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Abstract 

Background The association between dietary selenium(Se) intake and type 2 diabetes mellitus (T2DM) remains con‑
troversial. The present study aimed to investigate this association using data from the National Health and Nutrition 
Examination Survey (NHANES) database for the years 2007–2012.

Methods Three thousand seventy three individuals aged 20 years and above were eligible for inclusion in this cross‑
sectional study. The average age of the participants was 50.74 years and the proportions of males and females were 
nearly equal (49.12% vs. 50.88%). The odds ratios (OR) of the association between dietary Se intake (log2‑transformed) 
and T2DM were examined through the multivariate logistic regression model. Subgroup analyses were conducted 
based on age, sex, and thyroid autoimmunity to assess the potential impact of these variables on the relationship. Fit‑
ted smoothing curves and threshold effect analysis were conducted to describe the nonlinear relationship.

Results In the fully adjusted model, a significant positive association between Se intake and T2DM was observed 
(OR = 1.49, 95% CI: 1.16, 1.90, p = 0.0017). After stratifying the data by age, sex, and thyroid autoimmunity, a significant 
positive association between Se intake and T2DM was observed in individuals under 65 years of age, males, and those 
with negative thyroid autoimmunity. A two‑segment linear regression model was analyzed for sex stratification, 
revealing a threshold effect in males with an inflection point of 90.51 μg, and an inverted U‑shaped relationship 
in females with an inflection point of 109.90 μg, respectively.

Conclusions The present study found a positive relationship between Se intake and the prevalence of T2DM. This 
association is particularly significant in younger individuals, males, and those with negative thyroid autoimmunity. Our 
results should be validated in future large prospective studies in different populations.
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Background
Type 2 diabetes mellitus(T2DM) is a rapidly growing 
global health crisis in the twenty-first century, which 
results in various cardiovascular diseases, reduced 
quality of life, and substantial medical expenses [1, 2]. 
According to the latest data from the International Dia-
betes Federation, in 2021, over 500 million people world-
wide were affected by T2DM, accounting for more than 
10.5% of the global adult population [2]. Additionally, it 
is projected that the number of individuals affected by 
T2DM will surpass 780 million by 2045 [2]. While there 
is a strong genetic basis for susceptibility to T2DM in 
individuals, epidemiological research evidence suggests 
that many cases of T2DM can be prevented by lifestyle 
modifications [3]. Hence, it is crucial to comprehend the 
risk factors associated with T2DM and implement effec-
tive treatment measures to effectively manage the condi-
tion. The primary risk factors for T2DM include being 
overweight or obese, dietary choices, level of physical 
activity, smoking, and alcohol consumption. A review 
indicates that there are correlations between the risk of 
developing T2DM and the intake of specific nutrients, 
food groups, and overall dietary patterns [3]. Extensive 
researches have been conducted to examine the connec-
tions between various nutritional factors, such as iron, 
docosahexaenoic acid (DHA) or eicosapentaenoic acid 
(EPA), vegetable fiber, fruit fiber, α-Linolenic acid, mag-
nesium, and vitamin D, and the development of T2DM 
[4–7].

Many studies have shown an increasing interest in the 
role of selenium (Se) in the development of diabetes and 
have drawn some conclusions [8, 9]. Se is a vital trace 
element in biological processes and exerts its biological 
function through selenoproteins [8]. Notably, selenopro-
teins are believed to be involved in antioxidant response, 
immune system function, and regulation of thyroid hor-
mones [8]. In recent years, the protective effect of Se on 
T2DM has been highlighted through the enhancement 
of internal antioxidant defense [10]. As a result, there 
has been a widespread promotion of increasing Se intake 
through diet [8]. However, based on the results of cross-
sectional studies conducted in China [11, 12] and the 
United States [13–15], as well as prospective studies con-
ducted in Italy [16, 17], there is an association between 
higher Se intake and an increased prevalence of T2DM. 
Furthermore, a previous meta-analysis [18] supports the 
above view, which is different from the theory that Se is 
beneficial to T2DM.

Therefore, our study aims to investigate the relation-
ship between dietary Se intake and the prevalence of 
T2DM. Additionally, certain population subgroups may 
be more vulnerable to the impact of Se, but research in 
this area is limited. This research will control for variables 

and conduct stratified analysis based on age, gender, and 
thyroid autoimmunity, to provide advice for informed 
decisions regarding Se supplementation.

