively assess the impact of the intercept and 
linear trend. For the sample size, we considered n = 20, 
60, 100, …, 500. In addition, to compare the statistical 
power of the two methods (i.e., UB-corrected and 
MSRC), we considered three scenarios separately: (i) 
level change: β = (1,1, 0.4,0)T ; (ii) trend change: 
β = (1,1, 0,1.2)T ; and (iii) both level and trend 
change: β = (1,1, 0.4,1.2)T . Meanwhile, we set four sce-
narios (1,1, 0.5,0)T , (1,1, 0,1.5)T , (1,1, 0.5,1.2)T and 
(1,1, 0.4,1.5)T to fully evaluate the influence of effect size 
on power. Since our preliminary simulation revealed that 
the type I error rate was well controlled when the sample 
size was not less than 340, we set the sample size to 
n = 340, 360, 380, …, 500 for the investigation of power. 
The first two scenarios were examined using the Wald 
test. For the later scenarios, we used the  
covariance matrix to construct the test statistic (
β̂X , β̂X(t−t0)

)T
[Var(β̂X , β̂X(t−t0))]

−1
(β̂X , β̂X(t−t0)) for the 

intervention term, which follows a chi-square distribu-
tion with 2 degrees of freedom. In addition, we used the 
empirical standard error obtained from Monte Carlo 
simulation estimation to calculate the power. However, 
due to its unavailability in practice, this study only used 
the empirical power obtained from this estimation as a 
reference for comparison. Each simulation was repeated 
10 000 times (Supplemental Code S1).

Real data application
To assess the effect of the drunk driving intervention on 
RTIs, we obtained daily data on ambulance emergency 
call-outs for all RTIs from January 1, 2010, to December 
31, 2016, from the Shenzhen pre-hospital care center. 
Based on the ITS design, we modelled daily RTIs Yt 
using a Poisson regression that adjusted for long-term 
and seasonal trends. Two meteorological factors (pre-
cipitation and temperature) were considered as covari-
ates since previous studies have revealed their impacts 
on RTIs [25, 26]. The model formula was specified as 
follows:
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where the population and motor vehicles were set as 
offsets, so that the fitted model was used to explore the 
impact factors of the incidence of RTIs [1]; the paired 
sine and cosine functions were used to fit the seasonal-
ity and T = 365.25; k = 2 was chosen by the mass spec-
trogram; Dowt is an indicator of the day of the week, 
Holidayt and prect are categorical variables for public 
holidays (i.e., 0 for non-holiday, 1 for Chinese Spring 
Festival, and 2 for other holiday) and precipitation (i.e., 
none: 0.0 mm/h; mild: 0.0-2.5 mm/h; severe: >2.5 mm/h), 
respectively; ns  (Tempt , 3 ) is a natural cubic spline of 
mean temperature with 3 degrees of freedom, which is 
chosen by the lowest Akaike’s Information Criterion. Xt 
is the indicator variable of intervention, and Xt × ns(t, 5) 
denotes the interaction term of the intervention variable 
and the spline function of time to fit the non-linear time-
varying effect of the drunk driving intervention.

To better understand the public health significance of 
drunk driving regulations, we estimated the excess risk 
(ER) at time t by (exp

(
β̂7 + β̂9 × ns(t, 5)

)
− 1)× 100% , 

which represents the percentage change in the relative risk 
of the incidence of RTIs associated with the drunk driving 
intervention. Moreover, we provided estimates of ER at 3 
time points: 1, 3, and 5 years after the intervention. The SE 
used in estimating the 95% confidence interval was calcu-

lated as 
√
(1, ns(t, 5))× V

(
β̂7, β̂9

)
× (1, ns(t, 5))T  , noting 

that V
(
β̂7, β̂9

)
 denotes the covariance matrix between the 

parameters corrected by the MSRC method. All simula-
tions and analyses were performed using R 4.2.1 (R Foun-
dation for Statistical Computing).

