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Abstract
Background  Deep learning (DL), a specialized form of machine learning (ML), is valuable for forecasting survival 
in various diseases. Its clinical applicability in real-world patients with gastric cancer (GC) has yet to be extensively 
validated.

Methods  A combined cohort of 11,414 GC patients from the Surveillance, Epidemiology and End Results (SEER) 
database and 2,846 patients from a Chinese dataset were utilized. The internal validation of different algorithms, 
including DL model, traditional ML models, and American Joint Committee on Cancer (AJCC) stage model, was 
conducted by training and testing sets on the SEER database, followed by external validation on the Chinese dataset. 
The performance of the algorithms was assessed using the area under the receiver operating characteristic curve, 
decision curve, and calibration curve.

Results  DL model demonstrated superior performance in terms of the area under the curve (AUC) at 1, 3, and, 5 
years post-surgery across both datasets, surpassing other ML models and AJCC stage model, with AUCs of 0.77, 0.80, 
and 0.82 in the SEER dataset and 0.77, 0.76, and 0.75 in the Chinese dataset, respectively. Furthermore, decision curve 
analysis revealed that the DL model yielded greater net gains at 3 years than other ML models and AJCC stage model, 
and calibration plots at 3 years indicated a favorable level of consistency between the ML and actual observations 
during external validation.

Conclusions  DL-based model was established to accurately predict the survival rate of postoperative patients with 
GC.
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Background
Gastric cancer (GC) is one of the common malignant 
tumors, and surgical resection is still the only option to 
cure early GC and the main treatment for GC [1]. Even if 
patients with GC have undergone radical surgery, there 
are still many factors affecting their survival and disease 
progression, including clinical as well as pathological fac-
tors, such as stage, histological type, depth of infiltration 
and lymph node and distant metastasis [2–5]. Therefore, 
accurate prediction of postoperative survival rate is cru-
cial for both patients and healthcare institutions. GC is a 
heterogeneous, multifactorial disease, and the variability 
of these multiple factors and the complexity of GC make 
treatment and survival prediction extremely difficult 
[6]. Currently, clinicians usually assess survival based on 
the American Joint Committee on Cancer (AJCC) stage 
combined with their own medical experience, overlook-
ing the role of other survival-influencing factors [7]. The 
staging system is widely used and effective in guiding 
treatment decisions for GC. However, it fails to consider 
various factors such as sex, age, tumor size, and histo-
pathological type, all of which can significantly influence 
survival prognosis. Additionally, traditional methods, 
such as Cox regression, in survival analysis encounter 
limitations including the requirement for proportional 
hazards and the assumption of linearity in continuous 
variables. These constraints may restrict their applicabil-
ity in complex scenarios. However, deep learning-based 
prognostic models represent a significant advancement 
as they effectively address these issues. They can handle 
non-proportional hazards and model non-linear relation-
ships between variables and outcomes, rendering them 
more versatile and accurate for survival prediction across 
diverse clinical settings.

Machine learning (ML) excels in acquiring information 
from high-dimensional, complex data, learning automati-
cally and making predictions in supervised or unsuper-
vised mode, and plays a major role in disease prognosis 
[8]. Compared to the AJCC stage model, ML predictive 
models may be more appropriate for clinical settings to 
guide clinical decision making. To the best of our knowl-
edge, there is a lack of effective predictive models for 
the correlation of several clinical factors with the prog-
nosis of GC patients after surgery. Deep learning (DL), a 
special kind of ML model that includes multiple neural 
networks, can handle more complex information. The 
DL method, compared to traditional ML models includ-
ing the multitask logistic regression and random forest 
models, has many advantages. First, DL can learn com-
plex patterns and representations from large datasets, 
resulting in superior performance compared to tradi-
tional ML algorithms. Second, DL algorithm can scale 
effectively with large amounts of data. Third, DL model 
has the ability to automatically learn and extract relevant 

features from raw data. At last, DL models can lever-
age pre-trained models on large datasets, allowing for 
transfer learning. This approach enables the application 
of existing knowledge from one domain to another, even 
with limited labeled data, thereby reducing the need for 
extensive training data. Some studies have utilized DL 
models for analysis in surgical oncology research [9–11]. 
However, most of these studies have focused on diag-
nostic applications, such as automated quantification of 
radiographic images, digital histopathologic image inter-
pretation, or biomarker analysis [12–15]. To our knowl-
edge, there are limited published studies utilizing DL 
models for prognostic prediction in surgical oncology, 
particularly in the field of GC. Therefore, DL-based sur-
vival analysis offers insights into survival prediction after 
GC surgery.