Methods
Study population
This cross-sectional analysis enrolled individuals aged 
20 years and above from the National Health and Nutri-
tion Examination Survey (NHANES) conducted between 
2007 and 2012. NHANES, carried out by the National 
Center for Health Statistics of the Centers for Disease 
Control and Prevention, is a comprehensive nationwide 
survey aimed at assessing the health and nutritional sta-
tus of non-hospitalized residents in the United States. 
The survey methodology, including population and sam-
ple survey methods, is available in detail on the NHANES 
website. The NHANES survey protocol obtained ethi-
cal approval from the Ethics Review Committee of the 
National Center for Health Statistics, and all participants 
provided written informed consent. Between 2007 and 
2012, a total of 30,442 participants were included in this 
study. The analysis specifically focused on individuals 
aged 20 years and above who had available data on the 
dietary intake of Se and T2DM. Participants with miss-
ing data on TGAb, TPOAb, and other covariates were 
excluded, resulting in a final sample size of 3,072 eligible 
participants for the analysis (Fig. 1).

Diagnosis of T2DM
T2DM was the outcome variable, defined as: (1) ever 
been told by a doctor or health professional that you 
have diabetes or sugar diabetes? (2) HbA1c > 6.5%, (3) 
fasting glucose ≥ 7.0mmol/L, (4) random blood glu-
cose ≥ 11.1mmol/L, (5) two-hours OGTT blood glu-
cose ≥ 11.1mmol/L, (6) use of diabetes medication or 
insulin. Meeting any of the above criteria and excluding 
type 1 diabetes leads to the diagnosis of type 2 diabetes.

Dietary Se intake assessment
The dietary intake of Se was evaluated through two 
interviewer-administered 24-h recalls. These recalls 
were conducted in person at the mobile examination 
center (MEC) and via telephone 3–10  days later. The 
dietary Se intake was calculated in micrograms per day 
(μg/day). The final dietary Se intake utilized in this study 
was obtained by averaging the two measurements of Se 
intake.

Covariates
Participants completed a self-reported demographic 
questionnaire, which included inquiries about age, sex, 
race/ethnicity, and education level. Anthropometric 
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measurements, such as body mass index (BMI) and 
waist circumference (WC), were also taken. The study 
also assessed various laboratory parameters, including 
25OHD(D2 + D3), HDL-cholesterol, LDL-cholesterol, 
triglycerides, and total cholesterol. The dietary intake of 
energy, fiber, total fat, vitamin D(D2 + D3), magnesium, 
iron, zinc, and copper, alpha-carotene, beta-carotene, 
vitamin C, vitamin E was evaluated using the average 
of two interviewer-administered 24-h recalls. Smoking 
status was categorized as never smoker (having smoked 
fewer than 100 cigarettes in life), former smoker (hav-
ing smoked more than 100 cigarettes in life but not cur-
rently smoking), and current smoker (having smoked 
more than 100 cigarettes in life and currently smoking 
some days or every day). Hypertension was defined as 
having an average systolic blood pressure ≥ 140mmHg 
or diastolic blood pressure ≥ 90mmHg. If only one 
reading was obtained, that reading was considered the 
average; if there were multiple readings, the first read-
ing was always excluded. Cardiovascular disease (CVD) 
was defined as meeting any of the following criteria: (1) 
coronary heart disease, (2) congestive heart disease, (3) 
heart attack, (4) stroke, or (5) angina. Thyroid autoim-
munity was categorized as negative (TGAb < 4.0IU/mL 
and TPOAb < 9.0 IU/mL) or positive (TGAb ≥ 4.0IU/
mL or TPOAb ≥ 9.0 IU/mL).

Statistical analysis
All data were represented as mean ± standard deviation 
(SD) for continuous variables and as percentages for cat-
egorical variables. To assess the continuous variables and 
categorical variables, chi-square tests (for categorical var-
iables), t-tests (for variables with a normal distribution), 
and Kruskal–Wallis tests (for variables with a skewed dis-
tribution) were utilized.