Results
Table  1 presents the results of the regression coef-
ficients, nuisance parameters, and type I error rates 
obtained for the two correction methods under the 
three intervention scenarios. The point estimates of 
the coefficients obtained from the GLM are extremely 
small-biased in all scenarios. For the variance σ 2

α  , the 
proposed MSRC does not change its estimate. Both 
methods use the estimator σ̂ 2

UB , with its point esti-
mate very close to the true values when the sample 
size exceeds 180 (Supplemental Fig.  S1A). For the 
autocorrelation parameter ρα , the estimator ρ̂UB tends 
to underestimate as the autocorrelation coefficient 
increases (Supplemental Fig. S1B). Although this 

Log(E[Yt ]) = offset
(
Log(Pop ∗ Car)

)
+ β0 +

∑k

θ=1

[
β1sin

(
2θπ t

T

)
+ β2cos

(
2θπ t

T

)]

+ β3Dowt + β4Holidayt + β5prect + β6ns
(
Tempt , 3

)
+ β7Xt + β8t + β9Xt × ns(t, 5),

underestimation is relatively small, it still leads to an 
inflation of the type I error rate when the autocor-
relation coefficient is high (≥ 0.6) (Supplemental Fig. 
S2). In contrast, the new estimator ρ̂MSRC is slightly 
overestimated (Supplemental Fig. S1C). When the 
sample size reaches 340, the type I error rate is con-
trolled well in all simulation settings and is not overly 
conservative due to the slight overestimation of 
ρ̂MSRC . Similar results are obtained for other settings 
for sample sizes, intercepts and linear trends (Supple-
mental Fig. S3).

Figure  1 shows the comparison of statistical power 
between the two correction methods and the empiri-
cal estimation. First, the trend of power estimated by 
these three methods is entirely consistent; specifically, 
it increases with increasing sample size and effect size 
and decreasing autocorrelation and variance of the 
latent process (Supplemental Fig. S4). Comparing the 
two correction methods, MSRC consistently exhibits 
lower power than UB-corrected in all simulation set-
tings. The difference between them is negligible at small 
autocorrelation (≤ 0.4), but increases as the autocor-
relation rises further. The power obtained by both cor-
rection methods is closer to the empirical power when 
the autocorrelation coefficient ρα is small (≤ 0.4). As ρα 
further increases, the power of MSRC is also similar to 
the empirical power. Furthermore, this finding still held 
across different sample sizes, effect sizes, and variances 
of the latent process.

The sensitivity analyses showed that the type I error 
rate remained uncontrolled when using a maximum 
order less than 5 (e.g., 3), and using a higher order over 
5 (e.g., 7) produced slightly conservative results with a 
reducing power (Supplemental Tables S1 and S2).

Figure  2 shows that the daily incidence of RTIs was 
relatively stable before the intervention and gradu-
ally decreased since May 2011. The partial autocorrela-
tion function plot of residuals of the conventional GLM 
showed significant autocorrelation (Supplemental Fig. 
S5). Consequently, we further used the UB-corrected and 
MSRC methods ( ̂ρUB = 0.379 vs. ρ̂MSRC = 0.704 ). Three 
methods produced the same point estimations of the 
intervention effect, showing a weak or even non-signifi-
cant effect at the beginning of the intervention and a rapid 
reduction in the risk of the incidence of RTIs since 2012, 
but the intervention effects gradually plateaued after 2014 
(Fig. 3). Compared to the uncorrected GLM and UB-cor-
rected, the MSRC had a wider confidence interval (CI), 
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with an ER of -8.34% (95% CI, -20.51 to 5.69%), -45.07% 
(95% CI, -59.30% to -25.86%) and − 42.94% (95% CI, 
-64.00% to -9.56%) at 1, 3 and 5 years after the interven-
tion, respectively (Table 2).