The Surveillance, Epidemiology and End Results (SEER) 
database, established by the National Cancer Institute, is 
a comprehensive cancer registry with well-developed and 
regularly updated data that provides a wealth of informa-
tion on patient clinical characteristics, treatment, and 
survival data [16]. This study aims to extract information 
about postoperative GC patients from the SEER data-
base, construct a GC survival prediction model by DL 
algorithm, and evaluate the accuracy of the constructed 
model using information collected from real-world GC 
patients to analyze the factors influencing the probability 
of GC survival and the 5-year survival status to provide 
decision support for clinical treatment and prognosis of 
GC.

Methods
Data collection and patient characteristics
The current research is a retrospective study that relies 
on data from the SEER database, which is maintained by 
the National Cancer Institute. The SEER database col-
lects information on cancer incidence and survival rates 
from 18 cancer registries, covering approximately 27.8% 
of the US population. This study also includes patients 
diagnosed with gastric cancer between 2016 and 2020 at 
the Affiliated Cancer Hospital of Zhengzhou University, 
Henan Cancer Hospital, forming a Chinese dataset. All 
procedures involving human participants in this study 
followed the ethical standards established by the insti-
tutional and/or national research committee, as well as 
the 1964 Helsinki declaration and its subsequent amend-
ments or equivalent ethical standards. Due to the ret-
rospective nature of the study, informed consent from 
patients was not required.

In this study, individuals who were diagnosed with pri-
mary GC and met the following criteria were included: 
being above 18 years of age and having undergone sur-
gical intervention. The identification of eligible patients 
was based on the definition of the primary tumor 
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location, which encompassed the following categories: 
C16.0-Cardia, C16.1-Fundus of stomach; C16.2-Body of 
stomach; C16.3-Gastric antrum; C16.4-Pylorus; C16.5-
Lesser curvature of stomach; C16.6-Greater curvature of 
stomach; C16.8-Overlapping lesion of stomach; C16.9-
Stomach. Individuals with unknown age or survival 
duration were excluded from the study. For the purpose 
of analysis, important patient attributes were collected, 
which included the following information: age at diagno-
sis (in years), sex, tumor location, histology, grade, AJCC 
stage, tumor size (in millimeters), the number of exam-
ined lymph nodes (LN), the number of positive LNs, 
radiation treatment, and chemotherapy.

Selection of proper ML algorithms
Multi-task logistic regression (MTLR)
The MTLR model presents a novel approach to survival 
analysis, extending traditional methods by directly mod-
eling the survival function across multiple time intervals. 
The model accommodates the time-varying effects of 
covariates, allowing for a more nuanced understanding 
of risk factors. MTLR captures these dynamics, offering 
several advantages over Cox’s proportional hazards and 
Aalen’s additive models, which are traditional staples of 
survival analysis. Unlike these models, MTLR can handle 
non-proportional hazards and non-linear effects, result-
ing in improved predictive accuracy and flexibility.

A simplified view of the mathematical formulation 
behind MTLR is shown below:

Assume we divide the survival time into N discrete 
intervals, [t0, t1), [t1, t2), . . . , [tN−1, tN ], where t0 = 0 and 
tN = ∞  (or some maximum follow-up time). For each 
interval i, MTLR models the probability that the event 
of interest (e.g., death) occurs within that interval, given 
that it has not occurred before ti .

The probability of the event occurring in the ith inter-
val, given covariates X, is modeled as:

	

P (T ∈ [ti−1, ti)|X) =
exp(βT

i X)
N∑

j=0
exp(βT

j X)

where:

 	• T is the survival time,
 	• X represents the covariates (or features) of the 

patient,
 	• βi is the coefficient vector for interval i,
 	• N is the number of intervals.