The data on Se intake were log2-transformed due to 
its skewed distribution. Multivariate logistic regression 
modeling was used to estimate odds ratios (ORs) and 95% 
confidence intervals (CIs) for the risk of T2DM. Three 
sequential models were employed to control for potential 
confounders. The non-adjusted model did not include 
any adjustments. Model 1 was adjusted for age, sex, and 
race/ethnicity. Model 2 was adjusted for age, sex, race/
ethnicity, education level, BMI, WC, 25OH(D2 + D3), 
HDL-Cholesterol, LDL-cholesterol, triglyceride, total 
cholesterol, energy, fiber, total fat, vitamin D(D2 + D3), 
magnesium, iron, zinc, copper, smoking status, hyperten-
sion, CVD, and thyroid autoimmunity.

Subgroup analyses were conducted based on age (cat-
egorized as binary), sex, and thyroid autoimmunity to 
assess the potential impact of these variables on the rela-
tionship. A smooth curve fit was applied to describe the 
nonlinear relationship between dietary Se intake and 
T2DM. After stratifying the analysis by age, sex, and 

Fig. 1 Flowchart of participants enrollment
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thyroid autoimmunity, there appeared to be a thresh-
old effect in both males and females. The two-segment 
linear regression model indicated a threshold effect in 
males with an inflection point of 90.51 μg and an inverted 
U-shaped relationship in females with an inflection point 
of 109.90 μg, respectively.

We further performed sensitivity analyses. To avoid 
losing more sample of subjects (n = 745) because of the 
missing data of the dietary intake of alpha-carotene, beta-
carotene, vitamin C, vitamin E, we adjusted them after 
excluding the participants without data of dietary intake.

Statistical analyses were performed using the R® software 
package (v.4.2.0, http:// www.r- proje ct. org, accessed on 22 
April 2022) and Empower® software (v.4.2, http:// www. 
empow ersta ts. com, X&Y Solutions, Inc. Boston, MA, USA). 
A significance level of p < 0.05 (two-sided) was utilized to 
determine statistical significance.

Results
Baseline characteristic of participants
After excluding individuals with missing data, a total 
of 3072 participants were included in the final analy-
sis. The baseline characteristic was displayed in Table 1. 
The average age of the participants was 50.74  years 
and the proportions of males and females were nearly 
equal (49.12% vs. 50.88%). The majority of participants 
were Non-Hispanic White and had attained education 
level beyond high school. Compared to non-T2DM 
participants, those with T2DM were characterized 
by older age and higher values of BMI, WC, and tri-
glyceride levels. They also exhibited lower levels of 
25OHD(D2 + D3), HDL-Cholesterol, LDL-Cholesterol, 
total cholesterol, and dietary intake, except for vitamin 
D (D2 + D3). Moreover, T2DM participants had higher 
proportions of hypertension, CVD, and positive thyroid 
autoimmunity and a lower proportion of now smoker. 
The baseline characteristic of participants of sensitivity 
analyses was displayed in Table S1.

Association of dietary Se intake and T2DM
In the non-adjusted analysis (Table  2), a significant 
inverse association was found between log2-transformed 
Se intake and T2DM (OR = 0.83, 95% CI: 0.73, 0.94, 
p = 0.0039). When Se intake(log2-transformed) was 
divided into four equal groups, both Q2 and Q4 showed 
similar significant results. However, after adjusting for 
age, sex, and race/ethnicity (model 1), the association 
between Se intake(log2-transformed) and T2DM became 
positive but not statistically significant (OR = 1.09, 95% 
CI: 0.93, 1.26, p = 0.2870). In the fully adjusted model 
(model 2), a significant positive association between 
Se intake(log2-transformed) and T2DM was observed 
(OR = 1.49, 95% CI: 1.16, 1.90, p = 0.0017). However, 

when Se(log2-transformed) was divided into four equal 
groups for analysis, no significant association was found, 
with a p-value of 0.0739 for the trend test. A smooth 
curve fitting was conducted to illustrate the nonlinear 
relationship (Fig. 2).