Discussion
In the realm of public health, autocorrelation in count 
time series is very common, posing challenges in model 
estimation and resulting in underestimation of SE and 

Fig. 1 Statistical power under three intervention scenarios. UB‑corrected: unbiased correction; MSRC: maximum significant ρ correction. The 
different colored bands indicate estimation methods. Panel (A) σ 2

α = 0.5 ; and Panel (B) σ 2
α = 1 , and from left to right for the scenarios of level 

change ( β = (1,1, 0.4,0)T  ), trend change ( β = (1,1, 0,1.2)T  ), and both level and trend change ( β = (1,1, 0.4,1.2)T)

Fig. 2 The incidence of daily road traffic injuries in Shenzhen, China, 2010–2016. RTI, road traffic injuries. The gray shadow shows 
the post‑intervention period for drink driving interventions implemented since May 2011
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subsequent incorrect conclusions. However, despite the 
longstanding interest in this issue, the current body of 
literature lacks methods that can accurately estimate SE 
and well control the type I error rates. To fill this signifi-
cant gap, we propose a novel alternative approach, known 
as the MSRC method, for modelling parameter-driven 
autocorrelated count time series with a well-controlled 
type I error rate. In addition, we applied this method to 
evaluate the effectiveness of drunk driving intervention 
on the incidence of RTIs in Shenzhen, China.

The autocorrelation of the latent process is particu-
larly noteworthy in parameter-driven time series mod-
els with count data, as it directly affects the control of 
the type I error rate. For the UB-corrected method, the 
type I error rate remains within an acceptable range 
when the autocorrelation coefficient is small ( ρα≤0.4). 
However, the type I error rate is inflated as the auto-
correlation coefficient increases further. On the other 
hand, the MSRC method effectively controls the type 

I error rate across different levels of autocorrelation 
when the sample size approaches 340. Furthermore, 
notably, the autocorrelation function of the counting 
process is usually dominated by that of the latent pro-
cess. This implies that significant autocorrelation pre-
sent in the latent process may be masked when little or 
no autocorrelation is observed during the count time 
series [10]. Therefore, if it is challenging to determine 
the significance of the autocorrelation of the latent pro-
cess, the MSRC method, which ensures robust control 
of the type I error rate may be a preferable choice.

Ye et al. (2022) [14] highlighted that the type I error rate 
is inflated when the coefficient βt of the pre-intervention 
trend term is not equal to 0. However, in practical scenar-
ios, it is highly unlikely to have no trend before interven-
tion. This may explain why the UB-corrected method still 
inflates type I error rates even under large sample sizes 
when βt  = 0 is set in our study. In contrast, the MSRC 
method demonstrates superior control over type I error 

Fig. 3 Excess risks of road traffic injuries over time estimated by three methods. GLM, generalized linear model; UB‑corrected: unbiased correction; 
MSRC: maximum significant ρ correction

Table 2 Excess risks of road traffic injuries attributable to drunk driving intervention by three methods

CI Confidence interval, GLM Generalized linear model, UB-corrected Unbiased correction, MSRC Maximum significant ρ correction

Excess risk% (95% CI)

May 01, 2012 May 01, 2014 May 01, 2016

Uncorrected GLM ‑8.34 (‑13.64 to ‑2.72) ‑45.07 (‑51.59 to ‑37.66) ‑42.94 (‑53.04 to ‑30.67)

UB‑corrected ‑8.34 (‑17.12 to 1.37) ‑45.07 (‑55.59 to ‑32.05) ‑42.94 (‑58.85 to ‑20.88)

MSRC ‑8.34 (‑20.51 to 5.69) ‑45.07 (‑59.30 to ‑25.86) ‑42.94 (‑64.00 to ‑9.56)
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rates in the presence of a pre-intervention trend, mak-
ing it a more effective and reasonable choice for practical 
applications.