Random Survival Forests (RSF) represent another inno-
vative extension of Random Forests specifically adapted 
for survival analysis. RSF does not assume a specific form 

for the underlying hazard function, making it adaptable 
for various datasets. By aggregating predictions from 
multiple decision trees built on various subsamples of the 
data, RSF enhances prediction accuracy and robustness.

For a new observation, the survival function is esti-
mated by aggregating predictions from all the trees in the 
forest.

In mathematical terms, if we denote Si​(t) as the survival 
function estimated by the ith tree in the forest for time t, 
and N as the total number of trees, the overall survival 
function S(t) for an observation is given by:

	
S(t) =

1
N

N∑

i=1

Si(t)

The DeepSurv model in PySurvival is a deep learning-
based approach to survival analysis, renowned for its 
ability to capture complex, non-linear relationships in 
the data. DeepSurv extends traditional survival analysis 
models by using neural networks, allowing for more flex-
ible and potentially more accurate modeling of survival 
data, especially when dealing with high-dimensional and 
complex datasets.

DeepSurv utilizes a neural network to model the haz-
ard function. The hazard function in the context of Deep-
Surv can be expressed as:

h(t|X) = h0(t)exp(g(X, θ))
where:

 	• h(t|X)  is the hazard function at time t given 
covariates X.

 	• h0(t) is the baseline hazard function, which is 
typically left unspecified.

 	• exp(g(X, θ))is a non-linear function represented by 
the neural network, with X being the input covariates 
and θ representing the network’s parameters.

 	• The neural network g(X,θ) learns complex 
relationships between the input covariates and the 
log-risk of the event occurring.

Our decision to employ DL, MTLR, and RF into our 
study, alongside a comparison with the traditional TNM 
staging system, stemmed from our aim to explore a spec-
trum of machine learning approaches that address the 
unique challenges posed by survival data. Each method 
was selected based on its specific strengths in addressing 
different aspects of survival analysis:

 	• DL was chosen for its unparalleled capability in 
modeling complex, non-linear relationships within 
high-dimensional datasets.
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 	• MTLR was employed for its innovative approach to 
capturing time-varying effects of covariates across 
multiple time intervals.

 	• RSF was utilized for its effectiveness in handling 
censored data and reducing overfitting, leveraging 
the ensemble strength of Random Forests tailored to 
survival analysis.

Various ML algorithms were employed in this study. We 
implemented a two-stage validation process for our sur-
vival analysis models. Initially, we conducted internal 
validation using the SEER database, where the data was 
randomly split into two portions: 60% for model train-
ing and 40% for validation. This partitioning enabled us 
to develop and subsequently evaluate the model within 
the same dataset. We employed a grid search approach 
combined with the C-index to select parameters for our 
survival analysis model. This method entails explor-
ing a predefined set of parameter combinations, train-
ing the model on a training dataset, and then evaluating 
its performance on internal validation dataset using the 
C-index. This process systematically identifies the opti-
mal parameters that enhance the model’s predictive accu-
racy by ranking survival times effectively. The results of 
the grid search are provided in the supplementary mate-
rials. For external validation, we utilized an independent 
dataset from China, allowing us to assess the model’s 
performance in a different patient population. This com-
prehensive approach ensured a thorough evaluation of 
our models across diverse clinical contexts [17]. The ML 
algorithms that were tested in this study encompassed 
DL, MTLR and RF. The accuracy of these ML models was 
compared with TNM stage. In order to evaluate the per-
formance of the model, various metrics were computed, 
including the area under the receiver operating charac-
teristic curve [18]. Area Under the Curve (AUC) is a per-
formance measure that remains unaffected by specific 
thresholds and provides a comprehensive evaluation of 
the model’s performance.

The AUC values range from 0.5 to 1.0, where 0.5 repre-
sents random chance and 1.0 represents perfect classifi-
cation. Additionally, the calibration of the model, which 
compares predicted outcomes to observed outcomes, 
was evaluated through visual examination of calibration 
plots. Decision curve analysis was performed to calcu-
late the clinical net benefit for each prediction model. 
The net benefit measures the advantages gained by using 
the model’s predictions to guide decision-making. The 
net benefit of employing these strategies was compared 
to the models that rely on prognosis-based interventions, 
meaning interventions based on a predicted risk exceed-
ing a specific threshold.