Association of dietary Se intake and T2DM stratified 
by age, sex, and thyroid autoimmunity
After stratifying the data by age, sex, and thyroid auto-
immunity, a significant positive association between 
Se intake (log2-transformed) and T2DM was observed 
in individuals under 65  years of age, males, and those 
with negative thyroid autoimmunity (Table  3). Smooth 
curve fittings (Figs.  3, 4, 5) were conducted to illustrate 
the linear or nonlinear relationship. A two-segment lin-
ear regression model was analyzed for sex stratification, 
revealing a threshold effect in males with an inflec-
tion point of 6.5 (90.51  μg), and an inverted U-shaped 
relationship in females with an inflection point of 6.78 
(109.90  μg), respectively (Table  4). When Se intake 
exceeded 90.51 μg in males and was below 109.90 μg in 
females, a consistently significant positive association 
with T2DM was observed. However, when Se intake was 
below 90.51  μg in males, the positive relationship was 
not significant. Additionally, when Se intake exceeded 
109.90 μg in females, an inverse association with T2DM 
was observed, but it was not statistically significant.

Sensitivity analyses
The sensitive analyses (Table S2) showed that the asso-
ciation between Se intake(log2-transformed) and T2DM 
became more strongly positive, although the p-value 
was statistically non-significant (OR = 1.75, 95% CI: 0.99, 
3.09, p = 0.0548). However, in the subgroup analyses 
(Table S3), the above association still remain significantly 
positive in below 65  years of age and participants with 
negative thyroid autoimmunity. The association was not 
significant in neither males group nor females group.

Discussion
The present study revealed a significant positive corre-
lation between dietary Se intake and the risk of T2DM. 
Specifically, higher dietary Se intake is associated with 
an increased T2DM risk, particularly among individu-
als under 65  years of age, males, and those with nega-
tive thyroid autoimmunity. Notably, a threshold effect is 
observed in the gender stratification analysis. Our find-
ings suggest that Se intake above 90.51  μg per day sig-
nificantly raises the risk of T2DM in males, while intake 
below 109.90 μg per day significantly increases the risk in 
females.

The overall findings of this study align with several pre-
vious studies that have reported a positive correlation 

http://www.r-project.org
http://www.empowerstats.com
http://www.empowerstats.com
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Table 1 Baseline characteristic of participants

BMI Body Mass Index, WC Waist Circumference, CVD, Cardiovascular disease

Covariates Total T2DM P-value

No Yes

N 3072 2416 656

Age (years), Mean ± SD 50.74 ± 17.83 47.64 ± 17.60 62.17 ± 13.50  < 0.001

Sex, n (%) 0.055

    Male 1509 (49.12%) 1165 (48.22%) 344 (52.44%)

    Female 1563 (50.88%) 1251 (51.78%) 312 (47.56%)

Race/Ethnicity, n (%) 0.026

    Non‑Hispanic White 1491 (48.54%) 1186 (49.09%) 305 (46.49%)

    Non‑Hispanic Black 581 (18.91%) 430 (17.80%) 151 (23.02%)

    Mexican American 476 (15.49%) 380 (15.73%) 96 (14.63%)

    Other Race 524 (17.06%) 420 (17.38%) 104 (15.85%)

Education Level, n (%)  < 0.001

    Less than high school 846 (27.54%) 604 (25.00%) 242 (36.89%)

    High school 710 (23.11%) 542 (22.43%) 168 (25.61%)

    More than high school 1516 (49.35%) 1270 (52.57%) 246 (37.50%)

BMI (kg/m2), Mean ± SD 28.83 ± 6.39 27.97 ± 5.93 31.99 ± 6.99  < 0.001

WC (cm), Mean ± SD 99.10 ± 15.69 96.56 ± 14.81 108.46 ± 15.30  < 0.001

25OHD(D2 + D3) (nmol/L), Mean ± SD 63.33 ± 25.66 64.06 ± 25.96 60.64 ± 24.33 0.002

HDL‑Cholesterol (mg/dL), Mean ± SD 53.66 ± 15.36 54.84 ± 15.60 49.34 ± 13.62  < 0.001

LDL‑Cholesterol (mg/dL), Mean ± SD 115.92 ± 35.44 118.07 ± 34.56 108.00 ± 37.52  < 0.001

Triglyceride (mg/dL), Mean ± SD 125.20 ± 66.63 117.81 ± 62.78 152.42 ± 73.08  < 0.001

Total Cholesterol (mg/dL), Mean ± SD 194.63 ± 40.54 196.48 ± 39.72 187.84 ± 42.78  < 0.001