Many studies evaluating interventions rely on annual or 
monthly data with only a few dozen or even several time 
points available [27, 28]. However, our study highlights 
that the type I error rate is far from being controlled under 
a small sample size. The MSRC method proposed in this 
study demonstrates a well-controlled type I error rate when 
the sample size reaches approximately 340, corresponding 
to nearly 29-year monthly data, which is very difficult to 
collect in practice. Therefore, collecting data at a finer time 
scale (e.g., weekly or daily) may be a better choice, but it 
is still necessary to consider the number of events occur-
ring at each time point. The sample size n considered in 
this study refers to the length of the time series, without 
explicitly specifying the number of events per time point. 
The true values of the regression coefficients were chosen 
to ensure that the expected events at each time point in all 
simulation settings were between 2 and 14, mainly to pre-
vent the problem of zero inflation and power being all close 
to 1. Consequently, it is not advisable to obtain a longer 
time series by choosing a more precise time scale that 
would result in an excessive number of zero counts.

The commonly used methods for evaluating the effects 
of a public health intervention include the difference-in-
difference (DID) method and ITS analysis. For example, 
Liang et al. (2008) [29] conducted a DID analysis to assess 
the intervention effect of zero-tolerance drunk driv-
ing regulation for drivers under 21 years in the United 
States, with a control group of contemporaneous col-
lege students aged 22–24 years. However, DID requires 
a homogenous parallel control, which is often very chal-
lenging since a public health intervention is generally 
implemented in the whole population. Moreover, as a 
non-randomized trial, the confounding factors reflecting 
between-group differences are not easy to be observed 
or controlled. In practice, most studies often use self-
control to compare changes in outcomes before and after 
the intervention. Therefore, the ITS method proves to be 
a better choice, especially when the tricky issue of series 
autocorrelation was addressed in this study.

In summary, our study has three strengths. First, for 
parameter-driven autocorrelated time series with count 
data, the new MSRC method provides a simple imple-
mentation of asymptotic covariance estimation without 
the need for extensive computation to approximate the 
high-dimensional integration of the full likelihood func-
tion, which is attractive in practice. Second, the type 
I error rate of the proposed method is acceptable and 
robust. Moreover, the power of the new method closely 
approximates that of UB-corrected when the autocorre-
lation is small (≤ 0.4). As the autocorrelation coefficient 

increases further, the power obtained from the new 
method becomes more accurate, while the higher power 
of UB-corrected is most likely due to the inflated type 
I error rate. Therefore, the MSRC method is very com-
petitive for parameter-driven autocorrelated time series 
with count data. Third, we evaluated the nonlinear time-
varying effect of the drunk driving intervention on RTIs 
based on daily data and corrected the autocorrelation in 
the data to avoid false-positive conclusions.

However, there are several limitations. First, we only 
focused on the most common Poisson distribution for 
count data. Future extensions to negative binomial distri-
butions and even the entire exponential distribution fam-
ily are necessary to develop a unified modelling framework 
for parameter-driven GLMs. Second, the MSRC method 
performs well only for a large data set with sample sizes 
over 340. It is necessary to improve the parameter estima-
tion method for small sample sizes in the future to enhance 
the practical application scenarios. Third, some count time 
series may have excessive zeros due to the rare occurrence 
of events of interest. Hence, it is valuable to develop a zero 
inflation model within this framework. Fourth, the time-
varying population size and the number of motor vehicles 
were controlled in the real-data analysis. However, we have 
not considered vehicle type and road quality, which may 
have an impact on the incidence of RTIs, due to the unavail-
ability of relevant data.

Conclusions
This study proposed a MSRC method for modelling 
parameter-driven autocorrelated time series of count 
data, which solved the issue of underestimation of the 
asymptotic covariance matrix inherent in the classi-
cal UB-corrected method. The Monte Carlo simulation 
justified that the new estimator had good finite sample 
performance with a well-controlled type I error rate and 
efficient statistical power. Using the MSRC method to 
correct the covariance matrix in the presence of auto-
correlation, the real analysis revealed that drunk driv-
ing regulations can significantly reduce the incidence of 
RTIs. This method provides a good modelling strategy 
for parameter-driven autocorrelated time series of count 
data and correct effect estimation in the field of public 
health intervention evaluation.
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