Statistical analysis
Categorical variables were compared for differences 
using the chi-square test, while the non-parametric 
Mann–Whitney test was used to compare differences 
between continuous variables. Univariate survival analy-
sis was conducted using the Kaplan–Meier method, and 
the log-rank test was employed to compare the survival 
rates among different subgroups. The ML algorithms 
were trained and tested using Pysurvival, while SAS 9.4 
was used for conducting survival analysis, chi-square 
tests, and Mann–Whitney tests. A significance level of 
P < 0.05 was considered statistically significant, using a 
two-sided test.

Results
Study population and baseline characteristics
The number of identified patients was 2,846 in the Chi-
nese and 11,414 in the SEER registry dataset, with 
median ages at diagnosis of 60.8 and 65.3 years, respec-
tively (60.75 ± 10.07 vs. 65.32 ± 13.58 years, P < 0.01). The 
proportion of male patients in the Chinese dataset was 
higher than that in the SEER dataset (75.54% vs. 62.18%, 
P < 0.01). Patients in the Chinese dataset were more likely 
to have tumors located in overlapping locations (24.49% 
vs. 7.23%, P < 0.01). However, patients in the SEER data-
set were more likely to have tumors located in the gastric 
antrum (21.34% vs. 15.39%, P < 0.01). Most patients in the 
Chinese dataset had grade II (55.48%) and T4 (51.65%), 
while patients in the SEER dataset had grade III and IV 
(60.55%) and T3 (36.00%). Patients in the Chinese dataset 
received less radiation (3.62% vs. 34.33%) and more che-
motherapy (75.38% vs. 55.68%) than those in the SEER 
dataset. Among 11 variables included in this study, all 
parameters showed significant difference between the 
SEER and Chinese datasets (Table 1).

Patient prognosis analysis
We conducted univariate analyses of overall survival 
in patients from the datasets to evaluate the impact 
of all variables on GC prognosis (Fig.  1). The results of 
the univariate analyses of overall survival indicate that 
poor prognosis was associated with age (patients aged 
60–69 years, 70–79 years, and over 80 years, compared 
to patients younger than 60 years), pathological type 
(signet-ring cell carcinoma compared to others), grade 
(grades II, III, IV compared to grade I), and TNM stage in 
both the SEER and Chinese dataset. There was a signifi-
cant association between patients with different tumor 
sites. In the SEER database, patients with tumors in the 
greater curve (C16.6-Greater curvature of stomach) were 
associated the poorest prognosis. However, in the Chi-
nese dataset, patients with tumors in the stomach (C16.9-
Stomach) were associated with the poorest prognosis 
(Figs. 2 and 3).
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Performance of ML method
Correlation matrix showed a cluster of interconnected 
variables among the patients with GC (Fig. 4).

The ROC curves in Fig. 5 demonstrate the performance 
of our ML models on the validation and external testing 
sets, compared to TNM staging. Our model showed con-
sistent performance between the validation and external 
testing sets, and outperformed TNM staging in predict-
ing overall survival with a higher AUC value. Deep learn-
ing was found to have the highest AUC value 1, 3, and 5 
years after surgery (from 0.75 to 0.82). Multitask logistic 
regression and random forest also showed a good AUC 
for predicting mortality (from 0.74 to 0.82). The random 
forest algorithm showed a relatively poorer predicting 
capability (only 0.70) compared to the other two models 
when predicting the prognosis in external validation 5 
years after surgery (0.74 and 0.75, respectively).

We next evaluated the performance of the models 
using decision curve analysis, to account for the impact 
on treatment decision making (e.g. surveillance vs. radi-
cal treatment). The heterogeneous profile of the patient 
population renders a uniform treatment strategy (treat 
all or no patients) inferior to strategies informed by any 
one of the four models (Fig. 6). When performing inter-
nal validation of the models, we found that TNM stage 
provided the least benefit compared to the other mod-
els, while deep learning yielded the highest net benefit. 
However, the gain from the models was more than zero 
only at 3 years in the external validation. The gain from 
TNM stage was much less than the other three models 
and the difference is even greater when compared with 
deep learning model.