Dietary intake, Mean ± SD

 Energy (kcal) 1987.91 ± 798.52 2042.98 ± 805.82 1785.12 ± 736.91  < 0.001

 Fiber (gm) 16.39 ± 8.62 16.56 ± 8.65 15.74 ± 8.45 0.029

 Total fat (gm) 73.94 ± 36.08 75.27 ± 36.26 69.01 ± 34.99  < 0.001

 Vitamin D(D2 + D3) (mcg) 4.47 ± 4.13 4.47 ± 4.17 4.45 ± 3.95 0.893

 Magnesium (mg) 282.20 ± 117.13 287.62 ± 119.33 262.24 ± 106.38  < 0.001

 Iron (mg) 14.81 ± 7.38 15.01 ± 7.45 14.07 ± 7.08 0.004

 Zinc (mg) 11.16 ± 6.15 11.32 ± 6.36 10.56 ± 5.27 0.005

 Copper (mg) 1.24 ± 0.60 1.26 ± 0.63 1.15 ± 0.48  < 0.001

 Selenium (μg) 107.72 ± 49.24 109.13 ± 49.73 102.54 ± 47.06 0.002

Smoking status, n (%)  < 0.001

 Never 1657 (53.94%) 1346 (55.71%) 311 (47.41%)

 Former 802 (26.11%) 564 (23.34%) 238 (36.28%)

 Now 613 (19.95%) 506 (20.94%) 107 (16.31%)

Hypertension, n (%)  < 0.001

 No 1779 (57.91%) 1591 (65.85%) 188 (28.66%)

 Yes 1293 (42.09%) 825 (34.15%) 468 (71.34%)

CVD, n (%)  < 0.001

 No 2719 (88.51%) 2226 (92.14%) 493 (75.15%)

 Yes 353 (11.49%) 190 (7.86%) 163 (24.85%)

Thyroid autoimmunity, n (%) 0.046

 Negative 2605 (84.80%) 2065 (85.47%) 540 (82.32%)

 Positive 467 (15.20%) 351 (14.53%) 116 (17.68%)
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between blood Se concentrations and the incidence of 
T2DM [12, 19, 20]. Se, being a trace mineral element 
with a narrow therapeutic range and significant inter-
individual variability [21], is thought to play a role in 
T2DM, a chronic metabolic disorder typically character-
ized by pancreatic β-cell dysfunction and insulin resist-
ance [22]. Although the exact mechanism by which Se 
increases the risk of T2DM has not been fully elucidated, 
several studies have investigated potential underlying 

mechanisms. Satyanarayana S et al. have suggested that a 
diet high in Se may stimulate glucagon release, leading to 
hyperglycemia [23]. Additionally, an animal experiment 
has indicated that high Se levels can induce hepatic insu-
lin resistance by either promoting lipolysis-induced dam-
age from reactive oxygen species (ROS) or suppressing 
insulin-stimulated ROS signaling [24].

According to currently available epidemiologic stud-
ies suggesting that the relationship between Se and 

Table 2 Association of dietary Se intake and T2DM

Non-adjusted model: adjusted for none

Model 1: age, sex, and race/ethnicity were adjusted

Model 2:age, sex, race/ethnicity, education level, BMI, WC, 25OHD(D2 + D3), HDL-Cholesterol, LDL-cholesterol, triglyceride, total cholesterol, energy, fiber, total fat, 
vitamin D(D2 + D3), magnesium, iron, zinc, copper, smoking status, hypertension, CVD, thyroid autoimmunity were adjusted

Exposure Non-adjusted model Model 1 Model 2
OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Selenium intake
(log2‑transformed)

0.83 (0.73, 0.94) 0.0039 1.09 (0.93, 1.26) 0.2870 1.49 (1.16, 1.90) 0.0017

Q1 (2.46–6.18) 1.00 (Reference 1.00 (Reference) 1.00 (Reference)