The calibration plots for 1-, 3-, and 5-year survival in 
the internal validation cohort demonstrated favorable 
consistency between the ML prediction and actual obser-
vation (Fig.  7). However, only the calibration plots at 3 
years showed favorable consistency in the external valida-
tion between the ML prediction and actual observation.

Discussion
The current authoritative AJCC stage for predicting 
patient prognosis is hindered by widely varying clinical 
outcomes, despite similar staging and treatment regi-
mens, suggesting that AJCC staging does not provide 
sufficient prognostic information [19, 20]. ML models 
represent a new approach that can improve prognosis 
prediction. Due to the autonomy-driven nature of ML, 
its ability to continuously add data as the patient pro-
gresses through treatment and visualize the prognosis of 
patients after GC is irreplaceable by all current predictive 
models [21]. Better prediction of prognosis, especially in 
the context of limited healthcare resources, allows us to 
identify patients with possible recurrence early and thus 

Chinese dataset
(n = 2846)

SEER dataset
(n = 11,414)

p-value

Years of diagnosis 2016–2020 2010–2015
Last follow up date 2023 2020
Age 60.75 ± 10.07 65.32 ± 13.58 P < 0.01
Sex P < 0.01
Male 2150(75.54) 7097(62.18)
Female 696(24.46) 4317(37.82)
Tumor locationa) P < 0.01
Cardia 849(29.83) 3493(30.6)
Fundus 17(0.60) 492(4.31)
Body 536(18.83) 1206(10.57)
Gastric antrum 438(15.39) 2436(21.34)
Pylorus 29(1.02) 337(2.95)
Lesser curvature 101(3.55) 1158(10.15)
Greater curvature 14(0.49) 580(5.08)
Overlapping 697(24.49) 825(7.23)
Stomach 165(5.80) 887(7.77)
Histologyb) P < 0.01
Adenocarcinoma 2593(91.11) 7334(64.25)
Signet ring cell 244(8.57) 1766(15.47)
Other 9(0.32) 2314(20.27)
Gradec) P < 0.01
Grade I 44(1.55) 1340(11.74)
Grade II 1579(55.48) 3163(27.71)
Grade III and IV 1223(42.97) 6911(60.55)
T term P < 0.01
T1 278(9.77) 2987(26.17)
T2 351(12.33) 1675(14.67)
T3 747(26.25) 4109(36.00)
T4 1470(51.65) 2643(23.16)
N term P < 0.01
N0 903(31.73) 5295(46.39)
N1 545(19.15) 2900(25.41)
N2 567(19.92) 1509(13.22)
N3 831(29.20) 1710(14.98)
M term P < 0.01
M1 358(12.58) 2012(17.63)
M0 2488(87.42) 9402(82.37)
Race
White 1538(13.47) P < 0.01
Black 7729(67.72)
Other 2846(100) 2147(18.81)
Chemotherapy P < 0.01
Yes 2146(75.4) 6355(55.68)
No 700(24.6) 5059(44.32)
Radiation P < 0.01
Yes 103(3.62) 3918(34.33)
No 2743(96.38) 7496(65.67)
Values are presented as mean ± SD or number (%). SD, standard deviation; 
SEER, Surveillance, Epidemiology, and End Results. (a) Location: Cardia: C16.0-
Cardia; Fundus: C16.1-Fundus of stomach; Body: C16.2-Body of stomach. 
Gastric: C16.3-Gastric antrum; Pylorus: C16.4-Pylorus; Lesser curvature: C16.5-
Lesser curvature of stomach; Greater curvature: C16.6-Greater curvature 
of stomach. Overlapping: C16.8-Overlapping lesion of stomach; Stomach: 
C16.9-Stomach. (b) Histology: Adenocarcinoma, 88,140/3: Adenocarcinoma; 
Signet ring cell carcinoma, 8490/3: Signet ring cell carcinoma. (c) Grade: Grade 
I, Well differentiated; Grade II, Moderately differentiated; Grade III, Poorly 
differentiated; Grade IV, Undifferentiated; anaplastic

Table 1  Characteristics of included patients in Chinese and SEER 
dataset

Table 1  (continued) 
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prevent them effectively, and has an impact on key clini-
cal outcomes (e.g. mortality) [8, 22, 23]. Previous studies 
have identified prediction models and algorithms that 
surpass classical models such as the AJCC TNM staging 
system [24, 25]. In this study, we developed and tested 
ML-trained prognostic models for predicting 5-year 
postoperative GC survival. In contrast to the TNM stage 
prediction model, our ML-based models used 11 clini-
cal features, including the AJCC TNM stage, to achieve 
optimal modeling. Their inherent data-driven capability 
allows multiple variables to be automatically combined to 
obtain high a AUC value and good calibration from pre-
viously undetected factors.