Q2 (6.18–6.65) 0.77 (0.61, 0.98) 0.0321 0.88 (0.68, 1.14) 0.3236 0.96 (0.72, 1.29) 0.7939

Q3 (6.65–7.06) 0.81 (0.64, 1.03) 0.0812 1.04 (0.80, 1.35) 0.7510 1.31 (0.94, 1.81) 0.1113

Q4 (7.06–8.67) 0.62 (0.49, 0.80) 0.0002 1.00 (0.75, 1.33) 0.9907 1.37 (0.89, 2.09) 0.1534

p for trend 0.0006 0.7294 0.0739

Fig. 2 The association between Se intake and T2DM. Each red dot represents the dietary Se intake level, forming a continuous fitting curve. The 
area between the blue dashed lines is considered as 95% confidence interval. Age, sex, race/ethnicity, education level, BMI, WC, 25OHD(D2 + D3), 
HDL‑Cholesterol, LDL‑cholesterol, triglyceride, total cholesterol, energy, fiber, total fat, vitamin D (D2 + D3), magnesium, iron, zinc, copper, smoking 
status, hypertension, CVD, thyroid autoimmunity were adjusted



Page 7 of 11Ma et al. BMC Public Health          (2024) 24:743  

T2DM is controversial, which means that lower Se 
intake and higher Se intake may both be risk factors 
for T2DM [8, 25, 26]. This may be due to differences in 
baseline serum Se levels. It has been suggested that par-
ticipants with lower Se status may benefit from Se sup-
plementation, while high dietary Se supplementation is 

not recommended for those with already high serum or 
plasma Se concentrations of 122 μg/L or higher [8].

In our study, we observed that Se intake above 90.51 μg 
significantly increased the risk of T2DM in males, while 
selenium intake below 109.90  μg significantly increased 
the risk of T2DM in females. It is worth noting that the 
average (standard deviation) serum Se concentration in 
US residents, as measured in the 2003–2004 NHANES, 
was 137 (20)μg/L. [27]. As previously mentioned, the 
high baseline Se levels in the US population may con-
tribute to the observed association between increased 
dietary Se intake and an increased risk of T2DM. Inter-
estingly, sex hormones seem to have a direct influence on 
Se distribution and metabolism [28]. Earlier studies have 
reported a positive correlation between plasma Se levels, 
glutathione peroxidase (GPX) activity, and estrogen fluc-
tuations in pre-menopausal women, suggesting a poten-
tial direct effect of estrogen on Se status [29]. In addition, 
there is a significant demand for Se in the testicles, result-
ing in a preferential supply of Se to the testicles in males 
[30]. This means that, even with the same Se intake, the 
increase in serum Se levels attributed to this specific 
intake may not be equal between men and women. This 
observation could potentially explain why a lower Se 
intake is associated with a significantly increased risk of 
diabetes in women, while a higher Se intake is associated 
with a significantly increased risk of diabetes in men.

Table 3 Association of dietary Se intake and T2DM stratified by 
sex, age, and thyroid autoimmunity

Adjusted for age, sex, race/ethnicity, education level, BMI, WC, 25OHD(D2 + D3), 
HDL-Cholesterol, LDL-cholesterol, triglyceride, total cholesterol, energy, fiber, 
total fat, vitamin D(D2 + D3), magnesium, iron, zinc, copper, smoking status, 
hypertension, CVD, thyroid autoimmunity except the stratification

Exposure N OR (95% CI) p value

Selenium intake
(log2‑transformed)

3072 1.49 (1.16, 1.90) 0.0017

Stratified by age

  < 65 years 2250 1.97 (1.04, 3.73) 0.0370

  ≥ 65 years 822 0.97 (0.44, 2.13) 0.9398

Stratified by sex

 male 1509 1.77 (1.24, 2.52) 0.0018

 female 1563 1.28 (0.89, 1.85) 0.1825

Stratified by thyroid autoimmunity

 negative 2605 1.43 (1.09, 1.89) 0.0098

 positive 467 1.55 (0.83, 2.89) 0.1681

Fig. 3 The association between Se intake and T2DM stratified by age. Each stratification adjusted for all the factors (age, sex, race/ethnicity, 
education level, BMI, WC, 25OHD(D2 + D3), HDL‑Cholesterol, LDL‑cholesterol, triglyceride, total cholesterol, energy, fiber, total fat, vitamin D 
(D2 + D3), magnesium, iron, zinc, copper, smoking status, hypertension, CVD, thyroid autoimmunity) except the stratification
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Fig. 4 The association between Se intake and T2DM stratified by sex. Each stratification adjusted for all the factors (age, sex, race/ethnicity, 
education level, BMI, WC, 25OHD(D2 + D3), HDL‑Cholesterol, LDL‑cholesterol, triglyceride, total cholesterol, energy, fiber, total fat, vitamin D 
(D2 + D3), magnesium, iron, zinc, copper, smoking status, hypertension, CVD, thyroid autoimmunity) except the stratification