DL-based models, compared to traditional machine 
learning models including multitask logistic regression 
and random forest models, can more comprehensively 
reveal the underlying nonlinear relationships in data 
and handle more complex neural network models [9, 
12]. A previous study constructed ML models, includ-
ing the Boruta algorithm, neural network, support vec-
tor machine, and random forest, to accurately assess the 
overall survival of patients after GC surgery; however, no 
deep learning model was established for validation and 
comparison [26]. Our study introduced the DL-based 
model to predict survival rates and showed that the DL 

model achieved better performance compared to that of 
the AJCC TNM stage system and traditional ML-based 
models in individualized estimation of survival in GC 
patients. In recent years, DL models have successfully 
been applied for analyzing clinical, imaging, and genetic 
data [12–15]. However, the application of DL in predict-
ing postoperative prognosis for GC patients has been 
limited. Zeng et al. developed a DL algorithm to predict 
survival rates for GC patients. However, the DL model 
was validated only using the SEER database and lacked 
validation with real-world data [17, 27]. In this study, a 
total of 11,414 patients with GC from the SEER data-
base were included for internal validation and randomly 
divided into the training and testing groups at a 3:2 ratio. 
In addition, 2,846 GC patients from Henan Cancer Hos-
pital were included for external validation to develop and 
test ML-trained prognostic models. Our study showed 
that DL-based models yielded more reliable predictions 
of survival compared to those by traditional ML and the 
AJCC stage models. These findings indicate the potential 
of DL models to significantly enhance individualized sur-
vival estimation for GC patients.

In our study, we found that the net gains of each model 
decision curve at 1, 3, and 5 years in the training set are 
larger than that in the test cohort, with multi-task logistic 

Fig. 1  Comparison of the 5-year overall survival of patients in the SEER and Chinese datasets. SEER: Surveillance, Epidemiology, and End Results
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regression and DL slightly higher than TNM staging. In 
the test set, the net gain of each model was lower at 1 and 
5 years, while at 3 years, the DL and multi-task logistic 
regression models were much more effective than the 
TNM staging. Moreover, the calibration curves showed 
that the training model fit was better than the test model 
for each year. In the test set, the accuracy of 3-year sur-
vival prediction was higher than that of 1-, 5-year survival 
prediction. The 1-year survival prediction probability was 
higher than the actual probability, and the 5-year survival 
prediction probability was lower than the actual prob-
ability. There are several reasons for this phenomenon: 
(1) the mortality rate of tumor patients is relatively low 
at 1 year and relatively high at 5 years, which makes the 
model identification more difficult. (2) The high accuracy 
of the training set and the low accuracy of the validation 
set may be due to the differences in the genetic back-
ground, race, and treatment of patients in the training set 
and the validation set. Methods such as transfer learning 
can be considered in subsequent studies to increase the 
accuracy in the validation set [28].

A limitation of this analysis is that the clinical prog-
nostic model we developed does not incorporate any 
previously identified molecular markers that potentially 
influence patient prognosis [29–31]. Including these 
markers in our predictive model will enhance its reliabil-
ity. Moreover, this was a retrospective study with some 
selection bias. A large prospective study is needed to vali-
date the developed model to obtain more generalized and 
robust predictive validity of DL. Lastly, The algorithms 
we selected indeed established methods within the field 
of machine learning and have been extensively applied 
across diverse datasets in various domains. However, 
our intention in utilizing these well-established method-
ologies was to harness their proven strengths in handling 
complex, high-dimensional survival data, particularly in 
assessing their efficacy within a survival analysis context 
mirroring real-world clinical scenarios. The novelty of 
our work lies not in the introduction of new algorithms 
but in the comprehensive application and comparative 
analysis of these methods against the traditional TNM 