Fig. 5 The association between Se intake and T2DM stratified by thyroid autoimmunity. Each stratification adjusted for all the factors (age, sex, race/
ethnicity, education level, BMI, WC, 25OHD(D2 + D3), HDL‑Cholesterol, LDL‑cholesterol, triglyceride, total cholesterol, energy, fiber, total fat, vitamin D 
(D2 + D3), magnesium, iron, zinc, copper, smoking status, hypertension, CVD, thyroid autoimmunity) except the stratification



Page 9 of 11Ma et al. BMC Public Health          (2024) 24:743  

Our study also confirmed that the positive associa-
tion between dietary Se intake and the risk of T2DM 
remained significant in individuals with negative thy-
roid autoimmunity. Several clinical studies have demon-
strated that Se supplementation reduces TPOAb and/or 
TGAb titers and improves thyroid function in patients 
with Hashimoto’s thyroiditis (positive for TGAb and 
TPO-Ab), suggesting that Se may be beneficial in treating 
thyroid autoimmunity [31–33]. However, some current 
studies have suggested a potential increased risk of diabe-
tes with the use of Se supplements in adults. In our study, 
we found that Se intake was not significantly associated 
with the risk of T2DM in the population with positive 
thyroid autoimmunity. This implies that individuals with 
positive thyroid autoimmunity may not need to be con-
cerned about an increased risk of T2DM when increasing 
Se intake to treat thyroid autoimmunity.

Our study has several strengths. Firstly, we utilized 
a large sample size and adjusted for a greater number 
of confounding variables, which enhanced the reliabil-
ity of our results. Secondly, the data used in our study 
were obtained from NHANES, a survey known for its 
rigorous sampling design, high-quality data collec-
tion, and meticulous quality control procedures. This 
ensures the robustness and validity of our findings. 
Finally, our study employed fitted smoothed curves and 
conducted threshold effects analysis to examine the 
nonlinear relationship between dietary selenium intake 
and the risk of T2DM. However, it is important to con-
sider several potential limitations of this study. Firstly, 
due to the cross-sectional nature of the study design, 
we were only able to observe an association between Se 
intake and the prevalence of T2DM, and cannot estab-
lish a direct causal relationship. Secondly, the study 

population selected for this research had relatively high 
Se exposure and demonstrated elevated serum Se con-
centrations, partly attributed to the Se-rich content of 
U.S. soils [27, 34]. As a result, it may not be appropri-
ate to generalize the conclusions to other populations 
with different Se levels. Because the Se content of foods 
varies widely depending on soil conditions, dietary 
assessments of Se intake are usually less accurate than 
measurements of serum Se concentrations. Lastly, the 
estimation of dietary Se intake relied on participant 
recall, which introduces the possibility of recall bias.

Except for weight loss, increasing physical activity, 
adopting a healthy diet also remains one of the first-line 
strategies for the management of T2DM. Altogether, 
our results suggest that higher selenium intake might 
be a new predictor for the presence of T2DM and 
should be validated in future large prospective studies 
in different populations. The identification of different 
threshold effects in males and females provides valuable 
insights for future research and the development of tar-
geted interventions for T2DM prevention. In addition, 
this study investigated the relationship between sele-
nium and thyroid autoimmune stratified T2DM. The 
study provides some research contributions to whether 
selenium supplementation therapy for thyroid autoim-
munity may also increase the risk of type 2 diabetes.

Conclusions
The present study found a positive relationship between 
Se intake and the risk of T2DM. This association is par-
ticularly significant in younger individuals, males, and 
those with negative thyroid autoimmunity. It is impor-
tant to replicate our findings in future studies con-
ducted on diverse populations, and further establish 
cohort studies to investigate the potential causal rela-
tionship between selenium intake and the occurrence 
of T2DM.
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