Fig. 2  Kaplan–Meier survival analyses for overall survival of stomach cancer patients in the SEER dataset. (A): Comparison of the 5-year overall survival ac-
cording to sex. (B): Comparison of the 5-year overall survival according to age. (C): Comparison of the 5-year overall survival according to different grades. 
(D): Comparison of the 5-year overall survival among patients of different races. (E): Comparison of the 5-year overall survival according to different T 
stages. (F): Comparison of the 5-year overall survival according to different N stage. (G): Comparison of the 5-year overall survival according to different 
M stage. (H): Comparison of the 5-year overall survival among patients undergoing radiotherapy. (I): Comparison of the 5-year overall survival among 
patients undergoing chemotherapy. SEER: Surveillance, Epidemiology, and End Results
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staging system within the specific domain of survival 
analysis.

The DL-based model constructed in this study achieves 
the first validation of the SEER database combined with 
the Chinese population database on internal and exter-
nal data, which can more accurately assess the prognosis 
of postoperative GC patients and helps to provide accu-
rate and personalized treatment for postoperative GC 
patients in a clinical setting.

Conclusions
We constructed a DL-based model using data from both 
the SEER and Chinese population databases for the first 
time and subjected it to internal and external validation 
to predict the prognosis of postoperative GC patients. 
Our findings suggest that the DL-based model accurately 
predicts the survival rate of postoperative patients with 
GC.

Fig. 3  Kaplan–Meier survival analyses for overall survival of stomach cancer patients in the Chinese dataset. (A): Comparison of the 5-year overall survival 
according to sex. (B): Comparison of the 5-year overall survival according to age. (C): Comparison of the 5-year overall survival according to different 
grades. (D): Comparison of the 5-year overall survival among patients of different races. (E): Comparison of the 5-year overall survival according to different 
T stages. (F): Comparison of the 5-year overall survival according to different N stage. (G): Comparison of the 5-year overall survival according to different 
M stage. (H): Comparison of the 5-year overall survival among patients undergoing radiotherapy. (I): Comparison of the 5-year overall survival among 
patients undergoing chemotherapy
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Fig. 4  Correlation matrix of the variables for patients with GC. GC: gastric cancer
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Fig. 5  Comparison of the receiver operating characteristic curve using machine learning method and TNM term in internal and external validation. (A) 1 
year after surgery in the SEER dataset (B) and 1 year after surgery in the Chinese dataset; (C) 3 years after surgery in the SEER dataset (D) and 3 years after 
surgery in the Chinese dataset; (E) 5 years after surgery in the SEER dataset (F) and 5 years after surgery in the Chinese dataset. AUC, area under the curve, 
SEER: Surveillance, Epidemiology, and End Results
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Fig. 6  The decision curve for predicting patient survival. The clinical net benefit for each prediction model is calculated across a range of risk threshold 
probabilities. Clinical net benefit is defined as the minimum probability of disease at which further intervention would be warranted. (A) 1 year after 
surgery in the SEER dataset (B) and 1 year after surgery in the Chinese dataset; (C) 3 years after surgery in the SEER dataset (D) and 3 years after surgery 
in the Chinese dataset; (E) 5 years after surgery in the SEER dataset (F) and 5 years after surgery in the Chinese dataset. SEER: Surveillance, Epidemiology, 
and End Results
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Fig. 7  Calibration curves for predicting patient survival. Calibration curves for 1-, 3-, and 5-year overall survival in the SEER and Chinese datasets. By plot-
ting overall survival on x-axis and the actual observed overall survival on y-axis, the calibration of the model can be evaluated. A line closer to 45 degrees 
indicates better calibration, suggesting that the predicted probabilities closely match actual outcomes. (A) 1 year after surgery in the SEER dataset (B) and 
1 year after surgery in the Chinese dataset; (C) 3 years after surgery in the SEER dataset (D) and 3 years after surgery in the Chinese dataset; (E) 5 years after 
surgery in the SEER dataset (F) and 5 years after surgery in the Chinese dataset. SEER: Surveillance, Epidemiology, and End Results
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